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Abstract

We study the linear second order q-difference equation y(q2t) + a(t)y(qt) +
b(t)y(t) = 0 on the q-uniform lattice {qk : k ∈ N0} with q > 1, where b(t) 6= 0.
We establish various conditions guaranteeing the existence of solutions satis-
fying certain estimates resp. (non)oscillation of all solutions resp. q-regular
boundedness of solutions resp. q-regular variation of solutions. Such results
may provide quite precise information about their asymptotic behavior. Some
of our results generalize existing Kneser type criteria and asymptotic formu-
las, which were stated for the equation D2

qy(qt) + p(t)y(qt) = 0, Dq being the
Jackson derivative. In the proofs however we use an original approach.
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1 Introduction

Consider the linear second order q-difference equation

y(q2t) + a(t)y(qt) + b(t)y(t) = 0 (1)

on qN0 := {qk : k ∈ N0} with q > 1, where b(t) 6= 0. We establish conditions guar-
anteeing the existence of a solution to (1), which satisfies certain effective estimate.
Putting additional conditions, we then derive more precise estimates and we show
that solutions are (non)oscillatory, resp. q-regularly bounded, resp. q-regularly vary-
ing. As a corollary we get sharp Kneser type criteria. Other our results generalize
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some known asymptotic formulas which were stated for certain associated self-adjoint
equations. In the proofs however we use an original approach (including rather simple
methods), which shows some advantages of our “three-term” setting.

The paper is organized as follows. In the next section we present basic facts about
q-calculus, provide some information on equation (1), and briefly recall the theory of
q-regular variation. In Section 3 we formulate the main results and give comments
on them, including a comparison with existing results. The last section contains the
proofs.

2 Basic concepts and preliminaries

We start with brief recalling some basic facts about q-calculus. For material on this
topic see [2, 10, 12]. See also [7] for the calculus on time scales which somehow
contains q-calculus. Since we work on the lattice qN0 (which is a time scale), we may
follow essentially a “time scale dialect” of q-calculus. The q-derivative of a function
f : qN0 → R is defined by Dqf(t) = [f(qt) − f(t)]/[(q − 1)t]. We use the notation
[a]q = (qa − 1)/(q − 1) for a ∈ R. In view of the definition of [a]q, it is natural to
introduce the notation [∞]q = ∞, [−∞]q = 1/(1 − q). For p : qN0 → R satisfying
1 + (q − 1)tp(t) 6= 0 for all t ∈ qN0 we denote ep(t, s) =

∏

u∈[s,t)∩qN0
[(q − 1)up(u) + 1]

for s < t, ep(t, s) = 1/ep(s, t) for s > t, and ep(t, t) = 1, where s, t ∈ qN0 . A function
e(·, a) is called a q-exponential function, and is the solution of the IVP Dqy = p(t)y,
y(a) = 1, t ∈ qN0 . Intervals having the subscript q denote the intervals in qN0 , e.g.,
[a,∞)q = {a, aq, aq2, . . . } with a ∈ qN0 .

We will continue with stating some fundamental properties of (1), which will be
useful in our proofs. Along with (1) consider the Riccati type equation

w(qt) + a(t) +
b(t)

w(t)
= 0. (2)

It is easy to see that if y(t) 6= 0 is a solution of (1) on [T,∞)q, then w defined by
w(t) = y(qt)/y(t) is a solution of (2) on [T,∞)q. Conversely, if w is a solution of
(2) on [T,∞)q, then y defined by y(t) = C

∏

s∈[T,t)q
w(s), C ∈ R \ {0}, is a nonzero

solution (1) on [T,∞)q. Clearly, an eventually positive solution of (2) corresponds to
a solution of (1) which is eventually of one sign. Of course, there can be developed
another forms of Riccati type substitutions for (1). One of them is discussed later,
see Remark 1 (v).

