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Abstract. We study the Abel differential equation x′ = A(t)x3 + B(t)x2 + C(t)x. Specif-
ically, we find bounds on the number of its rational solutions when A(t), B(t) and C(t)
are polynomials with real or complex coefficients; and on the number of rational limit
cycles when A(t), B(t) and C(t) are trigonometric polynomials with real coefficients.

Keywords: limit cycle, Abel equation, invariant curve.

2020 Mathematics Subject Classification: 34C25.

1 Introduction

The Abel differential equation

x′ = A(t)x3 + B(t)x2 + C(t)x (1.1)

with A(t), B(t), C(t) continuous, and the generalized Abel equations

x′ =
n

∑
i=1

Ai(t)xi (1.2)

with n > 3 and Ai(t) continuous for all i ∈ {1, . . . , n} have been widely studied in the context
of Hilbert’s 16th Problem, and because of their utility to model real-world models [4] and its
own mathematical interest [12].

In the field of the qualitative theory of differential equations, the two most studied prob-
lems regarding Abel equations are the Smale–Pugh problem and the Poincaré Centre-Focus
problem.

The Smale–Pugh problem [33] consists on bounding the number of limit cycles (isolated
periodic solutions) of (1.1) when its coefficients with respect to t are periodic. Lins Neto [23]
showed that there is no bound for the number of limit cycles of (1.1) when A(t), B(t) and C(t)
are trigonometric polynomials. This problem is related to Hilbert’s 16th problem through the
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transformation of Cherkas [10]. Some results in this line can be consulted in, for example,
[1–3, 13, 14, 19–22, 27, 29, 31, 37].

The other problem is the adaptation of the classical Poincaré Centre-Focus problem to
this setting, proposed by Briskin, Françoise and Yondim [7, 8]. Here, as x(t) ≡ 0 is always
a periodic solution of (1.1), we will say that the equation has a center if every solution in a
neighbourhood of x(t) ≡ 0 is also periodic. For more details on the state of art of this problem,
see for example [12, 18, 30].

Another natural question regarding an Abel equation is related to how many solutions of a
certain type the equation can have. For example, Giné et al. [17] showed that the generalized
Abel equations of degree n in x with polynomial coefficients have at most n polynomial
solutions. Other works about similar topics are [9, 15, 24, 25, 28, 32, 34].

In [26, 36], the authors study how many rational closed solutions can the Abel equation

x′ = A(t)x3 + B(t)x2 (1.3)

have, both in the polynomial (this is, when A(t) and B(t) are polynomials and the rational
solutions are quotients of polynomials) and in the trigonometric cases (this is, when A(t) and
B(t) are trigonometric polynomials, and the rational solutions are quotients of trigonometric
polynomials). Note that, in the trigonometric case, this problem is related with the Smale–
Pugh problem, as, if the equation has not a center, the rational solutions are periodic and,
consequently, limit cycles of the equation. Thus, the number of certain types of limit cycles of
the equation is being determined.

In [5], we studied the polynomial case for the equation (1.3), for polynomials with real
or complex coefficients, but looking for all rational solutions of the equation, regardless of
whether they are closed or not. In particular, conditions are given for the equation to have
at most two rational solutions; a general bound for the number of rational solutions is given;
and Darboux’s Integrability Theory (see more in [16] for example) is used to determine how
many rational solutions can coexist before the equation is integrable.

Furthermore, in [6] the trigonometric case of the equation (1.3) is studied and bounds are
found for the number of rational limit cycles, using Darboux’s Integrability Theory to improve
the bounds given in [36]. This work is only performed in the real context, since the techniques
developed in the polynomial case do not translate adequately in the complex environment.

Clearly, there are various ways to extend this problem, for example, by searching results
about the number of rational solutions of generalized Abel equations. However, the most
immediate extension consists on adding the linear term to the equation, this is, to look for
rational solutions of

x′ = A(t)x3 + B(t)x2 + C(t)x + D(t). (1.4)

Without loss of generality, we assume D(t) ≡ 0. This problem has been studied in [35], but
only for closed rational solutions in the polynomial case.

The objective of this work is to extend the techniques and results in [5,6] to the “complete”
Abel differential equation.

