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Kōdai FujimotoB 1 and Masakazu Onitsuka2

1Institute of Science and Engineering, Academic Assembly,
Shimane University, Matsue 690-8504, Japan

2Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan

Received 19 December 2023, appeared 4 April 2024

Communicated by Josef Diblík

Abstract. This paper deals with the oscillation problems for nonlinear differential
equations of the form (r(t)|x′|p(t)−2x′)′ + c(t) f (x) = 0 involving p(t)-Laplacian. The
Leighton–Wintner type oscillation criteria are established without any conditions on the
limit of p(t). In addition, we discuss the applications to partial differential equations.
Some examples are given to illustrate our results.
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1 Introduction

In this paper, we consider the second-order nonlinear differential equation(
r(t)|x′|p(t)−2x′

)′
+ c(t) f (x) = 0, t ≥ t0 ∈ R, (1.1)

where r(t) > 0, c(t), and p(t) > 1 are continuous functions, and f (u) is a continuous function
satisfying the condition u f (u) > 0 for u ̸= 0.

A function x(t) is said to be a solution of equation (1.1) defined on [t0, τ) ⊂ R, if x(t)
and the quasiderivative r(t)|x′(t)|p(t)−2x′(t) are continuously differentiable and x(t) satisfies
equation (1.1) on [t0, τ). A nontrivial solution x(t) of equation (1.1) is said to be a singular
solution of the first kind, if there exists a number Tx > t0 such that x(t) ≡ 0 for t ≥ Tx. It is said
to be a singular solution of the second kind if τ < ∞, which means that x(t) is nonextendable to
the right, i.e.,

lim sup
t→τ−

(
|x(t)|+ |x′(t)|

)
= ∞
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holds. It is said to be a proper solution if x(t) is nonsingular. Furthermore, a proper solution
x(t) of equation (1.1) can be divided into the following two types. It is called oscillatory, if
there exists a sequence {tn} of [t0, ∞) such that x(tn) = 0 and tn → ∞ as n → ∞. Otherwise,
it is called nonoscillatory.

A great deal of papers have been devoted to the oscillation problems for the quasilinear
differential equation (

r(t)|x′|p−2x′
)′
+ c(t)|x|p−2x = 0 (1.2)

involving the classical p-Laplacian. It is easy to see that the constant multiple of a solution
of equation (1.2) is also a solution, but the sum of solutions is not always a solution. In this
point of view, equation (1.2) is known as a half-linear differential equation (see [1, 8]). With
this advantage, we can introduce the generalized trigonometric functions and Sturm’s separa-
tion and comparison theorems as basic tools for p-Laplacian. Moreover, the global existence
and uniqueness of solutions of equation (1.2) are guaranteed for initial-value problem, i.e., all
nontrivial solutions of equation (1.2) are proper. For example, various results for the oscil-
lation problems for equation (1.2) can be found in [1, 7–9, 14–17, 22] and the references cited
therein. Especially, the so-called Leighton–Wintner type oscillation criterion has been obtained
as follows.

Theorem A ([1, 8]). Suppose that∫ ∞

t0

(
1

r(t)

)1/(p−1)

dt = ∞ and
∫ ∞

t0

c(t) dt = ∞.

Then, all nontrivial solutions of equation (1.2) are oscillatory.

The differential operator in equation (1.1) is called p(t)-Laplacian, which is a generalization
of p-Laplacian. It is also known as the one-dimensional version of the partial differential
operator p(x)-Laplacian, which appears in mathematical models of various research fields
such as nonlinear elasticity theory, electrorheological fluids, and image processing (see [4, 13,
18]). For example, oscillation problems for quasilinear elliptic partial differential equations
with p(x)-Laplacian are considered in [23–25]. In particular, sufficient conditions are obtained
under which all radial solutions of the equation

div
(
|∇u|p(x)−2∇u

)
+

1
|x|θ(x)

|u|q(x)−2u = 0 in Ω

are oscillatory in [25] under certain conditions on the limits of p, θ, and q, where Ω = {x ∈
RN | |x| > r0} with the Euclidean norm. The proof is based on radialization technique
with ordinary differential equation involving p(t)-Laplacian. In this way, there has been an
increasing interest in the study of asymptotic behavior of solutions for ordinary differential
equations involving p(t)-Laplacian. For instance, those results can be found in [3,5,6,10–12,19–
21]. In [10], a kind of comparison theorem is proved to the oscillation problems for equation
(1.1). In addition, the existence of proper solutions and singular solutions of equation (1.1) is
treated in [3].

