The Equivalence Problem for Finite Structures

Vera Vértesi

University Eötvös Loránd

2007

Syracuse, early 90's

Syracuse, early 90's

• synchronizing chemical experiments

Syracuse, early 90's

- synchronizing chemical experiments
- decide whether two experiments will give the same result or not

Syracuse, early 90's

- synchronizing chemical experiments
- decide whether two experiments will give the same result or not

Syracuse, meantime

The Computer Scientist showed that this problem traces back to equivalences of terms over commutative rings.

Finite Automatons, Formal Languages, Montreal, Brno, Ekaterinburg

Finite Automatons, Formal Languages, Montreal, Brno, Ekaterinburg

Syntactic Monoids

Finite Automatons, Formal Languages, Montreal, Brno, Ekaterinburg

- Syntactic Monoids
- recognition of formal languages

Finite Automatons, Formal Languages, Montreal, Brno, Ekaterinburg

- Syntactic Monoids
- recognition of formal languages

It was Shown that this problem traces back to equivalences of terms over monoids.

Definition

Let A be an algebra and let t and s be two terms over A.

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Example

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Example

• $x^p \stackrel{?}{\equiv} x \text{ in } \mathbb{Z}_p$

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Example

- $x^p \stackrel{?}{=} x \text{ in } \mathbb{Z}_p$
- Yes, Fermat's theorem

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over ${\bf A}$ if $t(\bar a)=s(\bar a)$ for every substitution $\bar a\in {\bf A}$

Example

- $x^p \stackrel{?}{\equiv} x \text{ in } \mathbb{Z}_p$
- Yes, Fermat's theorem

Example

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Example

- $x^p \stackrel{?}{=} x \text{ in } \mathbb{Z}_p$
- Yes, Fermat's theorem

Example

• $AB \stackrel{?}{=} BA \text{ over } M_n(\mathbb{F})$

Definition

Let A be an algebra and let t and s be two terms over A.

• We say that t and s are equivalent over \mathbf{A} if $t(\bar{a}) = s(\bar{a})$ for every substitution $\bar{a} \in \mathbf{A}$

Example

- $x^p \stackrel{?}{=} x \text{ in } \mathbb{Z}_p$
- Yes, Fermat's theorem

Example

- $AB \stackrel{?}{=} BA$ over $M_n(\mathbb{F})$
- No, $M_n(\mathbb{F})$ is not commutative

Example

• $[(AB - BA)^2, C] \stackrel{?}{=} 0$ over $M_2(\mathbb{F})$

Example

- $[(AB BA)^2, C] \stackrel{?}{=} 0$ over $M_2(\mathbb{F})$
- Yes, $tr(AB BA) = 0 \Rightarrow (AB BA)^2$ is scalar matrix, hence commutes with C.

Example

- $[(AB BA)^2, C] \stackrel{?}{=} 0$ over $M_2(\mathbb{F})$
- Yes, $tr(AB BA) = 0 \Rightarrow (AB BA)^2$ is scalar matrix, hence commutes with C.

Example

Example

- $[(AB BA)^2, C] \stackrel{?}{=} 0$ over $M_2(\mathbb{F})$
- Yes, $tr(AB BA) = 0 \Rightarrow (AB BA)^2$ is scalar matrix, hence commutes with C.

Example

• $[[x, y], [x, z]]^2 \stackrel{?}{=} 1$ over S_4

Example

- $[(AB BA)^2, C] \stackrel{?}{=} 0$ over $M_2(\mathbb{F})$
- Yes, $tr(AB BA) = 0 \Rightarrow (AB BA)^2$ is scalar matrix, hence commutes with C.

Example

- $[[x, y], [x, z]]^2 \stackrel{?}{=} 1$ over S_4
- Yes, $[x, y] \in A_4 \implies [[x, y], [x, z]] \in A'_4$ $A'_4 \simeq Z_2 \times Z_2$

Definition

 $\mathrm{TERM\text{-}EQ}(\boldsymbol{\mathsf{A}})$

Definition

TERM-EQ(A)

• Let **A** be an algebra

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

Always decidable: check every substitution

• What is the complexity of TERM-EQ?

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

- What is the complexity of TERM-EQ?
- Always in coNP.

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

- What is the complexity of TERM-EQ?
- Always in coNP.
- What is the complexity of the problem for certain class of structures?

Definition

TERM-EQ(A)

- Let A be an algebra
- Input: t and s two terms over A
- Question: are t and s equivalent over A

- What is the complexity of TERM-EQ?
- Always in coNP.
- What is the complexity of the problem for certain class of structures?
- Goal: Prove dichotomy: TERM-EQ is either in P or coNP-complete

Results – Groups

Theorem

Goldmann, Russel (1999)

For nilpotent groups TERM-EQ is in P.

Results – Groups

Theorem

Goldmann, Russel (1999)

For nilpotent groups TERM-EQ is in P.

Theorem

Horváth, Mérai, Lawrence, Szabó (2005)

 $TERM ext{-}EQ$ is coNP-complete for non-solvable groups.

Results – Groups

Theorem

Goldmann, Russel (1999)

For nilpotent groups TERM-EQ is in P.

Theorem

Horváth, Mérai, Lawrence, Szabó (2005)

 $TERM ext{-}EQ$ is coNP-complete for non-solvable groups.

Theorem

Horváth, Szabó (2003)

TERM-EQ is in P for metacyclic groups (semidirect product of cyclic groups).

Theorem

Seif, Szabó (2001)

TERM-EQ is P for combinatorial 0-simple semigroups.

Theorem

Seif, Szabó (2001)

TERM-EQ is P for combinatorial 0-simple semigroups.

Theorem

Seif, Szabó (2001)

 $TERM ext{-}EQ$ is P for combinatorial 0-simple semigroups.

Theorem

Seif, Szabó (2001)

TERM-EQ is P for combinatorial 0-simple semigroups.

Is there any semigroup with coNP-complete $\mathrm{TERM}\text{-}\mathrm{EQ}$?