In precise terms, throughout this paper, we consider the Abel equation

x′ = A(t)x3 + B(t)x2 + C(t)x (1.5)

with A(t), B(t), and C(t) ∈ R, where R is either the polynomial ring in t with coefficients in
K ∈ {R, C}, in symbols, R = K[t], or the ring of trigonometric polynomials with real coeffi-
cients, in symbols, R = R[cos(t), sin(t)]. Note that we exclude the study over C[cos(t), sin(t)]
because, as mentioned above, the techniques can not be applied appropriately in this setting.
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Moreover, since the case C(t) ≡ 0 is completely studied in [5, 6], in what follows we
consider C(t) ̸≡ 0, and we also assume that A(t) ̸≡ 0 and B(t) ̸≡ 0, since otherwise (1.5)
would be a Ricatti or Bernoulli equation, respectively. We will also assume that A(t) is non
constant, as this case has been studied by Pliss in [31], in the trigonometric case, and by Giné,
Grau and Llibre [17] in the polynomial case (see Remark 2.4).

Whenever possible, we will treat both the polynomial case and the trigonometric case as
a whole. For this reason, it is convenient to note that deg(−) indistinguishable means in the
polynomial case the usual degree of an univariate polynomial; while in the trigonometric case
it means the highest integer n such that an ̸= 0 or bn ̸= 0 in the expression

a0 +
N

∑
n=1

an cos(nt) + bn sin(nt).

Moreover, to facilitate the cases integration, we recall that the problem of finding rational
solutions of the equation (1.5), in the polynomial case, and rational solutions (that will be
automatically periodic) of (1.5), in the trigonometric case, is equivalent to studying the invari-
ant curves of (1.5) of the form p(t)x + q(t) = 0, with p(t), q(t) ∈ R and p(t) ̸= 0 for every t.
Therefore, we use the term invariant curve of degree one in x, (or simply invariant curve, since
there can be no confusion here) to unify the terminology, and the results will be given, always
that is possible, in terms of invariant curves and not rational solutions. For more details on
invariant curves see [16].

We are now ready to present the main result in this paper. Note that it is written in terms
of invariant curves, with the exception of the case (b.2.2), where we can improve the bound
by studying instead the number of rational limit cycles, which is equivalent to the number of
invariant curves when the equation does not have a center.

Theorem 1.1. With the above notation and conventions, the following claims are satisfied.

(a) If deg(A)− deg(C) ≤ 1, then (1.5) has at most one invariant curve.

(b) If deg(A)− deg(C) > 1 and we are either in the polynomial case, or in the trigonometric one
with C(t) non-constant, then

(b.1) If deg(A)− deg(C) is odd or deg(A) + deg(C) < 2 deg(B), then (1.5) has at most two
invariant curves.

(b.2) If deg(A)− deg(C) is even and deg(A) + deg(C) ≥ 2 deg(B), then,

(b.2.1) in the polynomial case, the number of invariant curves of (1.5) is at most(
deg(A)

(deg(A) + 1)/2

)
+ 1.

Moreover, in this case, (1.5) is Darboux integrable, if the number of invariant curves
of (1.5) is greater that deg(A) + deg(C) + 4.

(b.2.2) in the trigonometric case, an upper bound for the number of rational limit cycles of
(1.5) is 2 deg(A) + 2 deg(C) + 4.

(c) If deg(A)−deg(C) > 1, in the trigonometric case and with C(t) ≡ c a non zero constant, then
an upper bound for the number of invariant curves is 4 deg(A).
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Note that we have assumed that C(t) ̸≡ 0, and so this result does not cover the results of
[5,6]. However, the conditions of (b.1) are very similar to their equivalent versions in [5,6] for
the case C(t) ≡ 0, and the general bound of (b.2.1) for the polynomial case is exactly the same.
On the other hand, when we apply Darboux’s Theory of Integrability in this context, because
of details of the proof the bounds of (b.2.2) and (c) are less sharp than their equivalent ones in
[5, 6].

In [5] using computational numerical and algebraic tools we were able to develop a method
to study thoroughly the number of invariant curves that equation (1.3) has, in the polynomial
case. Its computational effort grows sharply as deg(A) rises though, so we only studied the
cases up to deg(A) = 5.

Using this method, in [5] for low values of deg(A) we could study the sharpness of the
general bound (

deg(A)

(deg(A) + 1)/2

)
+ 1

for the number of invariant curves of the equation (1.3). We did show that this bound was
sharp when deg(A) was one or three, but it was not sharp when it was five.

On the other hand, we did not study the sharpness of the bounds provided by Darboux’s
Theory of Integrability when C(t) ≡ 0 in [5,6], although some numerical experiments seemed
to show that they were sharp for low values of deg(A). In general, the sharpness of these
bounds is an open question.

As this paper covers the polynomial and the trigonometric case at the same time, we have
decided to not develop an equivalent exhaustive method for (1.5), although we offer a lemma
related with the parametrization of the equation in terms of its invariant curves, which is very
helpful to make numerical experiments in this direction. Consequently, the sharpness of the
bounds provided in Theorem 1.1 are left as an open question.

