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Definition

Let 〈P, E〉 be a poset. A set A ⊆ P is order-convex, if x E z E y

and x , y ∈ A imply z ∈ A. The set Co(P) of all convex subsets of
P forms a lattice under inclusion.
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Definition

Let 〈P, E〉 be a poset. A set A ⊆ P is order-convex, if x E z E y

and x , y ∈ A imply z ∈ A. The set Co(P) of all convex subsets of
P forms a lattice under inclusion.

Theorem (Semenova, Wehrung, 2004)

Let L be a lattice. Then L embeds into some lattice of the form

Co(P) iff L satisfies identities (S), (U), (B).
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x ∧ (y ′ ∨ z) = (x ∧ y ′) ∨
∨

i<2

[

x ∧ (yi ∨ z) ∧
((

y ′ ∧ (x ∨ yi )
)

∨ z
)]

,

where y ′ = y ∧ (y0 ∨ y1).
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Illustrating (S)
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x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x0 ∨ x2) =
[

x ∧ x0 ∧ (x1 ∨ x2)
]

∨
[

x ∧ x1 ∧ (x0 ∨ x2)
]

∨
[

x ∧ x2 ∧ (x0 ∨ x1)
]

.
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Illustrating (U)
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x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) =
∨

i<2

[

x ∧ yi ∧ (z0 ∨ z1)
]

∨
[

x ∧ (y0 ∨ y1) ∧ zi

]

∨

∨

i<2

[

x ∧ (y0 ∨ y1) ∧ (z0 ∨ z1) ∧ (y0 ∨ zi ) ∧ (y1 ∨ z1−i )
]

.
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Illustrating (B)
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One of the way of embedding L into Co(P) is to construct tree-like
poset P via sequences of join-irreducible elements of L.
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One of the way of embedding L into Co(P) is to construct tree-like
poset P via sequences of join-irreducible elements of L.

Definition

A poset 〈P, E〉 with predecessor relation ≺ is tree-like, if it has no
infinite bounded chain and between any points a and b of P there
exists at most one finite sequence 〈xi |i = 0, . . . , n〉 with distinct
entries such that x0 = a, xn = b, and either xi ≺ xi+1 or xi+1 ≺ xi ,
for all i = 0, . . . , n.
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For a class P of posets, Co(P) denotes the class of respective
convexity lattices and SCo(P) denotes the class of lattices which
embed into those from Co(P).
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For a class P of posets, Co(P) denotes the class of respective
convexity lattices and SCo(P) denotes the class of lattices which
embed into those from Co(P).

Theorem (Semenova, Wehrung, 2004)

Let C be the class of posets which are disjoint unions of chains.

The class SCo(C) is a locally finite finitely based variety.
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Definition

A poset 〈P, E〉 is a forest, if the lower set ↓a = {x ∈ P | x E a} is
a chain, for any a ∈ P. A connected forest is a tree.
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Definition

A poset 〈P, E〉 is a forest, if the lower set ↓a = {x ∈ P | x E a} is
a chain, for any a ∈ P. A connected forest is a tree.

F denotes the class of forests, while T denotes the class of trees.

Theorem (Semenova, Zamojska, 2006)

The following are equivalent for a lattice L:

1 L ∈ SCo(F);

2 L ∈ SCo(T);

3 L satisfies (S), (U), (B), (T), (T2), (T3), (T4), (Z).

In particular, SCo(F) is a finitely based variety.
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Illustrating (Tn) and (Z)
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Corollary

The class of finite members from SCo(F) is a pseudovariety.
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Corollary

The class of finite members from SCo(F) is a pseudovariety.

For n < ω, let Fn denote the class of forests of length at most n.
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Corollary

The class of finite members from SCo(F) is a pseudovariety.

For n < ω, let Fn denote the class of forests of length at most n.

Corollary

The class SCo(Fn) is a finitely based variety for any n < ω.
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Corollary

The class of finite members from SCo(F) is a pseudovariety.

For n < ω, let Fn denote the class of forests of length at most n.

Corollary

The class SCo(Fn) is a finitely based variety for any n < ω.

Problem

Is the variety SCo(F) locally finite?
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A generalization of the class of forests is the class of series-parallel
posets, i.e. posets that do not contain subposet isomorphic to the
letter N ( N-free posets). We denote this class by ¬N. Obviously
T ⊂ F ⊂ ¬N.
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A generalization of the class of forests is the class of series-parallel
posets, i.e. posets that do not contain subposet isomorphic to the
letter N ( N-free posets). We denote this class by ¬N. Obviously
T ⊂ F ⊂ ¬N.

Problem

Is the class SCo(¬N) a variety?
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A poset 〈P, E〉 is pseudo N-free, if it has at most one ”change of
sign”. P denotes the class of pseudo N-free posets.
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A poset 〈P, E〉 is pseudo N-free, if it has at most one ”change of
sign”. P denotes the class of pseudo N-free posets.

Theorem

The following are equivalent for a lattice L:

1 L ∈ SCo(P);

2 L satisfies (S), (U), (B), (T), (T3), (T4), (Z).

In particular, SCo(P) is a finitely based variety.
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