• Volkov, Popov (2002) #elements $\approx 2^{1700}$

 $\langle a,b
angle$ — the free semigroup generated by two elements

 $\langle a,b
angle$ — the free semigroup generated by two elements

 $\overline{\langle a,b \rangle}$ — the free semigroup generated by two elements

$$P_j = ab^{15+j}a^2, \ 0 \le j \le 14$$

 $P_j = ab^{15+j}a^2, \ 0 \le j \le 14$

 $\langle a,b \rangle$ — the free semigroup generated by two elements

$$(=P_0P_2P_1)=P_0P_3P_1$$

$\langle a,b \rangle$ — the free semigroup generated by two elements

$\langle a,b \rangle$ — the free semigroup generated by two elements

$$\begin{array}{ccc} (=P_0P_2P_1 &)=P_0P_3P_1 \\ P_j=ab^{15+j}a^2, \ 0\leq j\leq 14 & \neg=P_0P_4P_1 & \vee=P_0P_5P_1 \\ 1=P_0P_{10}P_1 & 0=P_0P_{11}P_1 \end{array} \wedge =P_0P_6P_1$$

$$\langle a,b \rangle$$
 — the free semigroup generated by two elements

$$(=P_0P_2P_1 \quad)=P_0P_3P_1 \\ P_j=ab^{15+j}a^2, \ 0 \leq j \leq 14 \quad \neg=P_0P_4P_1 \quad \lor=P_0P_5P_1 \quad \land=P_0P_6P_1 \\ 1=P_0P_{10}P_1 \quad 0=P_0P_{11}P_1$$

Expressions

$$(0),(1),(\neg 0),(\neg 1)$$

$$\langle a,b \rangle$$
 — the free semigroup generated by two elements

$$(=P_0P_2P_1 \quad)=P_0P_3P_1 \\ P_j=ab^{15+j}a^2, \ 0 \leq j \leq 14 \quad \neg=P_0P_4P_1 \quad \lor=P_0P_5P_1 \quad \land=P_0P_6P_1 \\ 1=P_0P_{10}P_1 \quad 0=P_0P_{11}P_1$$

Expressions

$$(0),(1),(\neg 0),(\neg 1)$$

$$\langle a,b \rangle$$
 — the free semigroup generated by two elements

$$P_{j} = ab^{15+j}a^{2}, \ 0 \le j \le 14 \quad \begin{array}{c} (=P_{0}P_{2}P_{1} &) = P_{0}P_{3}P_{1} \\ \neg = P_{0}P_{4}P_{1} & \lor = P_{0}P_{5}P_{1} \\ 1 = P_{0}P_{10}P_{1} & 0 = P_{0}P_{11}P_{1} \end{array} \wedge = P_{0}P_{6}P_{1}$$

Expressions

$$(0), (1), (\neg 0), (\neg 1)$$

 $(V_1 \land V_2 \land \cdots \land V_k)$, where $V_i \in \{0, 1, \neg 0, \neg 1\}$

$$\langle a,b\rangle$$
 — the free semigroup generated by two elements

$$P_{j} = ab^{15+j}a^{2}, \ 0 \le j \le 14 \quad \begin{array}{c} (=P_{0}P_{2}P_{1} &) = P_{0}P_{3}P_{1} \\ \neg = P_{0}P_{4}P_{1} & \lor = P_{0}P_{5}P_{1} & \land = P_{0}P_{6}P_{1} \\ 1 = P_{0}P_{10}P_{1} & 0 = P_{0}P_{11}P_{1} \end{array}$$

Expressions

$$(0), (1), (\neg 0), (\neg 1)$$

 $(V_1 \land V_2 \land \cdots \land V_k)$, where $V_i \in \{0, 1, \neg 0, \neg 1\}$ $W_1 \lor W_2 \lor \cdots \lor W_l$, where W_i is defined by the previous forms

$\langle a, b \rangle$ — the free semigroup generated by two elements

$$(=P_0P_2P_1 \quad)=P_0P_3P_1 \\ P_j=ab^{15+j}a^2, \ 0 \leq j \leq 14 \quad \neg=P_0P_4P_1 \quad \lor=P_0P_5P_1 \quad \land=P_0P_6P_1 \\ 1=P_0P_{10}P_1 \quad 0=P_0P_{11}P_1$$

Expressions

$$(0), (1), (\neg 0), (\neg 1)$$

$$(V_1 \land V_2 \land \cdots \land V_k)$$
, where $V_i \in \{0, 1, \neg 0, \neg 1\}$
 $W_1 \lor W_2 \lor \cdots \lor W_l$, where W_j is defined by the previous forms

Relations

U = W, whenever U, W is not an expression

$\langle a, b \rangle$ — the free semigroup generated by two elements

$$(=P_0P_2P_1 \quad)=P_0P_3P_1 \\ P_j=ab^{15+j}a^2, \ 0 \leq j \leq 14 \quad \neg=P_0P_4P_1 \quad \lor=P_0P_5P_1 \quad \land=P_0P_6P_1 \\ 1=P_0P_{10}P_1 \quad 0=P_0P_{11}P_1$$

Expressions

$$(0), (1), (\neg 0), (\neg 1)$$

$$(V_1 \land V_2 \land \cdots \land V_k)$$
, where $V_i \in \{0, 1, \neg 0, \neg 1\}$
 $W_1 \lor W_2 \lor \cdots \lor W_l$, where W_j is defined by the previous forms

Relations

U = W, whenever U, W is not an expression

$\langle a,b\rangle$ — the free semigroup generated by two elements

$$(= P_0 P_2 P_1 \quad) = P_0 P_3 P_1$$

$$P_j = ab^{15+j}a^2, \ 0 \le j \le 14 \quad \neg = P_0 P_4 P_1 \quad \lor = P_0 P_5 P_1 \quad \land = P_0 P_6 P_1$$

$$1 = P_0 P_{10} P_1 \quad 0 = P_0 P_{11} P_1$$

Expressions

$$(0), (1), (\neg 0), (\neg 1)$$

 $(V_1 \land V_2 \land \cdots \land V_k)$, where $V_i \in \{0, 1, \neg 0, \neg 1\}$
 $W_1 \lor W_2 \lor \cdots \lor W_l$, where W_i is defined by the previous forms

Re

Relations
$$U = W$$
, whenever U, W is not an expression $\neg 0 = 1$ $\neg 1 = 0$ $(0 \land 0 = (0 \land 0))$

Need to be checked

does not collapse

Need to be checked

- does not collapse
- finite

Need to be checked

- does not collapse
- finite
- size $\approx 2^{1700}$

Need to be checked

- does not collapse
- finite
- size $\approx 2^{1700}$

SAT can be formulated

Theorem

Seif, Szabó (2001)

 $\it TERM\text{-}EQ$ is P for combinatorial 0-simple semigroups.