However, we point out that the solution space of the equation(
r(t)|x′|p(t)−2x′

)′
+ c(t)|x|p(t)−2x = 0 (1.3)

involving p(t)-Laplacian does not have homogeneity unlike equation (1.2). Hence, to the best
of our knowledge, generalized trigonometric functions and Sturm’s separation and compar-
ison theorems are not obtained for equation (1.3). Hence, not a few results do not rule out
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the coexistence of oscillatory and nonoscillatory solutions. Moreover, the literature on p(t)-
Laplacian often assumes certain conditions on the limit of p(t). For example, the log-Hölder
decay condition is assumed in [12, 25], i.e., there exist p > 1, and M > 0 such that

t|p−p(t)| < M

for t sufficiently large. This implies that p(t) → p > 1 as t → ∞.
The purpose of this paper is to establish Leighton–Wintner type oscillation criteria for

equation (1.1). This paper is organized as follows. In Section 2, we give two oscillation
criteria. In Section 3, we deal with the existence of proper solutions. Finally, we consider an
application to partial differential equations in Section 4.

2 Oscillation problem

In this section, we give Leighton–Wintner type oscillation criteria for equation (1.1).

Theorem 2.1. Assume that f (u) is a smooth function satisfying f ′(u) ≥ 0 for u ∈ R. Suppose that
for any L > 0, ∫ ∞

t0

(
L

r(t)

)1/(p(t)−1)

dt = ∞ and
∫ ∞

t0

c(t) dt = ∞. (2.1)

Then, all proper solutions of equation (1.1) are oscillatory.

Proof. Suppose, toward a contradiction, that equation (1.1) has a positive solution. That is to
say, there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Let

w(t) =
r(t)|x′(t)|p(t)−2x′(t)

f (x(t))
.

Then, we have

w′(t) = −c(t)− r(t)|x′(t)|p(t) f ′(x(t))
( f (x(t)))2 .

Integrating both sides of this equality from t1 to t ≥ t1, we get

w(t) = w(t1)−
∫ t

t1

c(s) ds −
∫ t

t1

r(s)|x′(s)|p(s) f ′(x(s))
( f (x(s)))2 ds.

From (2.1) and f ′(u) ≥ 0 (u ∈ R), there exists t2 ≥ t1 such that∫ t

t2

c(s) ds ≥ 0

and w(t) < 0 for t ≥ t2, which implies x′(t) < 0 for t ≥ t2.
Integrating both sides of equation (1.1) from t2 to t ≥ t2, we get

−r(t)|x′(t)|p(t)−1 = r(t)|x′(t)|p(t)−2x′(t)

= r(t2)|x′(t2)|p(t2)−2x′(t2)−
∫ t

t2

c(s) f (x(s)) ds

= r(t2)|x′(t2)|p(t2)−2x′(t2)− f (x(t))
∫ t

t2

c(s) ds

+
∫ t

t2

f ′(x(s))x′(s)
∫ s

t2

c(τ) dτ ds

≤ r(t2)|x′(t2)|p(t2)−2x′(t2) = −r(t2)|x′(t2)|p(t2)−1.
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Hence, we have

−x′(t) ≥
(

K
r(t)

) 1
p(t)−1

for t ≥ t2, where K = r(t2)|x′(t2)|p(t2)−1 > 0. Thus, by (2.1) we obtain

x(t) ≤ x(t2)−
∫ t

t2

(
K

r(s)

) 1
p(s)−1

ds → −∞

as t → ∞, which is a contradiction to the positivity of x(t).

We also prove the following criterion.

Theorem 2.2. Assume that c(t) > 0 for t ≥ t0 and there exists a smooth function g(u) such that
ug(u) > 0 (u ̸= 0), g′(u) ≥ 0, and | f (u)| ≥ |g(u)| (u ∈ R). Suppose that (2.1) holds for any L > 0.
Then, all proper solutions of equation (1.1) are oscillatory.

Proof. Suppose, toward a contradiction, that equation (1.1) has a positive solution x(t). That
is to say, there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Hence, x(t) satisfies(

r(t)|x′(t)|p(t)−2x′(t)
)′

+ C(t)g(x(t)) = 0, t ≥ t1, (2.2)

where C(t) = c(t) f (x(t))/g(x(t)). We note that C(t) is continuous because x(t) > 0 for t ≥ t1

and ug(u) > 0 for u ̸= 0. Since | f (u)| ≥ |g(u)| (u ∈ R), we see that C(t) ≥ c(t), and therefore,
we get ∫ ∞

t0

C(t) dt ≥
∫ ∞

t0

c(t) dt = ∞.