The structure of the paper is as follows: first we remind the factorization properties of the
ring R[cos t, sin t] and in Section 2.1 we show the characterization of the invariant curves of
(1.5); then, in Section 2.2, we suppose that (1.5) has two or more different invariant curves,
and we prove (a) and (b.1); next, in Section 2.3, we focus on the polynomial case to provide the
general bound of (b.2.1); and finally in Section 3 we apply Darboux’s Theory of Integrability
to prove the remaining parts of (b.2.1), together with (b.2.2) and (c).

2 Invariant curves of degree one in x

We remind that we have set R to be equal to K[t], K ∈ {R, C}, or equal to R[cos(t), sin(t)].
While in the first case R is a Euclidean domain and everything works fine in terms of divis-
ibility or factorization of elements, in the second case R is not even a unique factorization
domain. So special care must be taken when using it with factorization arguments. Never-
theless, R[cos(t), sin(t)] has somewhat stable factorization properties for being a half-factorial
Dedekind domain. We summarize those extensively used along this paper and refer the reader
to [6, Appendix A] for more details.

Proposition 2.1. Let p(t) ∈ R[cos(t), sin(t)]. If p(t) /∈ R and p(t) ̸= 0 for every t, then the
following holds.

(a) The decomposition of p(t) into irreducibles of R[cos(t), sin(t)] is unique, up to the order of the
factors and the product by invertible elements.
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(b) If p(t) = h(t)r(t) and none of the irreducible factors of p(t) divides h(t), then r(t) divides p(t).

(c) If q(t) ∈ R[cos(t), sin(t)] \ {0} is non-constant, then p(t) and q(t) are relatively prime if and
only if they have not irreducible factors in common.

As mentioned before, we are interested in studying the invariant curves of degree one in
x (that from now on we call simply invariant curves) of (1.5), that is, the invariant curves (1.5)
of the form p(t)x + q(t) = 0, with p(t), q(t) ∈ R, p(t) non-constant and p(t) ̸= 0 for every t.
Because p(t) ̸= 0 we always assume that p(t) and q(t) are relatively prime.

Recall that p(t)x + q(t) = 0 is invariant for (1.5) if and only if there exists K(t, x) ∈ R[x],
called cofactor of p(t)x + q(t), such that

p′(t)x + q′(t) + p(t)
(

A(t)x3 + B(t)x2 + C(t)x
)
= (p(t)x + q(t))K(t, x). (2.1)

For degree reasons, K(t, x) = K2(t)x2 + K1(t)x + K0(x) with Ki(t) ∈ R, i = 0, 1, 2.

2.1 One invariant curve

A characterization of the invariant curves of the equation (1.3) can be found in [24], which was
then adapted to our case, and the trigonometric case with C(t) ≡ 0 in [35, 36], respectively.
We include its proof here for the sake of completeness.

Proposition 2.2. The curve p(t)x + q(t) = 0 is invariant for (1.5) if and only if q(t) = c is a nonzero
constant and

c2A(t) =
(
cB(t)−

(
p′(t) + p(t)C(t)

))
p(t). (2.2)

Proof. By (2.1), p(t)x + q(t) = 0 is invariant for (1.5) if and only if

p′(t)x + q′(t) + p(t)
(

A(t)x3 + B(t)x2 + C(t)x
)

= (p(t)x + q(t))
(
K2(t)x2 + K1(t)x + K0(t)

)
,

with Ki(t) ∈ R, i = 0, 1, 2. So, equating the coefficients of the powers of x and omitting the
arguments, we have

q′ = q K0,

p′ + p C = K0 p + K1 q,

p B = K1 p + K2 q,

p A = K2 p ⇐⇒ A = K2 (since p(t) ̸≡ 0).

From the first equality, we obtain both K0(t) ≡ 0 and q(t) = c for a nonzero constant c. Now,
substituting this conveniently into the second equation, we get

p′(t) + p(t)C(t) = K1(t)c,

that is, K1(t) = (p′(t) + p(t)C(t))/c. So the third equation yields

p(t)B(t) = (p′(t) + p(t)C(t))p(t)/c + K2(t)c.

Therefore, K2(t) = p(t)B(t)/c − (p′(t) + p(t)C(t))p(t)/c2 and, consequently,

c2 A(t) =
(
cB(t)−

(
p′(t) + p(t)C(t)

))
p(t),

as claimed.
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Note that, without loss of generality, we can assume c = −1 in Proposition 2.2. We will
assume this from now until the end of the paper. Thus, our invariant curves will always be of
the form p(t)x − 1 = 0.

