On lattices embeddable into convexity lattices of some posets

Marina V. Semenova¹ Anna Zamojska-Dzienio²

¹Institute of Mathematics of the Siberian Branch of Russian Academy of Sciences ²Faculty of Mathematics and Information Science, Warsaw University of Technology

Szeged, July 2007

Definition

Let $\langle P, \trianglelefteq \rangle$ be a poset. A set $A \subseteq P$ is order-convex, if $x \trianglelefteq z \trianglelefteq y$ and $x, y \in A$ imply $z \in A$. The set Co(P) of all convex subsets of P forms a lattice under inclusion.

Definition

Let $\langle P, \trianglelefteq \rangle$ be a poset. A set $A \subseteq P$ is order-convex, if $x \trianglelefteq z \trianglelefteq y$ and $x, y \in A$ imply $z \in A$. The set Co(P) of all convex subsets of P forms a lattice under inclusion.

Theorem (Semenova, Wehrung, 2004)

Let L be a lattice. Then L embeds into some lattice of the form Co(P) iff L satisfies identities (S), (U), (B).

$$x \wedge (y' \vee z) = (x \wedge y') \vee \bigvee_{i < 2} [x \wedge (y_i \vee z) \wedge ((y' \wedge (x \vee y_i)) \vee z)],$$

where $y' = y \land (y_0 \lor y_1)$.

Illustrating (S)

3

$$\begin{aligned} & x \wedge (x_0 \lor x_1) \wedge (x_1 \lor x_2) \wedge (x_0 \lor x_2) = \\ & [x \wedge x_0 \wedge (x_1 \lor x_2)] \lor [x \wedge x_1 \wedge (x_0 \lor x_2)] \lor \\ & [x \wedge x_2 \wedge (x_0 \lor x_1)]. \end{aligned}$$

< 17 ▶

문제 문

$$\begin{aligned} & x \wedge (y_0 \vee y_1) \wedge (z_0 \vee z_1) = \\ & \bigvee_{i < 2} [x \wedge y_i \wedge (z_0 \vee z_1)] \vee [x \wedge (y_0 \vee y_1) \wedge z_i] \vee \\ & \bigvee_{i < 2} [x \wedge (y_0 \vee y_1) \wedge (z_0 \vee z_1) \wedge (y_0 \vee z_i) \wedge (y_1 \vee z_{1-i})]. \end{aligned}$$

Illustrating (B)

< 注入 < 注入

< 17 ▶

æ

One of the way of embedding L into Co(P) is to construct tree-like poset P via sequences of join-irreducible elements of L.

-

One of the way of embedding L into Co(P) is to construct tree-like poset P via sequences of join-irreducible elements of L.

Definition

A poset $\langle P, \trianglelefteq \rangle$ with predecessor relation \prec is tree-like, if it has no infinite bounded chain and between any points *a* and *b* of *P* there exists at most one finite sequence $\langle x_i | i = 0, ..., n \rangle$ with distinct entries such that $x_0 = a$, $x_n = b$, and either $x_i \prec x_{i+1}$ or $x_{i+1} \prec x_i$, for all i = 0, ..., n.

For a class \mathcal{P} of posets, $Co(\mathcal{P})$ denotes the class of respective convexity lattices and $S Co(\mathcal{P})$ denotes the class of lattices which embed into those from $Co(\mathcal{P})$.

For a class \mathcal{P} of posets, $Co(\mathcal{P})$ denotes the class of respective convexity lattices and $S Co(\mathcal{P})$ denotes the class of lattices which embed into those from $Co(\mathcal{P})$.

Theorem (Semenova, Wehrung, 2004)

Let C be the class of posets which are disjoint unions of chains. The class S Co(C) is a locally finite finitely based variety.

Definition

A poset $\langle P, \trianglelefteq \rangle$ is a forest, if the lower set $\downarrow a = \{x \in P \mid x \trianglelefteq a\}$ is a chain, for any $a \in P$. A connected forest is a tree.

→ ∢ ≣ →

Definition

A poset $\langle P, \trianglelefteq \rangle$ is a forest, if the lower set $\downarrow a = \{x \in P \mid x \trianglelefteq a\}$ is a chain, for any $a \in P$. A connected forest is a tree.

 ${\mathfrak F}$ denotes the class of forests, while ${\mathfrak T}$ denotes the class of trees.

Theorem (Semenova, Zamojska, 2006)

The following are equivalent for a lattice L:

•
$$L \in S \operatorname{Co}(\mathcal{F});$$

2
$$L \in \mathrm{S} \operatorname{Co}(\mathfrak{T});$$

S L satisfies (S), (U), (B), (T), (T₂), (T₃), (T₄), (Z).

In particular, $S Co(\mathfrak{F})$ is a finitely based variety.

Illustrating (T)

æ

Illustrating (T_n) and (Z)

æ

The class of finite members from $S Co(\mathcal{F})$ is a pseudovariety.

(4) E (4) (4) E (4)

3

The class of finite members from $S Co(\mathcal{F})$ is a pseudovariety.

For $n < \omega$, let \mathfrak{F}_n denote the class of forests of length at most n.

The class of finite members from $S Co(\mathcal{F})$ is a pseudovariety.

For $n < \omega$, let \mathfrak{F}_n denote the class of forests of length at most n.

Corollary

The class $S Co(\mathcal{F}_n)$ is a finitely based variety for any $n < \omega$.

The class of finite members from $S Co(\mathcal{F})$ is a pseudovariety.

For $n < \omega$, let \mathfrak{F}_n denote the class of forests of length at most n.

Corollary

The class $S Co(\mathfrak{F}_n)$ is a finitely based variety for any $n < \omega$.

Problem

Is the variety $S Co(\mathfrak{F})$ locally finite?

A generalization of the class of forests is the class of series-parallel posets, i.e. posets that do not contain subposet isomorphic to the letter N (*N*-free posets). We denote this class by $\neg N$. Obviously $T \subset \mathcal{F} \subset \neg N$.

A generalization of the class of forests is the class of series-parallel posets, i.e. posets that do not contain subposet isomorphic to the letter N (N-free posets). We denote this class by $\neg N$. Obviously $T \subset \mathcal{F} \subset \neg N$.

Problem

Is the class $S Co(\neg N)$ a variety?

A poset $\langle P, \trianglelefteq \rangle$ is pseudo N-free, if it has at most one "change of sign". \mathcal{P} denotes the class of pseudo *N*-free posets.

ヨト イヨト イヨト

-

A poset $\langle P, \trianglelefteq \rangle$ is pseudo N-free, if it has at most one "change of sign". \mathcal{P} denotes the class of pseudo *N*-free posets.

Theorem

The following are equivalent for a lattice L:

•
$$L \in S \operatorname{Co}(\mathcal{P});$$

2 L satisfies (S), (U), (B), (T), (T₃), (T₄), (Z).

In particular, S Co(P) is a finitely based variety.