Proceeding in the same manner as the proof of Theorem 2.1 with (2.2), we see that the assertion
holds.

Remark 2.3. Although the positivity of c(t) is required, we don’t need the monotonicity and
the smoothness of f (u) in Theorem 2.2.

We consider the special case that f (u) = |u|λ−2u, where λ > 1 is a constant. Then, equation
(1.1) becomes the equation (

r(t)|x′|p(t)−2x′
)′

+ c(t)|x|λ−2x = 0. (2.3)

In the rest of this paper, for simplicity, we focus on equation (2.3). By Theorem 2.1, we give
the following corollary.

Corollary 2.4. Suppose that (2.1) holds for any L > 0. Then, all proper solutions of equation (2.3) are
oscillatory.

3 Existence of proper solutions

In order to deal with the asymptotic behavior of solutions, we must pay attention to the
existence of singular solutions. In fact, for example, when p(t) ≡ p > 1 and r(t) ≡ 1, equation
(2.3) becomes the generalized Emden–Fowler type differential equation(

|x′|p−2x′
)′
+ c(t)|x|λ−2x = 0. (3.1)
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It is known that if p > λ (resp., p < λ) then equation (3.1) has a singular solution of the first
(resp., second) kind for certain c(t) (see [2, Theorem 4]).

In this section, we consider the existence of proper solutions of equation (2.3). According
to [3], the following theorem is proved.

Theorem B ([3]). Suppose that p(t) and (r(t))1/(p(t)−1) are continuously differentiable, p(t) is non-
decreasing, and c(t) is positive. Then, every nontrivial solutions of equation (2.3) is proper.

Using Corollary 2.4 and Theorem B, we obtain the following corollary.

Corollary 3.1. Assume that p(t) and (r(t))1/(p(t)−1) are continuously differentiable, p(t) is nonde-
creasing, and c(t) is positive. Suppose that (2.1) holds for any L > 0. Then, all nontrivial solutions of
equation (2.3) are oscillatory.

We propose an example of Corollary 3.1.

Example 3.2. Let t0 = 1, r(t) ≡ 1, c(t) = 1/t, and p(t) = 3 − 1/t. Then, equation (2.3)
becomes (

|x′|3−1/tx′
)′

+
1
t
|x|λ−2x = 0. (3.2)

From Corollary 3.1, all nontrivial solutions of equation (3.2) are oscillatory. Figure 3.1 indicates
the solution is proper and oscillatory.

t

x

0

Figure 3.1: A solution x(t) of equation (3.2) with x(1) = 3, x′(1) = 0, and λ = 5.

We next consider the case when p(t) does not have monotonicity. For equation (2.3), the
following propositions are derived from [3, Theorems 2.1, 2.2].

Proposition 3.3. Suppose that p(t) ≤ λ for t ∈ [t0, ∞). Then, equation (2.3) has no singular solutions
of the first kind.

Proposition 3.4. Suppose that p(t) ≥ λ for t ∈ [t0, ∞). Then, equation (2.3) has no singular solutions
of the second kind.

In the case when c(t) is negative, then the following result is given from Proposition 3.4.

Theorem 3.5. Suppose that p(t) ≥ λ and c(t) < 0 for t ∈ [t0, ∞). Then, equation (2.3) has proper
solutions.

Proof. Let x(t) be a solution of equation (2.3) satisfying the initial condition x(t0) > 0 and
x′(t0) > 0. Since c(t) is negative, we can find T > t0 such that(

r(t)|x′(t)|p(t)−2x′(t)
)′

= −c(t)|x(t)|λ−2x(t) > 0

for t ∈ [t0, T), which implies that r(t)|x′(t)|p(t)−2x′(t) is positive increasing for t ∈ [t0, T).
Hence, x′(t) is positive for any t ∈ [t0, ∞), and therefore, x(t) is a positive increasing solution.
From Proposition 3.4, we see that x(t) is proper.
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However, it is clear that (2.1) does not hold and equation (2.3) has no oscillatory solutions
under the assumptions of Theorem 3.5.