Is there any semigroup with coNP-complete $\mathrm{TERM}\text{-}\mathrm{EQ}$?

• Volkov, Popov (2002) #elements $\approx 2^{1700}$

Theorem

Seif, Szabó (2001)

 $TERM ext{-}EQ$ is P for combinatorial 0-simple semigroups.

- Volkov, Popov (2002) #elements $\approx 2^{1700}$
- Kisielewicz (2002) few thousand

Theorem

Seif, Szabó (2001)

TERM-EQ is P for combinatorial 0-simple semigroups.

- Volkov, Popov (2002) #elements $\approx 2^{1700}$
- Kisielewicz (2002) few thousand
- Szabó, VV (2002) 13

Theorem

Seif, Szabó (2001) TERM-EQ is P for combinatorial 0-simple semigroups.

- Volkov, Popov (2002) #elements $\approx 2^{1700}$
- Kisielewicz (2002) few thousand
- Szabó, VV (2002) 13
- Klíma (2003) 6

Theorem

Seif, Szabó (2001) TERM-EQ is P for combinatorial 0-simple semigroups.

- Volkov, Popov (2002) #elements $\approx 2^{1700}$
- Kisielewicz (2002) few thousand
- Szabó, VV (2002) 13
- Klíma (2003) 6
- for every at most 5 element monoid the problem is in P

Theorem

Seif, Szabó (2001) TERM-EQ is P for combinatorial 0-simple semigroups.

- Volkov, Popov (2002) #elements $\approx 2^{1700}$
- Kisielewicz (2002) few thousand
- Szabó, VV (2002) 13
- Klíma (2003) 6
- for every at most 5 element monoid the problem is in P
- for almost every at most 6 element monoid the problem is in P

• M - a 0-1 matrix.

- M − a 0−1 matrix.
- \bullet Λ the index set of rows

- M − a 0−1 matrix.
- Λ the index set of rows
- / the index set of columns

- M − a 0−1 matrix.
- ∧ the index set of rows
- / the index set of columns

Underlying set

$$S_{\mathsf{M}} := \{\langle \mathbf{i}, \lambda \rangle : \mathbf{i} \in \mathbf{I}, \lambda \in \Lambda\} \cup \{0\}$$

- M a 0-1 matrix.
- Λ the index set of rows
- I the index set of columns

Underlying set

$$S_{\mathsf{M}} := \{ \langle \mathbf{i}, \lambda \rangle : \mathbf{i} \in \mathbf{I}, \lambda \in \Lambda \} \cup \{0\}$$

Multiplication:

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

and

$$0 \cdot s = 0 = s \cdot 0 \qquad \forall s \in S_{\mathbf{M}}$$

Example

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

Example

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

Example

$$\langle i, \lambda \rangle \langle j, \mu \rangle = \begin{cases} \langle i, \mu \rangle, & \text{if } \mathbf{M}(\lambda, j) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, j) = 0 \end{cases}$$

Example

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

Example

$$\langle 2,3\rangle\langle 1,2\rangle =$$

$$\langle i, \lambda \rangle \langle j, \mu \rangle = \begin{cases} \langle i, \mu \rangle, & \text{if } \mathbf{M}(\lambda, j) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, j) = 0 \end{cases}$$

Example

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle 2, 3 \rangle \langle 1, 2 \rangle =$$

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

Example

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle 2, 3 \rangle \langle 1, 2 \rangle =$$

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

Example

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle 2, 3 \rangle \langle 1, 2 \rangle = \langle 2, 2 \rangle$$

 $M(3, 1) = 1$

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

$\mathsf{Example}^{\mathsf{I}}$

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle i, \lambda \rangle \langle j, \mu \rangle = 0 \iff \lambda = j$$

$$\langle i, \lambda \rangle \langle j, \mu \rangle = \begin{cases} \langle i, \mu \rangle, & \text{if } \mathbf{M}(\lambda, j) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, j) = 0 \end{cases}$$

Example

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{array}{c} \lambda_1 & \lambda_2 & \lambda_3 \\ \vdots & \vdots & \vdots \\ i_1 & i_2 & \vdots \\ \vdots & \vdots & \vdots \\ i_1 & \vdots & \vdots \\ i_2 & \vdots & \vdots \\ i_3 & \vdots & \vdots \\ i_4 & \vdots & \vdots \\ i_5 & \vdots & \vdots \\ i_6 & \vdots & \vdots \\ i_7 & \vdots & \vdots \\ i_8 &$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle i, \lambda \rangle \langle j, \mu \rangle = 0 \iff \lambda = j$$

$$\langle i, \lambda \rangle \langle j, \mu \rangle = \begin{cases} \langle i, \mu \rangle, & \text{if } \mathbf{M}(\lambda, j) = 1 \\ 0, & \text{if } \mathbf{M}(\lambda, j) = 0 \end{cases}$$

Example

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \frac{1}{1} \quad \frac{2}{2}$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle \mathbf{i}, \lambda \rangle \langle \mathbf{j}, \mu \rangle = 0 \iff \lambda = \mathbf{j}$$

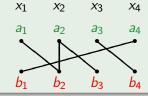
• $t = x_1 \cdots x_n$ a term

- $t = x_1 \cdots x_n$ a term
- $X := \{x_1, \dots, x_n\}$ the set of variables in t

- $t = x_1 \cdots x_n$ a term
- $X := \{x_1, \dots, x_n\}$ the set of variables in t
- Define $G_t(A_t, B_t, E_t)$ where
- $A_t = \{a_x \mid x \in X\}$
- $\bullet \ B_t = \{b_x \mid x \in X\}$
- $(a_x, b_y) \in E_t \iff xy$ is subword of t

- $t = x_1 \cdots x_n$ a term
- $X := \{x_1, \dots, x_n\}$ the set of variables in t
- Define $G_t(A_t, B_t, E_t)$ where
- $A_t = \{a_x \mid x \in X\}$
- $\bullet \ B_t = \{b_x \mid x \in X\}$
- $(a_x, b_y) \in E_t \iff xy$ is subword of t