Although the following result is a direct consequence of Proposition 2.2 and its proof, we
state it because we will use it extensively throughout the paper.

Corollary 2.3. If p(t)x − 1 = 0 is an invariant curve of (1.5), then p(t) divides A(t). In particular,

−B(t) = A(t)/p(t) + p′(t) + p(t)C(t) (2.3)

and the cofactor of p(t)x − 1 = 0 is equal to A(t)x2 − (p′(t) + p(t)C(t)) x.

Remark 2.4. As mentioned in the introduction, in the trigonometric case, the case where
A(t) is constant is extensively studied in [31]. In the other case, since, by Corollary 2.3, A(t)
being constant implies that p(t) is also constant (in fact, regardless of whether we are in
the polynomial or the trigonometric case), we have that the corresponding invariant curve is
polynomial; a case that has been extensively studied in [17]. Thus, in the rest of the paper, we
always assume that deg(A) > 0

2.2 Two or more invariant curves

Now suppose (1.5) has at least two different invariant curves.

Proposition 2.5. If p1(t)x − 1 = 0 and p2(t)x − 1 = 0 are two different invariant curves of (1.5),
then

A(t) = C(t)p1(t)p2(t) +
(p2(t)− p1(t))′p1(t)p2(t)

p2(t)− p1(t)
. (2.4)

In particular, deg(A)− deg(C) ≤ deg(p1) + deg(p2).

Proof. By (2.3),
−A(t) =

(
B(t) +

(
p′1(t) + p1(t)C(t)

))
p1(t).

and
−A(t) =

(
B(t) +

(
p′2(t) + p2(t)C(t)

))
p2(t).

If we multiply the first expression by p2(t) and the second expression by p1(t) and then take
the difference between them, we get

−(p2(t)− p1(t))A(t) = (p′1(t)− p′2(t))p1(t)p2(t) + (p1(t)− p2(t))C(t)p1(t)p2(t).

Now, since p1(t) ̸≡ p2(t), (2.4) follows.
Finally, for the second part of the statement, it suffices to observe that by (2.4) we have that

deg(A) ≤ max
{

deg(C(t)p1(t)p2(t)), deg
(
(p2(t)− p1(t))′p1(t)p2(t)

p2(t)− p1(t)

)}
= deg(C(t)p1(t)p2(t)) = deg(C) + deg(p1) + deg(p2).

(2.5)

Therefore, deg(A)− deg(C) ≤ deg(p1) + deg(p2) as claimed.

Proposition 2.6. Let C(t) be non-constant. If p1(t)x − 1 = 0 and p2(t)x − 1 = 0 are two different
invariant curves of (1.5), then

deg(A)− deg(C) = deg(p1) + deg(p2).

In particular, deg(A)− deg(C) > 1.
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Proof. Let

r(t) :=
(p2(t)− p1(t))′p1(t)p2(t)

p2(t)− p1(t)
.

By (2.4), r(t) is equal to A(t)− C(t)p1(t)p2(t). Therefore, r(t) ∈ R and deg(r) = deg(p1) +

deg(p2) − 1, in the polynomial case, and deg(r) = deg(p1) + deg(p2), in the trigonometric
case.

Now, since C(t) is not constant, in particular, deg(C) > 0 and, consequently, deg(Cp1 p2) >

deg(p1) + deg(p2) ≥ deg(r). Therefore, since by (2.5) deg(A) ≤ deg(Cp1 p2) and deg(A −
Cp1 p2) = deg(r) < deg(Cp1 p2), we conclude that deg(A) = deg(Cp1 p2), that is, deg(A)−
deg(C) = deg(p1) + deg(p2), as claimed.

The last statement is as simple as noting that p1(t) and p2(t) are non-constant, and so
deg(p1) + deg(p2) > 1.

Remark 2.7. Note that, in the polynomial case, C(t) can be chosen constant in Proposition
2.6 and everything remains the same because, in this case, deg(r) = deg(p1) + deg(p2)− 1 <

deg(Cp1 p2).

Remark 2.8. Observe that, in the polynomial case, (2.4) can be interpreted in terms of Eu-
clidean divisibility as follows: if p1(t)x − 1 = 0 and p2(t)x − 1 = 0 are two different invariant
curves of (1.5), then the quotient and the remainder of the division of A(t) by p1(t)p2(t) are

C(t) and r(t) =
(p2(t)− p1(t))′p1(t)p2(t)

p2(t)− p1(t)
,

respectively. Giving rise to a computable necessary condition for two factors of A(t) to define
invariant curves.

