CHARACTERIZATION OF CONE-VOLUMES VIA PYRAMIDS

Tom Baumbach

TU Berlin

Motivated by the logarithmic Minkowski problem for polytopes, we study the cone-volume set $C_{cv}(U)$, consisting of cone-volume vectors of polytopes $P(U,b) = \{x \in \mathbb{R}^n : U^T x \leq b\}$, where $b \geq 0$ is a non-negative right-hand side and vol(P(U,b)) = 1. Therefore, the set $C_{cv}(U)$ is contained in the simplex $conv(\mathbf{e}_1, \ldots, \mathbf{e}_{|U|})$.

We investigate geometric conditions on U under which the standard basis vector \mathbf{e}_i is a cone-volume vector, or, more generally, when a sequence of cone-volume vectors converges to \mathbf{e}_i . The outer unit normal vectors $u_i \in U$, corresponding to the vectors \mathbf{e}_i , can be characterized by subsets $S \subseteq U$ with the property pos(S) = lin(S), which further correspond to pyramid structures with outer unit normals contained in U. To analyze the limit process, we establish a new inequality for cone-volumes.

The characterization of outer unit normal vectors $u_i \in U$ with this property relies on the structure of positive bases, offering new insights into cone-volume configurations.