The Measure Concentration Problem for Convex Bodies

Lily Liu

New York University

Motivated by the measure concentration results for cone volume measures and dual curvature measures, we study the general problem of measure concentration. Let $\mu(K, \cdot)$ be a general geometric measure of a convex body K in \mathbb{R}^n , which is Borel over the unit sphere. The *i*-dimensional subspace concentration of $\mu(K, \cdot)$ refers to the maximal concentration of the measure over all *i*-dimensional subspaces, defined as

$$c_i(K,\mu) = \sup_{\xi \in G_{n,i}} \mu(K,\xi \cap \mathbb{S}^{n-1}),$$

where i = 1, 2, ..., n - 1 and $G_{n,i}$ is the Grassmann manifold of *i*-dimensional subspaces in \mathbb{R}^n . The measure concentration problem is to find the maximum concentration constant,

$$c_i(\mu) = \frac{1}{|\mu|} \sup_{K} c_i(K,\mu),$$

over a class of convex bodies. We show that for origin symmetric convex bodies the L^p area measure $\mu = S_{i,p}(K, \cdot)$, for i = 1, 2, ..., n-1, and $p \neq 0$, then $c_i(\mu) = 1$, so the L^p area measure can become completely concentrated on a lower dimensional subspace.