Let us derive some consequences from Proposition 2.6.

Corollary 2.9. If deg(A)− deg(C) ≤ 1, then (1.5) has at most one invariant curve.

Proof. If C(t) is not constant, then, by Proposition 2.6, we are done. This also extends to the
polynomial case, when C(t) is constant (see Remark 2.7). Thus, suppose A(t) and B(t) are
non-constant real trigonometric polynomials and C(t) = c ∈ R \ {0}; in particular, deg(A) =

1 by hypothesis. Therefore, p1(t) = a A(t) and p2(t) = b A(t) for some a, b ∈ R \ {0} with
a ̸= b. Thus, by (2.4),

A(t) = abA(t)(cA(t) + A′(t)).

Therefore, cA(t) + A′(t) = 1
ab . Now, since A(t) = a0 + a1 cos(t) + b1 sin(t), for some a0, a1 and

b1 ∈ R, we obtain that

ca0 + (ca1 + b1) cos(t) + (cb1 − a1) sin(t) =
1
ab

.

Therefore,
ca0ab = 1, ca1 + b1 = 0, cb1 − a1 = 0.

From the last two equalities, a1 = b1 = 0, in contradiction with A(t) being non constant.

Lemma 2.10. Let p1(t)x − 1 = 0 and p2(t)x − 1 = 0 be two different invariant curves of (1.5). If
deg(p1) ̸= deg(p2), and

(a) C(t) is not constant, then has no more invariant curves.
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(b) C(t) is constant, then deg(A) = deg(p1) + deg(p2).

Proof. (a) Suppose on contrary, that h(t, x) = 0 is an invariant curve of (1.5) different from
p1(t)x − 1 = 0 and p2(t)x − 1 = 0. By Proposition 2.2, there exists a polynomial p3(t) ∈ R
such that h(t, x) = p3(t)x− 1. Since, by Proposition 2.6, deg(pi)+deg(pj) = deg(A)−deg(C)
for every 1 ≤ i < j ≤ 3, we conclude that deg(pi) = deg(pj) = deg(A)−deg(C)

2 for every
1 ≤ i < j ≤ 3, in contradiction with the hypothesis.

(b) Note that by Remark 2.7 the result is immediate in the polynomial case, so we focus on
the trigonometric one. Let c ∈ R \ {0} be such that C(t) = c. Then, by (2.3),

−B(t) = A(t)/p1(t) + p′1(t) + p1(t)c = A(t)/p2(t) + p′2(t) + p2(t)c.

Suppose that deg(A) ̸= deg(p1) + deg(p2). Then, by Proposition 2.5, deg(A) < deg(p1) +

deg(p2). Therefore deg(A/p1) < deg(p2) and deg(A/p2) < deg(p1).
Now, since deg(p1) ̸= deg(p2), we can assume deg(p1) < deg(p2), then the higher degree

terms of p′2(t) and p2(t)c must cancel each other. Thus, if p2(t) = an cos(nt) + bn sin(nt) +
lower degree terms, where an and bn are not both zero, then

can cos(nt) + cbn sin(nt) = −nan sin(t) + nbn cos(t).

Therefore, can − nbn = cbn + nan = 0 and, since c ∈ R \ {0}, we obtain an = bn = 0, a
contradiction. Hence, deg(p1) = deg(p2).

Remark 2.11. Note that according to Remark 2.7 nothing changes if C(t) is constant in (a) of
the previous lemma in the polynomial case.

Observe that as an immediate consequence of the proof of the above result we have the
following corollary.

Corollary 2.12. Suppose that we are in the polynomial case or in the trigonometric case when C(t) is
not constant. If (1.5) has three invariant curves, say, pi(t)x − 1 = 0, i = 1, 2, 3, then

deg(pi) =
deg(A)− deg(C)

2
,

for every i ∈ {1, 2, 3}.

Proposition 2.13. Suppose that we are in the polynomial case or in the trigonometric case when C(t)
is not constant. If deg(A)− deg(C) is odd or 2 deg(B) > deg(A) + deg(C), then (1.5) has at most
two invariant curves.

Proof. Corollary 2.12 clearly implies that if deg(A) − deg(C) is odd, then (1.5) can have at
most two invariant curves.