It is also important to see relations between equations in the form (1) and in the
self-adjoint form

Dq

(

r(t)Dqy(t)
)

+ p(t)y(qt) = 0, (3)

where r(t) 6= 0. It is not difficult to see that (3) can always be written in the form
(1), where

a(t) = q(q − 1)2t2
p(t)

r(qt)
− 1 − qr(t)

r(qt)
, b(t) =

qr(t)

r(qt)
. (4)
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Conversely, any “three-term” q-difference equation (1) can be written in a self-adjoint
form provided we choose

r(t) = C
∏

s∈[1,t)q

q

b(s)
, p(t) =

C (a(t) + 1 + b(t))

q(q − 1)2t2

∏

s∈[1,qt)q

q

b(s)
, (5)

where C is an arbitrary nonzero real constant. These relations can be further rewritten
by using

∏

s∈[1,t)q
q = t. An equation in the form (3) can be understood as a q-

counterpart of the Sturm-Liouville differential equation

(r(t)y′)′ + p(t)y = 0, (6)

which has been extensively studied, see e.g. [19]. Besides, it can be seen as a special
case of the linear dynamic equation (r(t)y∆(t))∆ + p(t)y(σ(t)) = 0 on time scales,
where y∆ denotes the delta derivative of y and σ is the forward jump operator, see
e.g. [7].

Now let us deal with an “intuitive” definition of a generalized zero of a solution to
(3) or (1), i.e., the situation when a solution has a zero or changes its sign (within a
given interval [t, qt]). A nonoscillatory solution (on [1,∞)q) is then a solution having
eventually no generalized zeros, i.e., is eventually of one sign; otherwise this solution
is said to be oscillatory. It is not difficult to find an equation (1) or (3), having
two nontrivial solutions, one oscillating and another one nonoscillating. From the
Sturmian theory for (6) it follows that zeros of two linearly independent solutions
of (6) separate each other. Thus this property seems to be violated for q-discrete
counterparts of (6). However, the definition of a generalized zero can be modified
in the following sense: An interval (t, qt] is said to contain the generalized zero of a
solution y of (3) if y(t) 6= 0 and r(t)y(t)y(qt) ≤ 0. With this new definition it was
shown that a Sturmian theory (in particular, a separation type result) for (3) works,
see e.g. [15], where such a statement was proved in a more general setting – on time
scales. The separation result says that generalized zeros of two linearly independent
solutions to (3) separate each other (with the addendum that they cannot have a
common zero but may have a common generalized zero). Thanks to this property
we have the following equivalence: One solution of (3) is oscillatory if and only if
every solution of (3) is oscillatory (where oscillation of a solution means that it has
infinitely many generalized zeros). Hence we can comfortably introduce the concepts
of oscillation and nonoscillation of equation (3). Of course, all these concepts can be
appropriately adopted for equations in the form (1). Note that in the cases where r
is positive, these concepts coincide with the “intuitive” ones.

Various aspects of linear q-difference equations were studied e.g. in [1, 2, 3, 4, 6,
8, 9, 11, 13, 17, 18]. For related topics see [10, 12] and the references therein.

We conclude this section with recalling the theory of q-regular variation, see e.g.
[17]. A function f : qN0 → (0,∞) is said to be q-regularly varying of index ϑ, ϑ ∈ R, if
limt→∞ f(qt)/f(t) = qϑ, we write f ∈ RVq(ϑ). If ϑ = 0, then f is said to be q-slowly
varying ; we write f ∈ SVq. Here are some selected properties of RVq functions: It
holds f ∈ RVq(ϑ) if and only if f(t) = tϑδ(t)eψ(t, 1), where δ : qN0 → (0,∞) tends to
a positive constant (w.l.o.g., δ can be replaced by a positive constant) and ψ : qN0 → R
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satisfies limt→∞ tψ(t) = 0. Further, f ∈ RVq(ϑ) if and only if limt→∞ tDqf(t)/f(t) =
[ϑ]q. If fi ∈ RVq(ϑi), i = 1, 2, then limt→∞ f1(t)/t

ϑ1−ε = ∞, limt→∞ f1(t)/t
ϑ1+ε = 0

for every ε > 0, limt→∞ ln f1(t)/ ln t = ϑ1, f
γ
1 ∈ RVq(γϑ1), f1f2 ∈ RVq(ϑ1 + ϑ2), and

1/f1 ∈ RVq(−ϑ1). For other properties see, e.g., [17].
Note that in contrast to the classical theory of regular variation (i.e., for functions

of a real variable or of an integer variable, see e.g. [5]), the theory of q-regularly
varying functions differs in several basic aspects, is simpler, and provides new types
of powerful tools, because the range qN0 is somehow natural setting for regularly
varying behavior, see [17].