$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$



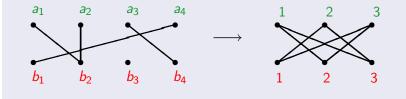
$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$

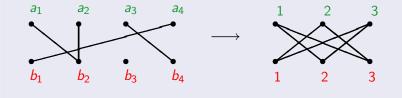
$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$
 $a_1 \mapsto 2$ $a_2 \mapsto 2$ $a_3 \mapsto 1$ $a_4 \mapsto 2$



$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

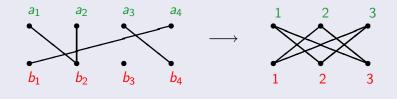
$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$
 $a_1 \mapsto 2$ $a_2 \mapsto 2$ $a_3 \mapsto 1$ $a_4 \mapsto 2$
 $b_1 \mapsto 1$ $b_2 \mapsto 3$ $b_3 \mapsto 2$ $b_4 \mapsto 2$



$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$
 $a_1 \mapsto 2$ $a_2 \mapsto 2$ $a_3 \mapsto 1$ $a_4 \mapsto 2$
 $b_1 \mapsto 1$ $b_2 \mapsto 3$ $b_3 \mapsto 2$ $b_4 \mapsto 2$

$$t(\vec{a}) = \langle 1, 2 \rangle \langle 3, 2 \rangle \langle 3, 2 \rangle \langle 2, 1 \rangle \langle 2, 2 \rangle \langle 1, 2 \rangle \langle 3, 2 \rangle = 0$$

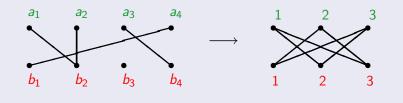


$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$
 $a_1 \mapsto 2$ $a_2 \mapsto 2$ $a_3 \mapsto 1$ $a_4 \mapsto 2$
 $b_1 \mapsto 1$ $b_2 \mapsto 3$ $b_3 \mapsto 2$ $b_4 \mapsto 2$

$$t(\vec{a}) = \langle 1, 2 \rangle \langle 3, 2 \rangle \langle 3, 2 \rangle \langle 2, 1 \rangle \langle 2, 2 \rangle \langle 1, 2 \rangle \langle 3, 2 \rangle = 0$$

$$A(2, 2) = 0$$

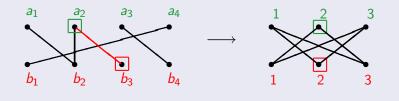


$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$

$$x_1 \mapsto \langle 1, 2 \rangle$$
 $x_2 \mapsto \langle 3, 2 \rangle$ $x_3 \mapsto \langle 2, 1 \rangle$ $x_4 \mapsto \langle 2, 2 \rangle$
 $a_1 \mapsto 2$ $a_2 \mapsto 2$ $a_3 \mapsto 1$ $a_4 \mapsto 2$
 $b_1 \mapsto 1$ $b_2 \mapsto 3$ $b_3 \mapsto 2$ $b_4 \mapsto 2$

$$t(\vec{a}) = \langle 1, 2 \rangle \langle 3, 2 \rangle \langle 3, 2 \rangle \langle 2, 1 \rangle \langle 2, 2 \rangle \langle 1, 2 \rangle \langle 3, 2 \rangle = 0$$

$$A(2, 2) = 0$$



$$t = x_1 \cdots x_n, X := \{x_1, \dots, x_n\} \rightsquigarrow G_t(A_t, B_t, E_t)$$

$$t = x_1 \cdots x_n, X := \{x_1, \dots, x_n\} \rightsquigarrow G_t(A_t, B_t, E_t)$$

$$t = x_1 \cdots x_n, \ X := \{x_1, \dots, x_n\} \leadsto G_t(A_t, B_t, E_t)$$

$$A_t = \{a_x \mid x \in X\},$$

$$B_t = \{b_x \mid x \in X\} \text{ and }$$

$$(a_x, b_y) \in E_t \iff xy \text{ is subword of } t$$

$$t = x_1 \cdots x_n, \ X := \{x_1, \dots, x_n\} \leadsto G_t(A_t, B_t, E_t)$$

$$A_t = \{a_x \mid x \in X\},$$

$$B_t = \{b_x \mid x \in X\} \text{ and }$$

$$(a_x, b_y) \in E_t \iff xy \text{ is subword of } t$$

for an evaluation
$$X \to S_A \setminus \{0\}$$
, $x_j \mapsto \langle i_j, \lambda_j \rangle$
 $G_t \to X$ $a_x \mapsto \lambda$, $b_x \mapsto i$ if $x = \langle i, \lambda \rangle$

$$t = x_1 \cdots x_n, \ X := \{x_1, \dots, x_n\} \leadsto G_t(A_t, \frac{B_t}{B_t}, E_t)$$

$$A_t = \{a_x \mid x \in X\},$$

$$B_t = \{b_x \mid x \in X\} \text{ and }$$

$$(a_x, b_y) \in E_t \iff xy \text{ is subword of } t$$

for an evaluation
$$X \to S_A \setminus \{0\}$$
, $x_j \mapsto \langle i_j, \lambda_j \rangle$

$$G_t \to X$$
 $a_x \mapsto \lambda, b_x \mapsto i \text{ if } x = \langle i, \lambda \rangle$