Suppose that 2 deg(B) > deg(A) +deg(C). By (2.3), if p1(t)x − 1 = 0 is an invariant curve,
then

−B(t) = A(t)/p1(t) + p′1(t) + p1(t)C(t),

and thus, deg(B) ≤ max{deg(A) − deg(p1), deg(p1), deg(p1) + deg(C)}. Now, if (1.5) has
more than two invariant curves, by Corollary 2.12, deg(p1) =

deg(A)−deg(C)
2 , and we conclude

that

deg(B) ≤ max
{

deg(A) + deg(C)
2

,
deg(A)− deg(C)

2

}
=

deg(A) + deg(C)
2

getting a contradiction.
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Let us parameterize the family of equations (1.5) with at least two invariant curves,
p1(t)x − 1 = 0 and p2(t)x − 1 = 0.

First, we will introduce some notation. Let q(t) = gcd(p1(t), p2(t)), this is also well defined
in the trigonometric case by Proposition 2.1(c), and let s1(t), s2(t) and s(t) be the polynomials
(resp. trigonometric polynomials) such that

p1(t) = q(t)s1(t), p2(t) = q(t)s2(t), A(t) = q(t)s1(t)s2(t)s(t). (2.6)

Note that gcd(s1(t), s2(t)) = 1.

Lemma 2.14. Let p1(t) and p2(t) be two non-constant polynomials in t with coefficients in K (resp.
two non-constant trigonometric polynomials with real coefficients) such that pi(t) ̸= 0, for every t ∈ R

and i ∈ {1, 2}. With the previous notation, if

(p2(t)− p1(t))′p1(t)p2(t)
p2(t)− p1(t)

is a polynomial (resp. a trigonometric), then s2(t) = s1(t) + k q̂(t), where k is a nonzero constant and
q̂(t) is either constant or a product of not necessarily distinct irreducible monic factors of q(t). As a
consequence, if p1(t)x − 1 = 0 and p2(t)x − 1 = 0 are two invariant curves of (1.5), the claim must
also be true. Furthermore,

s(t) = −q′(t) + q(t)
(

C(t) +
q̂′(t)
q̂(t)

)
.

Proof. By (2.6), we have

(p2(t)− p1(t))′p1(t)p2(t)
p2(t)− p1(t)

= q(t)s1(t)s2(t)
(

q′(t) + q(t)
(s2(t)− s1(t))′

s2(t)− s1(t)

)
.

So, by hypothesis,

q(t)2 (s2(t)− s1(t))′

s2(t)− s1(t)

is a polynomial, because there is no factor of s2(t) − s1(t) dividing s1(t)s2(t) as
gcd(s1(t), s2(t)) = 1.

Let us decompose s2(t)− s1(t) = q1(t)q2(t) where all the factors of q2(t) divide q(t) and
no factor of q1(t) divides q(t); in particular gcd(q1(t), q2(t)) = 1. Then q1(t) divides s′2(t)−
s′1(t) = q′1(t)q2(t) + q1(t)q′2(t). So, it divides q′1(t)q2(t) by Proposition 2.1. Therefore, q1(t)
must be a nonzero constant. Now, by simply taking k = q1(t) and q̂(t) = q2(t), we are done.

On the other hand, as by (2.3),

A(t)/p1(t) + p′1(t) + p1(t)C(t) = −B(t) = A(t)/p2(t) + p′2(t) + p2(t)C(t),

then by (2.6),

s2(t)s(t) + q′(t)s1(t) + q(t)s′1(t) + q(t)s1(t)C(t)

= s1(t)s(t) + q′(t)s2(t) + q(t)s′2(t) + q(t)s2(t)C(t)

or, equivalently,

q(t)((s′2(t)− s′1(t)) + C(t)(s2(t)− s1(t))) = (s2(t)− s1(t))(s(t) + q′(t))
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and

s(t) = −q′(t) + q(t)
(

C(t) +
s′2(t)− s′1(t)
s2(t)− s1(t)

)
.

As s2(t)− s1(t) = k q̂(t), the previous expression reduces to

s(t) = −
(

q′(t) + q(t)
(

C(t) +
q̂′(t)
q̂(t)

))
.

The converse also holds by direct verification using Corollary 2.3. Therefore, we obtain a
parameterization of all cases of equation (1.5) having at least two invariant curves.

2.3 Bounds for the invariant curves in the polynomial case

In the polynomial case, it is interesting to look for a general bound on the number of invariant
curves of (1.5). We recall that this is not interesting in the trigonometric case, since we can
get a much better bound on the number of rational limit cycles using the Darboux theory of
integrability (see Section 3). Thus, the rest of this section applies only to the polynomial case,
and then we are in a Euclidean domain setting.

Given that if p(t)x − 1 = 0 is an invariant curve of (1.5), then p(t) is a divisor of A(t)
in C[t], the number of divisors of A(t) would be an upper bound for the number of such
invariant curves, up to proportionality. To search for this bound, we must first study the
invariant curves of the equation whose polynomials are proportional.