We have defined q-regular variation at infinity. If we consider a function f : qZ →
(0,∞), qZ := {qk : k ∈ Z}, then f(t) is said to be q-regularly varying at zero if f(1/t)
is q-regularly varying at infinity. But it is apparent that it is sufficient to develop just
the theory of q-regular variation at infinity. Note that from the continuous theory or
the discrete theory the concept of a normalized regular variation is known. Because
of the above mentioned properties, there is no need to introduce a normality in the
q-calculus case, since every q-regularly varying function is automatically normalized.

If we relax the condition in the definition of q-regular variation, we obtain the
concept of q-regular boundedness: A function f : qN0 → (0,∞) is said to be q-regularly
bounded if 0 < lim inft→∞ f(qt)/f(t) ≤ lim supt→∞

f(qt)/f(t) <∞. The totality of q-
regularly bounded functions is denoted by RBq. It is clear that

⋃

ϑ∈R
RVq(ϑ) ⊂ RBq.

We select the following properties: It holds f ∈ RBq if and only if f(t) = δ(t)eψ(t, 1),
where C1 ≤ δ(t) ≤ C2 and D1 ≤ tψ(t) ≤ D2 with some 0 < C1 ≤ C2 < ∞ and
[−∞]q < D1 ≤ D2 < [∞]q. Without loss of generality, in particular in the only if
part, the function δ can be replaced by a positive constant. It holds f ∈ RBq if
and only if for f : qN0 → (0,∞) there exist γ1, γ2 ∈ R, γ1 < γ2, such that f(t)/tγ1

is eventually (almost) increasing and f(t)/tγ2 is eventually (almost) decreasing. If
f, g ∈ RBq, then f + g, fg, f/g ∈ RBq. Similarly as above, we can introduce q-
regular boundedness at zero.

3 Main results

We start with the most general statement where no sign conditions on the coefficients
are assumed. The existence of a solution to (1) is guaranteed, which satisfies certain
effective estimate in terms of the coefficient a.

Theorem 1. If there exists ζ ∈ (0,∞) such that

ζ2|b(t)|
a2(t)

+

∣

∣

∣

∣

a(qt)

a(t)

∣

∣

∣

∣

≤ ζ for large t, (7)

then (1) possesses a solution ỹ such that

ζ |ỹ(qt)/ỹ(t)| ≥ |a(t)| eventually.

Elaborating further the main idea of the proof of Theorem 1, we can show that if
a sign condition on the coefficients is somehow strengthened, then sufficient condition
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(7) can be relaxed. Moreover, we are able to get an information about (non)oscillation
of (1). We offer also variants of this sufficient condition, and later we discuss their
optimality.

Theorem 2. (i) If a(t)a(qt) > 0 and there exists ζ ∈ (0,∞) such that

ζ ≥
{

ζ2b(t)
a2(t)

+ a(qt)
a(t)

when b(t) > 0
a(qt)
a(t)

when b(t) < 0
for large t, (8)

then (1) possesses a solution ỹ such that

ζỹ(qt)/(ỹ(t)a(t)) ≤ −1 eventually.

(ii) If a(t)a(qt) > 0 and there exists C ∈ (0,∞) such that

|a(t)| ≥ C and b(t) ≤ C2/4 for large t, (9)

then (1) possesses a solution ỹ such that

2ỹ(qt)/ỹ(t) ≥ C if a(t) < 0 and 2ỹ(qt)/ỹ(t) ≤ −C if a(t) > 0 eventually.

(iii) If, in addition to (8) or (9), a(t) < 0 and b(t) > 0 for large t, then all
nontrivial solutions of (1) are eventually of one sign (i.e., (1) is nonoscillatory).

If, in addition to (8), a(t) > 0 and b(t) > 0 for large t, then (1) possesses a
solution ỹ such that ỹ(t)ỹ(qt) < 0 for large t and for any solution y of (1) it holds
y(t)y(qt) ≤ 0 at infinitely many t’s (i.e., (1) is oscillatory).