Lemma

$$t = x_1 \cdots x_n, \ X := \{x_1, \dots, x_n\} \leadsto G_t(A_t, \frac{B_t}{B_t}, E_t)$$

$$A_t = \{a_x \mid x \in X\},$$

$$B_t = \{b_x \mid x \in X\} \text{ and }$$

$$(a_x, b_y) \in E_t \iff xy \text{ is subword of } t$$

for an evaluation
$$X \to \mathcal{S}_A \setminus \{0\}, \qquad x_j \mapsto \langle \emph{\textbf{i}}_j, \lambda_j \rangle$$

$$G_t \to \lambda, \ b_x \mapsto i \text{ if } x = \langle i, \lambda \rangle$$

Lemma

• $t(\vec{a}) \neq 0 \iff G_t \rightarrow \mathbf{X}$ is a homomorphism;

$$t = x_1 \cdots x_n, X := \{x_1, \dots, x_n\} \leadsto G_t(A_t, B_t, E_t)$$

 $A_t = \{a_x \mid x \in X\},$
 $B_t = \{b_x \mid x \in X\}$ and
 $(a_x, b_y) \in E_t \iff xy$ is subword of t

for an evaluation
$$X \to S_A \setminus \{0\}$$
, $x_j \mapsto \langle i_j, \lambda_j \rangle$

$$G_t \to \lambda, \ b_x \mapsto i \text{ if } x = \langle i, \lambda \rangle$$

Lemma

- $t(\vec{a}) \neq 0 \iff G_t \rightarrow \mathbf{W}$ is a homomorphism;
- If \neq 0, then $t(\vec{a}) = \langle \vec{i_1}, \lambda_n \rangle$

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

• $G_t o K$ is a homomorphism $\iff G_s o K$ is a homomorphism;

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

- $G_t \rightarrow \mathcal{K}$ is a homomorphism $\iff G_s \rightarrow \mathcal{K}$ is a homomorphism;
 - if $\varepsilon(t) \neq 0$ and $\varepsilon(s) \neq 0$, then $i_{x_1} = i_{y_1}$ and $\lambda_{x_n} = \lambda_{y_m}$

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

- $G_t \to K$ is a homomorphism $\iff G_s \to K$ is a homomorphism;
- if $\varepsilon(t) \neq 0$ and $\varepsilon(s) \neq 0$, then $i_{x_1} = i_{y_1}$ and $\lambda_{x_n} = \lambda_{y_m}$

Theorem

 $t \equiv s$ if and only if:

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

- $G_t \to K$ is a homomorphism $\iff G_s \to K$ is a homomorphism;
 - if $\varepsilon(t) \neq 0$ and $\varepsilon(s) \neq 0$, then $i_{x_1} = i_{y_1}$ and $\lambda_{x_n} = \lambda_{y_m}$

Theorem

 $t \equiv s$ if and only if:

• $G_t = G_s$; and

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

- $G_t \to \mathcal{K}$ is a homomorphism $\iff G_s \to \mathcal{K}$ is a homomorphism;
- if $\varepsilon(t) \neq 0$ and $\varepsilon(s) \neq 0$, then $i_{x_1} = i_{y_1}$ and $\lambda_{x_n} = \lambda_{y_m}$

Theorem

 $t \equiv s$ if and only if:

- $G_t = G_s$; and
- $x_1 = y_1$ and $x_n = y_m$

$$t = x_1 \cdots x_n \ s = y_1 \cdots y_m, \ X = \{x_1, \dots, x_n, y_1, \dots y_m\}$$

Let us consider an evaluation $X \to S_A \setminus \{0\}$, then $t(\vec{a}) = s(\vec{a})$ iff:

- $G_t \rightarrow K$ is a homomorphism $\iff G_s \rightarrow K$ is a homomorphism;
- if $\varepsilon(t) \neq 0$ and $\varepsilon(s) \neq 0$, then $i_{x_1} = i_{y_1}$ and $\lambda_{x_n} = \lambda_{y_m}$

Theorem

 $t \equiv s$ if and only if:

- $G_t = G_s$; and
- $x_1 = y_1$ and $x_n = y_m$

Theorem

Seif, Szabó (2001) $TERM-EQ(S_A) \in P$

0-simple semigroups

0-simple semigroups

• G finite group

0-simple semigroups

- G finite group
- $M G \cup \{0\}$ matrix.

- G finite group
- $M G \cup \{0\}$ matrix.
- Λ the index set of rows

- G finite group
- $M G \cup \{0\}$ matrix.
- \bullet Λ the index set of rows
- / the index set of columns

- G finite group
- $M G \cup \{0\}$ matrix.
- \bullet Λ the index set of rows
- I − the index set of columns

Underlying set

$$S_{\mathsf{M}} := \{\langle \mathbf{i}, \mathbf{g}, \lambda \rangle : \mathbf{i} \in \mathbf{I}, \mathbf{g} \in \mathbf{G}, \lambda \in \Lambda\} \cup \{0\}$$

- G finite group
- $M G \cup \{0\}$ matrix.
- Λ the index set of rows
- / the index set of columns

Underlying set

$$S_{\mathsf{M}} := \{\langle \mathbf{i}, \mathbf{g}, \lambda \rangle : \mathbf{i} \in \mathbf{I}, \mathbf{g} \in \mathbf{G}, \lambda \in \Lambda\} \cup \{0\}$$

Multiplication:

$$\langle \mathbf{i}, \mathbf{g}, \lambda \rangle \langle \mathbf{j}, \mathbf{h}, \mu \rangle = \begin{cases} \langle \mathbf{i}, \mathbf{g} \mathbf{M}(\lambda, \mathbf{j}) \mathbf{h}, \mu \rangle, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) \in \mathbf{G} \\ 0, & \text{if } \mathbf{M}(\lambda, \mathbf{j}) = 0 \end{cases}$$

and

$$0 \cdot s = 0 = s \cdot 0 \quad \forall s \in S_{M}$$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

Example

$$Z_2 = \langle a \rangle$$

$$P := egin{pmatrix} 0 & a & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle \mathbf{1}, \mathbf{a}, 1 \rangle \langle \mathbf{2}, \mathbf{a}, 2 \rangle \langle \mathbf{1}, \mathbf{1}, 1 \rangle \langle \mathbf{3}, \mathbf{a}, 1 \rangle \langle \mathbf{2}, \mathbf{1}, 2 \rangle =$$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda=\emph{I}=\{1,2,3\}$

$$\langle \mathbf{1}, \mathbf{a}, \mathbf{1} \rangle \langle \mathbf{2}, \mathbf{a}, \mathbf{2} \rangle \langle \mathbf{1}, \mathbf{1}, \mathbf{1} \rangle \langle \mathbf{3}, \mathbf{a}, \mathbf{1} \rangle \langle \mathbf{2}, \mathbf{1}, \mathbf{2} \rangle = \langle , , \rangle$$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle \mathbf{1}, \mathbf{a}, \mathbf{1} \rangle \langle \mathbf{2}, \mathbf{a}, \mathbf{2} \rangle \langle \mathbf{1}, \mathbf{1}, \mathbf{1} \rangle \langle \mathbf{3}, \mathbf{a}, \mathbf{1} \rangle \langle \mathbf{2}, \mathbf{1}, \mathbf{2} \rangle = \langle \mathbf{1}, , \rangle$$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

$$\langle 1, a, 1 \rangle \langle 2, a, 2 \rangle \langle 1, 1, 1 \rangle \langle 3, a, 1 \rangle \langle 2, 1, 2 \rangle = \langle 1, , 2 \rangle$$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