Proposition 2.15. The curves p(t)x − 1 = 0, Kp(t)x − 1 = 0 with K ∈ K \ {0, 1} are invariant
curves of (1.5) if and only if

A(t) = Kp(t)(p′(t) + p(t)C(t)), B(t) = −(K + 1)(p′(t) + p(t)C(t)).

Proof. As p(t)x − 1 = 0 is an invariant curve of (1.5), then by Corollary 2.3 there must exist a
polynomial q(t) such that

A(t) = p(t)q(t), −B(t) = p′(t) + q(t) + p(t)C(t).

Moreover, as Kp(t)x − 1 = 0 is also an invariant curve of (1.5), again by Corollary 2.3 there
must also exist a polynomial q̄(t) such that

A(t) = Kp(t)q̄(t), −B(t) = Kp′(t) + q̄(t) + Kp(t)C(t).

Thus, q(t) = Kq̄(t) and, equating both expressions of B(t), one gets that q̄(t) = p′(t) +
p(t)C(t), and,

A(t) = Kp(t)(p′(t) + p(t)C(t)), B(t) = −(K + 1)(p′(t) + p(t)C(t)).

Conversely, taking q(t) = K(p′(t) + p(t)C(t)), one has that A(t) = p(t)q(t), B(t) = p′(t) +
q(t) + p(t)C(t) and, consequently, that p(t)x − 1 = 0 is invariant. Picking q(t) = (p′(t) +
p(t)C(t)), one would similarly prove that Kp(t)x − 1 = 0 is also invariant.

Proposition 2.16. Equation (1.5) has at most two invariant curves whose polynomials are proportional.
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Proof. Because of Proposition 2.15, we know that if p(t)x − 1 = 0 is an invariant curve of (1.5),
then there must exists an unique K ∈ C \ {0, 1} such that Kp(t)x − 1 = 0, and

A(t) = Kp(t)(p′(t) + p(t)C(t)), B(t) = −(K + 1)(p′(t) + p(t)C(t)).

This, if K ̸= −1 implies that

p(t) = −K + 1
K

A(t)
B(t)

.

Now, if there exists a different pair of invariant curves with proportional polynomials, say
p̄(t)x − 1 = 0, K̄ p̄(t)x − 1 = 0, then if K̄ ̸= −1 also

p̄(t) = − K̄ + 1
K̄

A(t)
B(t)

=
K̄ + 1

K̄
K

K + 1
p(t)

and we are done.
Finally, note that if p(t)x − 1 = 0 and −p(t)x − 1 = 0 are both invariant curves of (1.5),

then B(t) ≡ 0 and we have excluded that case.

Proposition 2.17. If deg(A)− deg(C) ≤ 1, (1.5) has at most one invariant curve. In another case,
if deg(A)− deg(C) is odd or deg(A) + deg(C) < 2 deg(B), then (1.5) has at most two invariant
curves. In another case, an upper bound for the number of invariant curves of (1.5) is(

deg(A)

(deg(A) + 1)/2

)
+ 1.

Proof. It is enough to remember that the number of divisors of A(t), up to proportionality, is
( deg(A)
(deg(A)+1)/2) and that at most two invariant curves have proportional polynomials.

3 Darboux’s theory of integrability

Now let us take advantage of Darboux’s Integrability Theory to obtain results related to the
integrability of the equation, in the polynomial case, and upper bounds on the number of
rational limit cycles, in the trigonometric case.

We first recall the basic result of this theory from the original work of Darboux [11],
adapted both to the polynomial and trigonometric settings.

Proposition 3.1. If (1.5) has algebraic irreducible invariant curves h1(t, x) = 0, . . . , hr(t, x) = 0
with respective cofactors K1(t, x), . . . , Kr(t, x) and there exist not all null numbers α1, . . . , αr such that

r

∑
i=1

αiKi(t, x) = 0,

then

h(t, x) :=
r

∏
i=1

hi(t, x)αi

is a first integral of (1.5). In this case, we say that (1.5) is Darboux integrable.
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Proposition 3.2. If (1.5) has invariant curves p1(t)x − 1 = 0, . . . , pr(t)x − 1 = 0 with respective
cofactors K1(t, x), . . . , Kr(t, x), and we write K0(t, x) = A(t)x2 + B(t)x + C(t) for the cofactor of the
curve x = 0, then there exist numbers α0, . . . , αr not all zero such that

r

∑
i=0

αiKi(t, x) = 0

if and only if
r

∑
i=1

αi A(t)/pi(t) = 0 and 0 = α0 =
r

∑
i=1

αi.