Remark 1. (i) Condition (8) is implied, for instance, by

4b(t) ≤ a2(t) and |a(t)| is nonincreasing for large t (10)

for large t.
(ii) Similarly as Theorem 2 (ii), we can prove that if there are C, ζ ∈ (0,∞)

such that a(t) ≤ −C and b(t) ≤ C2/ζ2, then (1) possesses a solution ỹ such that
ζỹ(qt)/ỹ(t) ≥ C. We present this statement in order to show that such a variant of
Theorem 2 (ii) with the parameter ζ does not yield a generalization since its value
can be optimally chosen (namely ζ = 2) and then we get just Theorem 2 (ii). Indeed,
assume w(t) ≥ C/ζ and, as in the proof, we want to show that w(qt) ≥ C/ζ . We have
w(qt) = −a(t) − b(t)/w(t) ≥ C − C/ζ ≥ C/ζ , where the last inequality is equivalent
to ζ ≥ 2. Thus the parameter ζ needs to be in [2,∞). However any of its values
greater than 2 means a more restrictive assumption on b (since then C2/ζ2 < C2/4)
and, moreover, gives a worse estimate of ỹ(qt)/ỹ(t) (since C/2 > C/ζ).

(iii) It is interesting to see the nonoscillation result from Theorem 2 in terms of
self-adjoint equation (3) under some special conditions. We claim: If r(t) = tγ, γ ∈ R,
and

t2p(t) ≤

(

√

qr(t) −
√

r(qt)
)2

q(q − 1)2
(11)
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for large t, then (3) is nonoscillatory. To show it, we translate the problem from
the “self-adjoint” setting to the “three-term” setting and show that the sufficient
conditions for nonoscillation from Theorem 2 (iii) (more precisely, (9), a(t) < 0,
b(t) > 0) are satisfied: Set C = 2q(1−γ)/2. In view of the second identity in (4), we
have b(t) = q1−γ = C2/4. Further, the first identity in (4) and (11) yield

a(t) =
1

r(qt)

(

q(q − 1)2t2p(t) − r(qt) − qr(t)

)

≤ 1

r(qt)

(

(

√

qr(t) −
√

r(qt)
)2

− r(qt) − qr(t)

)

= −2
√

qr(t)r(qt)

r(qt)
= −2

√

qr(t)
√

r(qt)
= −2

1−γ

2 = −C < 0

for large t.
Similarly we can show that 4b(t) ≤ a2(t) (i.e., the first condition in (10)) is

equivalent to (11) – we emphasize that this holds for a general positive r and negative
a. Thus, in view of (10), one can obtain another (general) version of Kneser type
nonoscillation criterion, namely in the form of the conditions (11) and monotonicity
of a (rewritten in terms of the associated self-adjoint equation).

Note that, with r(t) = tγ, (11) reads as

t2−γp(t) ≤ qγ−1

[

1 − γ

2

]2

q

,

and, with r(t) ≡ 1, it reduces to

t2p(t) ≤ 1

q(
√
q + 1)2

(12)

for large t, in which we recognize a q-version of the well known Kneser criterion
(see e.g. [19] for the differential equations setting). Related results for q-difference
equations can be found in [8, 16]. Observe how the constant on the right-hand side of
(12) tends to 1/4 as q → 1, which is the critical constant known from the continuous
theory.

(iv) Since the constant on the right hand side in (12) is known to be the best
possible (see [8, 16]), we can conclude that also original conditions in the three-term
setting are somehow sharp.

(v) In all our proofs, an important role is played by relations between equation (1)
and the Riccati type equation (2). But, as already mentioned, there can be developed
also another forms of Riccati type substitutions. For instance, with a(t) < 0 and
b(t) > 0, a nonzero solution y is related to a positive solution z of the Riccati type
equation

b(qt)

a(t)a(qt)
z(qt) − 1 +

1

z(t)
= 0 (13)

by the substitution z(t) = (−a(t)/b(t))(y(qt)/y(t)). Similarly as in the proof of
Theorem 2, it is not difficult to construct inductively a solution z of (13), which
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satisfies z(t) ≥ 2 for large t, provided

4b(t) ≤ a(t)a(t/q) for large t. (14)

Thus we get the following variant of Theorem 2:

Theorem 2’. If a(t) < 0, b(t) > 0, and (14) hold for large t, then (1) possesses a
solution ỹ such that ỹ(qt)/ỹ(t) ≥ −2b(t)/a(t) eventually, and (1) is nonoscillatory.

It is interesting to observe that (14) is implied by (10).

If we further strengthen previous conditions for nonoscillation of (1), then q-
regular boundedness of positive solutions to (1) is guaranteed.