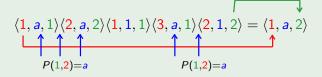
Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

Example



Theorem

Pletscheva, VV (2005) $TERM-EQ(S_P)$ is coNP-complete

Example

$$Z_2 = \langle a \rangle$$

$$P := \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

where $\Lambda = I = \{1, 2, 3\}$

Example



Theorem

Goldberg, VV (2005) $TERM-EQ(S_P)$ is coNP-complete

Fact

Fact

$$\begin{pmatrix} 0 & g \\ h & k \end{pmatrix}$$

Fact

$$\begin{pmatrix} 0 & g \\ 1 & k \end{pmatrix} \leftarrow g^{-1}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix} \leftarrow k^{-1}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & g_1 & g_2 \\ g_4 & 0 & g_3 \\ g_5 & g_6 & 0 \end{pmatrix}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & g_1 & g_2 \\ g_4' & 0 & g_3 \\ 1 & g_6 & 0 \end{pmatrix} \leftarrow g_4'^{-1}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

```
\begin{array}{ccc} & g_3'^- \\ \downarrow \\ \begin{pmatrix} 0 & g_1 & g_2 \\ 1 & 0 & g_3' \\ 1 & g_6 & 0 \end{pmatrix} \end{array}
```

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & g_1 & g_2' \\ 1 & 0 & 1 \\ 1 & g_6 & 0 \end{pmatrix} \leftarrow g_2'^{-1}$$

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

```
\begin{array}{ccc} g_6^{-1} \\ \downarrow \\ \begin{pmatrix} 0 & g_1 & 1 \\ 1 & 0 & 1 \\ 1 & g_6 & 0 \end{pmatrix}
```

Fact

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$egin{pmatrix} 0 & g & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$$

Translating to Graphs

For the semigroup S_P we define a bipartite graph:

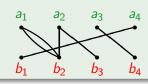
$$P = \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Translating to Graphs

For the semigroup S_P we define a bipartite graph:

$$P = \begin{pmatrix} 0 & a & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$t = x_1 x_2^2 x_3 x_4 x_1 x_2$$



2HOM(*H*)

2HOM(*H*)

• Given: *H* a finite bipartite graph

2HOM(*H*)

- ullet Given: H a finite bipartite graph
- ullet Input: G a finite bipartite graph

2HOM(H)

- Given: H a finite bipartite graph
- Input: G a finite bipartite graph
- Question: $\forall \varphi: G \to H$ homomorfism $2 \mid |\varphi^{-1}(e)|$

2HOM(H)

- Given: H a finite bipartite graph
- Input: G a finite bipartite graph
- ullet Question: $orall arphi: extit{G}
 ightarrow extit{H}$ homomorfism $2 \, ig| \, |arphi^{-1}(e)|$

Lemmata

2HOM(*H*)

- Given: H a finite bipartite graph
- Input: G a finite bipartite graph
- Question: $\forall \varphi: G \to H$ homomorfism $2 \mid |\varphi^{-1}(e)|$

Lemmata

• 2HOM() poly \iff TERM-EQ(S_P)

2HOM(*H*)

- Given: H a finite bipartite graph
- Input: G a finite bipartite graph
- Question: $\forall \varphi: G \to H$ homomorfism $2 \mid |\varphi^{-1}(e)|$

Lemmata

- $2HOM(\cancel{X}) \iff TERM-EQ(S_P)$
- 2HOM(M) coNP-complete.

2HOM(*H*)

- Given: H a finite bipartite graph
- Input: G a finite bipartite graph
- ullet Question: $orall arphi: extit{G}
 ightarrow extit{H}$ homomorfism $2 \, ig| \, |arphi^{-1}(e)|$

Lemmata

- $2HOM(\cancel{X}) \iff TERM-EQ(S_P)$
- 2HOM(**)** coNP-complete.

Theorem

Goldberg, VV

TERM-EQ(S_P) is coNP-complete.

Results – Rings

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

Results – Rings

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

• in P, if the ring is nilpotent,

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

- in P, if the ring is nilpotent,
- coNP-complete otherwise.

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

- in P, if the ring is nilpotent,
- coNP-complete otherwise.

Theorem

Burris, Lawrence (1993)

For a finite ring the equivalence problem is

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

- in P, if the ring is nilpotent,
- coNP-complete otherwise.

Theorem

Burris, Lawrence (1993)

For a finite ring the equivalence problem is

• in P, if the ring is nilpotent,

Theorem

Hunt, Stearnes (1990)

For a finite commutative ring the equivalence problem is

- in P, if the ring is nilpotent,
- coNP-complete otherwise.

Theorem

Burris, Lawrence (1993)

For a finite ring the equivalence problem is

- in P, if the ring is nilpotent,
- is coNP-complete otherwise.