Proof. First, we recall that, by Corollary 2.3, the invariant curves pi(t)x − 1 = 0 have cofactors
Ki(t, x) = A(t)x2 − (p′i(t) + pi(t)C(t))x = A(t)x2 + (B(t) + A(t)/pi(t))x, i = 1, . . . , r. Thus,

r

∑
i=0

αiKi(t, x) = α0K0(t, x) +
r

∑
i=1

αiKi(t, x)

= α0
(

A(t)x2 + B(t)x + C(t)
)
+

r

∑
i=1

αi(A(t)x2 + (B(t) + A(t)/pi(t))x)

=

(
A(t)

r

∑
i=0

αi

)
x2 +

(
α0B(t) +

r

∑
i=1

αi(B(t) + A(t)/pi(t))

)
x + α0C(t),

and our claim follows.

We can now prove the main result of the paper.

Proof of Theorem 1.1. The claims (a) and (b.1) have been proved in Corollaries 2.9 and Proposi-
tion 2.13, respectively. Moreover, the first part of claim (b.2.1) has been proven in Proposition
2.17.

Let us now prove the rest of claim (b.2.1). By Proposition 2.6 and Corollary 2.12, if (1.5) has
r ≥ 3 invariant curves, say, pi(t)x − 1 = 0, i = 1, . . . , r, then deg(pi) = (deg(A)− deg(C))/2,
for every i ∈ {1, . . . , r}. Moreover, by Corollary 2.3, pi(t) divides A(t), for every i ∈ {1, . . . , r}.
Therefore A(t)/pi(t) is a polynomial of degree d := (deg(A) + deg(C))/2, for every i ∈
{1, . . . , r}.

Now, since the dimension of the K−vector space of polynomials in t of degree up to d is
equal to d + 1, if r ≥ 2(d + 2), then there exist λ1, . . . , λd+2 and µd+3, . . . , µr such that

d+2

∑
i=1

λi A(t)/pi(t) =
r

∑
i=d+3

µi A(t)/pi(t) = 0.

Thus, taking

α0 = 0,

αi =

(
r

∑
j=d+3

µj

)
λi, i = 1, . . . , d + 2,

αi = −
(

d+2

∑
j=1

λj

)
µi, i = d + 3, . . . , r,

we have that 0 = α0 = ∑r
i=1 αi and that ∑r

i=1 αi A(t)/pi(t) = 0. So, by Proposition 3.2 and as
2(d + 2) = deg(A) + deg(C) + 4, we are done.
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We prove now (b.2.2). Following the same steps of the polynomial case, one gets that if
equation (1.5) has r ≥ 3 invariant curves, say pi(t)x − 1 = 0, i = 1, . . . , r, then A(t)/pi(t) is a
trigonometric polynomial of degree d̂ := (deg(A) + deg(C))/2, for every i ∈ {1, . . . , r}.

We can repeat the rest of the argument of the polynomial case verbatim, and in view of
the dimension of the R-vector space of trigonometric polynomials in t of the degree up to d̂ is
2d̂ + 1, we conclude that if r ≥ 2(2d̂ + 2), (1.5) has a Darboux first integral, and also a center.
Thus, it can not have rational limit cycles. Consequently, a bound for the number of rational
limit cycles is 2(2d̂ + 2) = 2 deg(A) + 2 deg(C) + 4.

Finally, we prove (c). On the one hand, if pi(t)x − 1 = 0, i = 1, . . . , r, are invariant curves
of (1.5), we know that deg(A/pi) ≤ deg(A)− 1 for all i ∈ {1, . . . , r}, as deg(pi) ≥ 1. Thus,
all the polynomials belong to the R-vector space of trigonometric polynomials in t of degree
up to d̄ = deg(A)− 1, whose dimension is 2d̄ + 1. Thus, if r ≥ 2(2d̄ + 2), the equation would
have a center.

However, on the other hand, the Abel equation

x′ = A(t)x3 + B(t)x2 + cx

can never have a center, as its displacement function d(x), whose isolated zeros correspond
one to one with the limit cycles of the equation (see [27]), has derivative

d′(x) = exp
(∫ 2π

0
(3A(t)x2 + 2B(t)x + c)dt

)
− 1.

So d′(0) = exp(2πc)− 1 ̸= 0, and d(0) = 0 because x(t) ≡ 0 is a solution of the equation.
Therefore, d(x) ̸≡ 0 and the equation can never have a center.

To conclude, in this case equation (1.5) must have less that 2(2d̄ + 2) = 4 deg(A) invariant
curves.
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