Theorem 3. Let lim inf t→∞ a(t) > −∞ and lim inft→∞ b(t) > 0. Assume that a(t) <
0 for large t and (1) is nonoscillatory (which can be guaranteed e.g. by (8) or (9) or
(14)). Then all eventually positive solutions of (1) (which indeed exist) are q-regularly
bounded.

Finally we strengthen conditions in the sense of the existence of certain limits of
the coefficients of (1). This leads to q-regularly varying behavior (with known index)
of positive solutions to (1).

Theorem 4. Let the limits

lim
t→∞

a(t) = A ∈ (−∞, 0) and lim
t→∞

b(t) = B ∈ (0,∞)

exist with 4B ≤ A2. In the case 4B = A2 assume that (8) or a(t) ≤ −A and b(t) ≤
A2/4 hold for large t. Then (1) possesses solutions y1 and y2 with yi ∈ RVq(logq λi),
i = 1, 2, where

λ1 =
(

−A +
√
A2 − 4B

)

/2 and λ2 =
(

−A−
√
A2 − 4B

)

/2.

Moreover, all nontrivial solutions of (1) are eventually of one sign and for any even-
tually positive solution y of (1) it holds y ∈ RVq(logq λ1) ∪RVq(logq λ2).

Remark 2. (i) In terms of the coefficients of the corresponding self-adjoint equation
(3), the condition limt→∞ b(t) = B ∈ (0,∞) means that r ∈ RVq(logq(q/B)). The
existence of the limit limt→∞ a(t) = A then says that p is asymptotically equivalent
to certain constant multiple of r(t)/t2. Thus, possibly up to sign, p is q-regularly
varying too, with the index logq(q/B) − 2.

(ii) Consider the equation

D2
qy(t) + p(t)y(qt) = 0. (15)

This equation is related to (1) by p(t) = (a(t) + q + 1)/(q(q− 1)2t2) and b(t) ≡ q. In
[17] we proved that, under the assumption t2p(t) ≤ 1/(q(

√
q + 1)2) we have: If the

limit

lim
t→∞

t2p(t) = P ∈
(

−∞,
1

q(
√
q + 1)2

)

(16)
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exists, then (15) has a fundamental set of solutions yi ∈ RVq(ϑi), i = 1, 2, with
ϑi = logq[(q−1)µi+1], µi, i = 1, 2, being the (real) roots of (µ−µ2)/[µ(q−1)+1] = qP .
It is easy to see that (16) expressed in terms of a takes the form limt→∞ a(t) = A ∈
(

−∞,−2
√
q
)

. Thus the result in [17] is a special case of Theorem 4, and recall that
it can be viewed as a q-version of the sufficient condition for y′′ + p(t)y = 0 to have
regularly varying solutions, see, e.g., [14]. In both settings this condition can be easily
shown to be also necessary. Note that the condition in the differential equations case
is in a certain integral form (indeed, it reads as limt→∞ t

∫

∞

t
p(s) ds ∈ (0, 1/4)), in

contrast to the q-case; for an explanation of this discrepancy see [17].

Remark 3. In connection with our results it is interesting to observe one important
feature concerning the “three term” q-difference equation with constant coefficients

y(q2t) + Ay(qt) +By(t) = 0, (17)

where A,B ∈ R. Let us consider, for definiteness, the case where A < 0, B > 0,
and A2 − 4B ≥ 0. Let λ1 ≥ λ2 > 0 be the (real) roots of λ2 + Aλ + B = 0.

Then y1(t) = λ
log

q
t

1 = tlogq
λ1 and y2(t) = λ

log
q
t

2 = tlogq
λ2 are solutions of (17), and

with A2 − 4B > 0 they form the fundamental system of (17). We see, that in the
contrast, e.g., to the case of classical three term recurrence relations of the form
yk+2 + Ayk+1 + Byk = 0, power functions play a key role in searching solutions of
(17). Note that the Euler type q-difference equation D2

qy(t) + (γ/t2)y(qt) = 0, γ
being a parameter, has in some cases real solutions in the form of power functions;
equations of Euler type are important in oscillation theory. Especially, (17) with
the critical value of γ = 1/(q(

√
q + 1)2) has the (nonoscillatory) solution y(t) =

√
t.