Example

 $\bullet \ \mathbb{Z}_2$ is a Boolean ring:

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element

- $\bullet \ \mathbb{Z}_2$ is a Boolean ring:
 - identity element
 - $x^2 = x^2$

- $\bullet \ \mathbb{Z}_2$ is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$
 - $x \lor y \leftrightarrow x + y + xy$

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$
 - $\bullet \ \ x \lor y \leftrightarrow x + y + xy$
 - $\bar{x} \leftrightarrow 1 + x$

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$
 - $x \lor y \leftrightarrow x + y + xy$
 - $\bar{x} \leftrightarrow 1 + x$
- 3-SAT can be formulated:

- ullet \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$
 - $x \lor y \leftrightarrow x + y + xy$
 - $\bar{x} \leftrightarrow 1 + x$
- 3-SAT can be formulated:
- $\bullet \ (x_1 \lor x_2 \lor \bar{x_3}) \land \cdots \land (x_{n_1} \lor x_{n_2} \lor x_{n_3}) \rightsquigarrow$

- \mathbb{Z}_2 is a Boolean ring:
 - identity element
 - $x^2 = x$
- form a Boolean algebra:
 - $x \wedge y \leftrightarrow x \cdot y$
 - $x \lor y \leftrightarrow x + y + xy$
 - $\bar{x} \leftrightarrow 1 + x$
- 3-SAT can be formulated:
- $(x_1 \lor x_2 \lor \bar{x_3}) \land \cdots \land (x_{n_1} \lor x_{n_2} \lor x_{n_3}) \rightsquigarrow$
- $\bullet ((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2)) \cdots$

$$((x_1+x_2+x_1x_2)+(1+x_3)+(1+x_3)(x_1+x_2+x_1x_2))(x_5+x_2\cdots)\cdots$$

$$((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2))(x_5 + x_2 \cdots)\cdots$$

 $\mathsf{expand} \Rightarrow \mathsf{exponentially} \ \mathsf{many} \ \mathsf{monoms}$

$$((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2))(x_5 + x_2 \cdots)\cdots$$

expand \Rightarrow exponentially many monoms

Restriction for TERMS

$$((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2))(x_5 + x_2 \cdots)\cdots$$

 $\mathsf{expand} \Rightarrow \mathsf{exponentially} \ \mathsf{many} \ \mathsf{monoms}$

Restriction for TERMS

any

$$((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2))(x_5 + x_2 \cdots)\cdots$$

 $\mathsf{expand} \Rightarrow \mathsf{exponentially} \ \mathsf{many} \ \mathsf{monoms}$

Restriction for TERMS

- any
- TERM_{Σ} (sum of monomials) $x_1x_2^3x_3 + x_1 + x_2x_1x_3 + x_{19}$ TERM_{Σ}-EQ(\mathcal{R}) problem

$$((x_1 + x_2 + x_1x_2) + (1 + x_3) + (1 + x_3)(x_1 + x_2 + x_1x_2))(x_5 + x_2 \cdots)\cdots$$

expand \Rightarrow exponentially many monoms

Restriction for TERMS

- any
- TERM $_{\Sigma}$ (sum of monomials) $x_1x_2^3x_3 + x_1 + x_2x_1x_3 + x_{19}$ TERM $_{\Sigma}$ -EQ(\mathcal{R}) problem
- monomial
 just in the multiplicative semigroup TERM-EQ problem for the
 multiplicative semigroup

Theorem

Lawrence, Willard (1997), Szabó, VV (2004) The $_{\Sigma}$ -version of the equivalence problem is

Theorem

Lawrence, Willard (1997), Szabó, VV (2004)

The $_{\Sigma}\text{-version}$ of the equivalence problem is

• in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative.

Theorem

Lawrence, Willard (1997), Szabó, VV (2004)

The Σ -version of the equivalence problem is

- in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative.
- If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple non-commutative matrix ring, then $TERM_{\Sigma}$ - $EQ(\mathcal{R})$ is coNP-complete.

Theorem

Lawrence, Willard (1997), Szabó, VV (2004)

The Σ -version of the equivalence problem is

- in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative.
- If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple non-commutative matrix ring, then $TERM_{\Sigma}$ - $EQ(\mathcal{R})$ is coNP-complete.

Theorem

Szabó, VV (2004)

The Σ -version of the equivalence problem is

Theorem

Lawrence, Willard (1997), Szabó, VV (2004)

The Σ -version of the equivalence problem is

- in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative.
- If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple non-commutative matrix ring, then $TERM_{\Sigma}$ - $EQ(\mathcal{R})$ is coNP-complete.

Theorem

Szabó, VV (2004)

The Σ -version of the equivalence problem is

• in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative;

Theorem

Lawrence, Willard (1997), Szabó, VV (2004)

The Σ -version of the equivalence problem is

- in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative.
- If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple non-commutative matrix ring, then $TERM_{\Sigma}$ - $EQ(\mathcal{R})$ is coNP-complete.

Theorem

Szabó, VV (2004)

The Σ -version of the equivalence problem is

- in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative;
- coNP-complete otherwise.

Search for a big N such that

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

• $\exists B \in \mathrm{SL}_n(q)$ with $B^N \neq 1$.

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

• $\exists B \in \mathrm{SL}_n(q)$ with $B^N \neq 1$.

Zsigmondy's Theorem

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

• $\exists B \in \mathrm{SL}_n(q)$ with $B^N \neq 1$.

Zsigmondy's Theorem

•
$$p | a^n - 1$$

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

• $\exists B \in \mathrm{SL}_n(q)$ with $B^N \neq 1$.

Zsigmondy's Theorem

- $p | a^n 1$
- $p \nmid a^i 1$, 0 < i < n

Search for a big N such that

• for every non invertible matrix $A \in M_n(\mathbb{F})$: A^N is idempotent

Everything can disappear!!

• $\exists B \in \mathrm{SL}_n(q)$ with $B^N \neq 1$.

Zsigmondy's Theorem

- $p | a^n 1$
- $p \nmid a^i 1$, 0 < i < n
- p ∤ n

Theorem

Horváth, Mérai, Lawrence, Szabó TERM-EQ is coNP-complete for nonsolvable groups.

Step 2. – Reduction to the Group case

Theorem

Horváth, Mérai, Lawrence, Szabó TERM-EQ is coNP-complete for nonsolvable groups. (Gabor Horváth's talk)

Step 2. – Reduction to the Group case

Theorem

Horváth, Mérai, Lawrence, Szabó TERM-EQ is coNP-complete for nonsolvable groups. (Gabor Horváth's talk)

 \rightsquigarrow w a term that proves the coNP-completeness for $GL_n(q)$

Step 2. – Reduction to the Group case

Theorem

Horváth, Mérai, Lawrence, Szabó TERM-EQ is coNP-complete for nonsolvable groups. (Gabor Horváth's talk)

 \rightsquigarrow w a term that proves the coNP-completeness for $GL_n(q)$ w^N will be a proof for $M_n(q)$

Find a polinomial f such that

Find a polinomial f such that

• f(A) = 0 in most of the coordinates but

Find a polinomial f such that

- f(A) = 0 in most of the coordinates but
- $\exists B \in \mathrm{SL}_n(\mathbb{F})$ such that $f(B) \in \mathrm{GL}_n(\mathbb{F})$ for one coordinate

Find a polinomial f such that

- f(A) = 0 in most of the coordinates but
- ullet $\exists B \in \mathrm{SL}_n(\mathbb{F})$ such that $f(B) \in \mathrm{GL}_n(\mathbb{F})$ for one coordinate

Hilbert Theorem 90's

There exist an element of norm 1 in \mathbb{F}_p^{α} over \mathbb{F}_p .