In view of Propositions 3.3 and 3.4, we see that all nontrivial solutions of equation (2.3)
are proper when p(t) ≡ λ. Otherwise, we cannot exclude the possibilities of the existence
of singular solutions by using these propositions. To illustrate this problem, we introduce an
example of Corollary 2.4 and Propositions 3.3, 3.4.

Example 3.6. Let t0 = 1, r(t) ≡ 1, c(t) = 1/t, and p(t) = sin t + 5/2. Then, equation (2.3)
becomes (

|x′|sin t+1/2x′
)′

+
1
t
|x|λ−2x = 0. (3.3)

In the case of λ ≥ 7/2, equation (3.3) has no singular solution of the first kind, as stated in
Proposition 3.3. However, we cannot rule out the possibility that equation (3.3) has singular
solutions of the second kind. In fact, keen spikes can be observed in Figure 3.2. On the other
hand, when 1 < λ ≤ 3/2, equation (3.3) has no singular solution of the second kind according
to Proposition 3.4. However, we cannot exclude the possibility that equation (3.3) has singular
solutions of the first kind. We can identify the points in Figure 3.3 where the derivative of the
solution is zero, even though they are not extrema. In the case of 3/2 < λ < 7/2, there are
possibilities that equation (3.3) has singular solutions of the first/second kind. In any cases, it
can be derived from Corollary 2.4 that all proper solutions of equation (3.3) are oscillatory.

In the case of p(t) ̸≡ λ, the existence of proper solutions of equation (2.3) is proved by
Theorem 4.1 in [3] under the additional assumption lim inft→∞ p(t) > 1. However, in order to
apply this result, the condition ∫ ∞

t0

|c(t)| dt < ∞

is also required, which is the opposite case of (2.1). It is an open problem if equation (2.3) has
proper solutions under p(t) ̸≡ λ and (2.1).

t

x

0

Figure 3.2: A solution x(t) of equation (3.3) with x(1) = 3, x′(1) = 0, and λ = 4.

t

x

0

Figure 3.3: A solution x(t) of equation (3.3) with x(1) = 1, x′(1) = 0, and
λ = 3/2.
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4 Applications

In this section, we propose an application to partial differential equations. Let us consider the
quasilinear differential equation

div
(
|∇u|p(x)−2∇u

)
+ F(x)|u|λ−2u = 0 in Ω, (4.1)

where Ω = {x ∈ RN | |x| > r0}. If u is a radially symmetric function, i.e., u(x) = y(t), t = |x|,
we can write equation (4.1) as(

tN−1|y′|p(t)−2y′
)′

+ tN−1F(t)|y|λ−2y = 0 for t > r0. (4.2)

We say that a radially symmetric solution u(x) of (4.1) is oscillatory if it keeps neither positive
nor negative, that is, the solution y(t) of equation (4.2) corresponding to u(x) is oscillatory.
Using Corollary 2.4, we obtain the following theorem.

Theorem 4.1. Suppose that for any L > 0,

∫ ∞

t0

(
L

tN−1

)1/(p(t)−1)

dt = ∞ and
∫ ∞

t0

tN−1F(t) dt = ∞.

Then, all radially symmetric solutions of equation (4.1) are oscillatory.

Example 4.2. Let N ∈ N, F(t) = 1/tN , and p(t) = sin t + N + 3/2. Then, equation (4.2)
becomes (

tN−1|y′|sin t+N−1/2y′
)′

+
1
t
|y|λ−2y = 0 for t > r0 (4.3)

and it is easy to see that
∫ ∞

r0
tN−1F(t) dt = ∞. In addition, we have 1/(p(t)− 1) ≤ 2/(2N − 1).

Hence, it is obvious that ∫ ∞

r0

(
L

tN−1

)1/(p(t)−1)

dt = ∞

when N = 1. In the case of N ≥ 2, since L/tN−1 → 0 as t → ∞, we can find r1 ≥ r0 such that
L/tN−1 < 1. Hence, we have

∫ t

r1

(
L

sN−1

)1/(p(s)−1)

ds ≥
∫ t

r1

(
L

sN−1

)2/(2N−1)

ds = L2/(2N−1)
∫ t

r1

s−2(N−1)/(2N−1) ds

= (2N − 1)L2/(2N−1)
(

t1/(2N−1) − r1/(2N−1)
1

)
→ ∞

as t → ∞. From Theorem 4.1, all radially symmetric solutions of equation (4.1) are oscillatory.
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