Further recall that q-regularly varying functions behave like a product of a power
function and the factor which varies “more slowly” than the power function and
Theorem 4 says that equations with coefficients “close” to constants have just q-
regularly varying solutions. Hence, in view of these facts, we can see usefulness –
not known in the theory of classical difference equations – of three term forms, when
studying asymptotic behavior of solutions in the framework of q-regular variation and
some oscillatory properties of linear q-difference equations. However, it is worthy of
note, that in some other aspects, the self-adjoint form may has its advantages.

4 Proofs

Proof of Theorem 1. Let T ∈ qN0 be such that (7) holds for t ∈ [T,∞)q. Let us
construct the function w by defining |w(T )| ∈ [|a(T )|/ζ,∞) and w(qt) = −a(t) −
b(t)/w(t) for t ∈ [T,∞)q. Then w is well defined and satisfies (2) with |w(t)| ≥ |a(t)|/ζ
for t ∈ [T,∞)q. Indeed, let |w(t)| ≥ |a(t)|/ζ . Then

|w(qt)| =

∣

∣

∣

∣

−a(t) − b(t)

w(t)

∣

∣

∣

∣

≥ |a(t)| − |b(t)|
|w(t)| ≥ |a(t)| − ζ |b(t)|

|a(t)| ≥ |a(qt)|
ζ

,

for t ∈ [T,∞)q, in view of (7). Define ỹ by ỹ(t) =
∏

s∈[T,t)q
w(s). Then ỹ is a

solution of (1), which is nonzero and satisfies |ỹ(qt)/ỹ(t)| = |w(t)| ≥ |a(t)|/ζ for
t ∈ [T,∞)q.
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Proof of Theorem 2. (i) Assume that (8) and a(t) < 0 hold for t ∈ [T,∞)q. The
case a(t) > 0 can be treated similarly — in such a case we look for a solution
w of (2) satisfying w(t) ≤ −a(t)/ζ eventually. Let us construct the function w
by defining w(T ) ∈ [−a(T )/ζ,∞) and w(qt) = −a(t) − b(t)/w(t) for t ∈ [T,∞)q.
Similarly as in the proof of Theorem 1 we can show that w is well defined, solves
(2) and satisfies w(t) ≥ −a(t)/ζ for t ∈ [T,∞)q. Indeed, let w(t) ≥ −a(t)/ζ . If
b(t) > 0, then the inequality in (8) is equivalent to −a(t) ≥ −ζb(t)/a(t) − a(qt)/ζ ,
and so w(qt) = −a(t) − b(t)/w(t) ≥ −a(t) + ζb(t)/a(t) ≥ −a(qt)/ζ for t ∈ [T,∞)q.
If b(t) < 0, then the inequality in (8) is equivalent to −a(t) ≥ −a(qt)/ζ , and so
w(qt) = −a(t) − b(t)/w(t) ≥ −a(t) ≥ −a(qt)/ζ for t ∈ [T,∞)q. Thus the ỹ defined
by ỹ(t) =

∏

s∈[T,t)q
w(s) is nonzero, solves (1), and satisfies ζỹ(qt)/ỹ(t) ≥ −a(t) for

t ∈ [T,∞)q.
(ii) Assume that (9) and a(t) < 0 hold for t ∈ [T,∞)q. The case a(t) > 0 can

be treated similarly. Let us construct the function w by defining w(T ) ∈ [C/2,∞)
and w(qt) = −a(t) − b(t)/w(t) for t ∈ [T,∞)q. Similarly as above we can show that
w is well defined, solves (2) and satisfies w(t) ≥ C/2 for t ∈ [T,∞)q. Indeed, let
w(t) ≥ C/2. Then

w(qt) ≥ C − C2/4

C/2
= C/2

for t ∈ [T,∞)q, in view of (9). Similarly as above, such a w generates a solution ỹ of
(1) satisfying ỹ(qt)/ỹ(t) ≥ C/2 for t ∈ [T,∞)q.

(iii) Now assume that b(t) > 0 for large t, say t ∈ [T,∞)q. Define the coefficients
r and p of (3) by (5), where C = 1 and the interval [1, t)q is replaced by [T, t)q.
Then r(t) > 0, and ỹ solves (3). Since ỹ(t)ỹ(qt) is eventually positive resp. negative
provided a(t) < 0 resp. a(t) > 0, the Sturm type separation theorem yields that
y(t)y(qt) > 0 holds eventually resp. y(t)y(qt) ≤ 0 holds at infinitely many t’s for any
nontrivial solution y of (3) and so of (1).