Fact

 ${\mathcal R}$ a finite ring , ${\mathcal J}({\mathcal R})$ its Jacobson-radical then

Fact

 ${\cal R}$ a finite ring ,

 $\mathcal{J}(\mathcal{R})$ its Jacobson-radical then

 $\bullet \ \mathcal{R}/\mathcal{J}(\mathcal{R}) = \textit{M}_{\textit{n}_{1}}(\mathbb{F}_{1}) \oplus \cdots \oplus \textit{M}_{\textit{n}_{k}}(\mathbb{F}_{k})$

Fact

 ${\cal R}$ a finite ring ,

$$\mathcal{J}(\mathcal{R})$$
 its Jacobson-radical then

- $\mathcal{R}/\mathcal{J}(\mathcal{R}) = M_{n_1}(\mathbb{F}_1) \oplus \cdots \oplus M_{n_k}(\mathbb{F}_k)$
- $\mathcal{J}(\mathcal{R})$ is nilpotent, i.e. $\mathcal{J}(\mathcal{R})^n=0$

Fact

 ${\mathcal R}$ a finite ring ,

$$\mathcal{J}(\mathcal{R})$$
 its Jacobson-radical then

- $\mathcal{R}/\mathcal{J}(\mathcal{R}) = M_{n_1}(\mathbb{F}_1) \oplus \cdots \oplus M_{n_k}(\mathbb{F}_k)$
- $\mathcal{J}(\mathcal{R})$ is nilpotent, i.e. $\mathcal{J}(\mathcal{R})^n = 0$

w is a word that proves coNP-completeness for $M_{n_1}(\mathbb{F}_1) \oplus \cdots \oplus M_{n_k}(\mathbb{F}_k)$ then w^n proves the coNP-completeness for \mathcal{R}

Rings

Rings

 $\sqrt{\text{(Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard)}}$

Rings

 $\sqrt{\text{(Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard)}}$

Groups

nilpotent √ (Goldmann,Russel)

Rings

√ (Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard)

- nilpotent √ (Goldmann,Russel)

Rings

√ (Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard)

- nilpotent √ (Goldmann,Russel)
- metacyclic groups √ (Horváth, Szabó)

Rings

√ (Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard)

- nilpotent √ (Goldmann,Russel)
- metacyclic groups √ (Horváth, Szabó)
- \circ S_4 ?

Rings

```
√ (Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard )
```

- nilpotent √ (Goldmann,Russel)
- metacyclic groups √ (Horváth, Szabó)
- S₄ ?
- •

Rings

```
√ (Burris, Hunt, Lawrence, Stearnes, Szabó, VV, Willard )
```

Groups

- nilpotent √ (Goldmann,Russel)
- metacyclic groups √ (Horváth, Szabó)
- S₄ ?
- . . .

Semigroups

Semigroups

Semigroups

ullet with constants (polynomials) \equiv CSP

Semigroups

ullet with constants (polynomials) \equiv CSP

Theorem

Semigroups

ullet with constants (polynomials) \equiv CSP

Theorem

For any $CSP(B) \exists$ a combinatorial 0-simple semigroup S such that: $POL\text{-}EQ(S) \equiv CSP(B)$

 \bullet unfortunately $\mathrm{TERM\text{-}EQ}$ is in P for these structures (Seif, Szabó)

Semigroups

ullet with constants (polynomials) \equiv CSP

Theorem

- \bullet unfortunately $\mathrm{TERM\text{-}EQ}$ is in P for these structures (Seif, Szabó)
- 0-simple semigroups

Semigroups

ullet with constants (polynomials) \equiv CSP

Theorem

- \bullet unfortunately $\mathrm{TERM\text{-}EQ}$ is in P for these structures (Seif, Szabó)
- 0-simple semigroups
 - $S_P \checkmark (Goldberg, VV)$

Semigroups

with constants (polynomials) ≡ CSP

Theorem

- unfortunately TERM-EQ is in P for these structures (Seif, Szabó)
- 0-simple semigroups
 - $S_P \checkmark (Goldberg, VV)$
 - Hope: For any $CSP(B) \exists$ a 0-simple semigroup S such that: $POL\text{-}EQ(S) \equiv CSP(B)$?

Semigroups

with constants (polynomials) ≡ CSP

Theorem

- unfortunately TERM-EQ is in P for these structures (Seif, Szabó)
- 0-simple semigroups
 - $S_P \checkmark (Goldberg, VV)$
 - Hope: For any $CSP(B) \exists$ a 0-simple semigroup S such that: $POL\text{-}EQ(S) \equiv CSP(B)$?
- NP-complete for bands √ (Klima)

Semigroups

with constants (polynomials) ≡ CSP

Theorem

- unfortunately TERM-EQ is in P for these structures (Seif, Szabó)
- 0-simple semigroups
 - S_P [√] (Goldberg, VV)
 - Hope: For any $CSP(B) \exists$ a 0-simple semigroup S such that: $POL\text{-}EQ(S) \equiv CSP(B)$?
- NP-complete for bands √ (Klima)
- NP-complete for the Brandt monoid √ (Klima, Seif)

Semigroups

with constants (polynomials) ≡ CSP

Theorem

- unfortunately TERM-EQ is in P for these structures (Seif, Szabó)
- 0-simple semigroups
 - $S_P \checkmark (Goldberg, VV)$
 - Hope: For any CSP(B) \exists a 0-simple semigroup S such that: POL-EQ(S) \equiv CSP(B) ?
- NP-complete for bands √ (Klima)
- NP-complete for the Brandt monoid √ (Klima, Seif)
- Combinatorial semigroups ?

Vége = The End

What about your favorite structure?