Proof of Theorem 3. Consider any nontrivial solution y of (1). Then y(t)y(qt) > 0
for large t, say t ∈ [T,∞)q, by Theorem 2. Set w(t) = y(qt)/y(t). Then w is
a positive solution of (2) on [T,∞)q. We will show that lim inft→∞w(t) > 0 and
lim supt→∞

w(t) <∞. Assume by a contradiction that lim supt→∞
w(t) = ∞. Then

∞ = lim sup
t→∞

w(t) ≤ lim sup
t→∞

(

w(qt) +
b(t)

w(t)

)

= lim sup
t→∞

(−a(t)) = − lim inf
t→∞

a(t) <∞,

a contradiction. Now assume by a contradiction that lim inft→∞ w(t) = 0. Since
lim inft→∞ b(t) > 0, there exists K > 0 such that b(t) ≥ K, t ∈ [T,∞)q. Hence,

∞ = lim sup
t→∞

K

w(t)
≤ lim sup

t→∞

b(t)

w(t)
≤ lim sup

t→∞

(

w(qt) +
b(t)

w(t)

)

= lim sup
t→∞

(−a(t)) <∞,

a contradiction. Therefore 0 < lim inft→∞ y(qt)/y(t) ≤ lim supt→∞
y(qt)/y(t) < ∞.

Since y was arbitrary, the statement follows.
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Proof of Theorem 4. In the proof we distinguish the two cases (I) A2 > 4B and (II)
A2 = 4B.

(I) Let T ∈ qN0 and A1, B2 ∈ R be such that 0 < A1 ≤ −a(t) and b(t) ≤ B2

for t ∈ [T,∞)q, A
2
1 > 4B2, and N := (A1 +

√

A2
1 − 4B2)/2 > λ2. Then N =

A1 − B2/N . Construct a solution w1 of (2) by defining w1(T ) = N and w1(qt) =
−a(t) − b(t)/w1(t), t ∈ [T,∞)q. We note that if w1(t) ≥ N for any t ∈ [T,∞)q, then
w1(qt) ≥ −a(t) − b(t)/N ≥ A1 − B2/N = N . Hence the function w1 is well defined,
and it is readily verified that w1 satisfies (2). Denote M∗ = lim inft→∞w1(t) and
M∗ = lim supt→∞

w1(t). By taking lim sup as t → ∞ in w1(qt) + a(t) = −b(t)/w1(t)
we get M∗ < ∞, and so M∗,M

∗ ∈ [N,∞). The lim inf and lim sup as t → ∞
in w1(qt) + a(t) = −b(t)/w1(t) yield M∗ + A = −B/M∗ and M∗ + A = −B/M∗,
respectively. Hence, f(M∗) = −A = f(M∗), where f(x) = x+ B/x. It is easy to see
that f is convex on (0,∞) and f(λ1) = −A = f(λ2). Since the values of M∗,M

∗ are
strictly greater than λ2, it must hold M∗ = M∗ = λ1. Hence, limt→∞w1(t) = λ1.

The existence of a positive solution w2(t) of (2), which tends to λ2 as t→ ∞ will be
shown by means of the Banach fixed point theorem. Let T ∈ qN0 and A1, A2, B1, B2 ∈
R be such that 0 < A1 ≤ −a(t) ≤ A2 and 0 < B1 ≤ b(t) ≤ B2 for t ∈ [T,∞)q,

A2
1 > 4B2, and N2 := (A1−

√

A2
1 − 4B2)/2 < λ1. Denote N1 := (A2−

√

A2
2 − 4B1)/2.

Without loss of generality, T can be the same as in the previous part of the proof.
Observe that, with x, y > 0, x 7→ (x −

√

x2 − 4y)/2 is decreasing while y 7→ (x −
√

x2 − 4y)/2 is increasing. We have N2 < A1/2 < A1, N1 = B1/(A2 − N1), N2 =
B2/(A1 − N2), and N1 ≤ λ2 ≤ N2. Denote Ω ∈ {w ∈ X : N1 ≤ w(t) ≤ N2 for t ∈
[T,∞)q}. Let T : Ω → X be the operator defined by (T w)(t) = b(t)/(−w(qt)−a(t)).
By means of the contraction mapping theorem we will prove that T has a fixed point
in Ω. First we show that T Ω ⊆ Ω. Let w ∈ Ω. Then (T w)(t) ≤ B2/(A1 −N2) = N2

and (T w)(t) ≥ B1/(A2 − N1) = N1 for t ∈ [T,∞)q. Now we prove that T is a
contraction mapping on Ω. Let w, z ∈ Ω. Then

|(T w)(t) − (T z)(t)| = b(t)

∣

∣

∣

∣

1

−w(qt) − a(t)
− 1

−z(qt) − a(t)

∣

∣

∣

∣

≤ b(t)

(−w(qt) − a(t))(−z(qt) − a(t))
‖w − z‖

≤ B2

(A1 −N2)2
‖w − z‖

for t ∈ [T,∞)q. Thus ‖T w − T z‖ ≤ ‖w − z‖B2/(A1 − N2)
2. Now we need to

show that B2/(A1 − N2)
2 < 1. Since N2 = B2/(A1 − N2), the required inequality is

equivalent to N2 < A1 − N2, which trivially follows from N2 < A1/2. The Banach
fixed point now assures the existence of w2 ∈ Ω such that w2 = T w2, i.e., w2 solves
(2) with N1 ≤ w2(t) ≤ N2 for t ∈ [T,∞)q. Denote N∗ = lim inft→∞ w(t) and
N∗ = lim supt→∞

w(t). We have N∗, N
∗ ∈ [N1, N2]. The lim inf and lim sup as

t→ ∞ in w(qt) + a(t) = −b(t)/w(t) yield N∗ + A = −B/N∗ and N∗ + A = −B/N∗,
respectively. Hence, f(N∗) = −A = f(N∗) with f(x) = x + B/x. Since N∗ < λ1,
in view of the properties of f described in the previous part, we get N∗ = N∗ = λ2.
Thus limt→∞w2(t) = λ2.
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Define yi, i = 1, 2, by yi(t) =
∏

s∈[T,t)q
wi(s). Then y1, y2 are solutions of (1), and

limt→∞ yi(qt)/yi(t) = λi, i = 1, 2. Hence, yi ∈ RVq(logq λi), i = 1, 2.
It remains to show that any eventually positive solution y of (1) is in RVq(λ1) ∪

RVq(λ2). Recall that, excluding the trivial solution, (1) possesses only eventually
positive and eventually negative solutions because it is nonoscillatory by Theorem 2.
Since {y1, y2} forms a fundamental system of (1), there exist c1, c2 ∈ R such that
y = c1y1 + c2y2. If c1 = 0, then y = c2y2 and so c2 > 0 and y ∈ RVq(logq λ2).
Now assume c1 6= 0. From the representations of y1, y2, with L1, L2 ∈ SVq, we
have y2(t)/y1(t) = tlogq

(λ2/λ1)L2(t)/L1(t) → 0 as t → ∞, since λ1 > λ2. Further,
y2(qt)/y1(t) = (y2(qt)/y2(t)) · (y2(t)/y1(t)) → λ2 · 0 = 0 as t→ ∞. Hence,

y(qt)

y(t)
=
c1y1(qt) + c2y2(qt)

c1y1(t) + c2y2(t)
=
c1y1(qt)/y1(t) + c2y2(qt)/y1(t)

c1 + c2y2(t)/y1(t)
∼ y1(qt)

y1(t)
∼ λ1 (18)

as t → ∞, which implies y ∈ RVq(logq λ1). Since y was arbitrary, we get that every
eventually positive solution of (1) is in RVq(logq λ1) or RVq(logq λ2).

(II) We now prove the case with A2 = 4B. Nonoscillation of (1) is guaranteed by
Theorem 2 (iii). Take any eventually positive solution y of (1). Then w defined by
w(t) = y(qt)/y(t) is a solution of (2), which is positive for large t. Similarly as in the
first part of (i), with lim inft→∞w(t) = K∗ and lim supt→∞

w(t) = K∗, we find that
K∗, K

∗ ∈ (0,∞) and f(K∗) = −A = f(K∗), f being the same as above. Recall that f
is convex on (0,∞). Moreover, f has the only global minimum in (0,∞) at x = −A/2
since B = A2/4, and f(−A/2) = −A. Hence, K∗ = K∗ = −A/2(= λ1 = λ2), and
so y ∈ RVq(logq(−A/2)). The statement now follows from the fact that we worked
with an arbitrary eventually positive solution of (1).
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