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i
Syracuse, meantime

The Computer Scientist showed that this problem traces back to
equivalences of terms over commutative rings.
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Montreal, Brno, Ekaterinburg

@ Syntactic Monoids

@ recognition of formal languages

It was Shown that this problem traces back to equivalences of terms over
monoids.
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Let A be an algebra and let t and s be two terms over A.

@ We say that t and s are equivalent over A if t(3) = s(3) for every
substitution 2 € A

v

Example

? .
o xP=xinZ,

@ Yes, Fermat's theorem

<

Example

o AB = BA over M,(F)

e No, M,(F) is not commutative




Some Definitions an Examples




Some Definitions an Examples

o [(AB — BA)% C] = 0 over M(F)




Some Definitions an Examples

o [(AB — BA)% C] = 0 over M(F)
o Yes, tr(AB — BA) = 0 = (AB — BA)? is scalar matrix,
hence commutes with C.




Some Definitions an Examples

o [(AB — BAY, C] = 0 over My(F)
o Yes, tr(AB — BA) = 0 = (AB — BA)? is scalar matrix,
hence commutes with C.

Example




Some Definitions an Examples

o [(AB — BAY, C] = 0 over My(F)
o Yes, tr(AB — BA) = 0 = (AB — BA)? is scalar matrix,
hence commutes with C.

o [[x,y], [x, z]]? < 1 over Sy




Some Definitions an Examples

o [(AB — BAY, C] = 0 over My(F)
o Yes, tr(AB — BA) = 0 = (AB — BA)? is scalar matrix,
hence commutes with C.

o [[x,y], [x, z]]? < 1 over Sy

o Yes, [x,y] € As = [[x,y],[x,z]] € A}
Aﬁl ~ 22 X ZQ
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The Equivalence Problem

Definition
TERM-EQ(A)

@ Let A be an algebra
@ Input: t and s two terms over A

@ Question: are t and s equivalent over A

Always decidable: check every substitution J

@ What is the complexity of TERM-EQ?

@ Always in coNP.

@ What is the complexity of the problem for certain class of structures?
@ Goal: Prove dichotomy: TERM-EQ is either in P or coNP-complete
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For nilpotent groups TERM-EQ is in P.

Theorem

Horvath, Mérai, Lawrence, Szabé (2005)
TERM-EQ is coNP-complete for non-solvable groups.

| A

Theorem

Horvath, Szabé (2003)
TERM-EQ is in P for metacyclic groups (semidirect product of cyclic

groups).

| \
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@ Volkov, Popov (2002) #elements ~ 21700
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. (=PoP2PL )= PoPsPy
Pj = ab15+fa2, 0<,<14 —=PyPrP; V=PPsP1 A= PyPsP1
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| A
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(V1A VoA - - /\Vk), where V; € {0, 1,0, —\1}

WivWaV - - - VW), where W; is defined by the previous forms

Relations

| \

U = W, whenever U, W is not an expression
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Volkov's Example

Need to be checked

@ does not collapse
o finite

@ size &~ 21700

SAT can be formulated J
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Results — Semigroups

Seif, Szabé (2001)
TERM-EQ is P for combinatorial 0-simple semigroups.

Is there any semigroup with coNP-complete TERM-EQ? )

Volkov, Popov (2002) #elements ~ 21700
Kisielewicz (2002) few thousand

Szabé, VV (2002) 13

Klima (2003) 6

for every at most 5 element monoid the problem is in P

o for almost every at most 6 element monoid the problem is in P
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@ M — a 0-1 matrix.
@ A\ — the index set of rows

@ | — the index set of columns

Underlying set

<

Sm={{i,\):iel,xeAN}uU{0}

Multiplication:

i), if M(),J) =1

AV T
(i Ay ) = { 0, it M(\,j) =0

and
0-s=0=s-0 Vs € Sm

\
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Translating to Graphs

@ t=Xx13---X, aterm

@ X :={xq,...,x,} the set of variables in t
o Define Gt(At, Bt7 Et)
where

o Ar ={a«|xe X}
("] Btz{bX|X€X}
@ (ax, b)) € E; <= xy is subword of t

4
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Evaluating Terms

t=X1:Xpn, X = {Xla"'7Xn} ~ Gt(AtthaEt)
Ar = {ax | x € X},

B: = {bx | x € X} and

(ax, by) € E; <= xy is subword of t

for an evaluation X — Sa \ {0}, xj = (i, \j)

Gt =X ac— A\ b i ifx = (i, )) |

0 t(3d) #0 —= G; H)%is a homomorphism;
o If #£0, then t(3) = (i1, \,)
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Let us consider an evaluation X — Sa \ {0}, then t(3) = s(3) iff:

o G; —>>$<is a homomorphism < G, —>>$<is a homomorphism;
o if e(t) # 0 and e(s) # 0, then iy, =iy, and A\, =\,

v

t = s if and only if:
o G; = Gs; and

@ x1 =y and Xp, = ym

Seif, Szabé (2001) TERM-EQ(Sa) € P
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0-simple semigroups

G finite group
M - G U {0} matrix.

A — the index set of rows

| — the index set of columns

Underlying set

| A

Sm:={(i,g,\):iel,ge G, e NU{0}

<”g’A><”h””‘>_{ 0, if M(\, /) =0

and
0-s=0=s-0 Vs € Sm
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0 a 1 L=
1 1 0 1 2 3 |

t= X1X22X3X4X1X2

X1 X0 X3 X4
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The Equivalaence Problem over Sp

e Given: H a finite bipartite graph
@ Input: G a finite bipartite graph

@ Question: Yy : G — H homomorfism 2| o=1(e)|

v

Lemmata
poly
° 2HOM<>$<> < TERM-EQ(Sp)

° 2HOM<>K> coNP-complete.

v

Theorem

Goldberg,VV
TERM-EQ(Sp) is coNP-complete.
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Theorem

Burris, Lawrence (1993)
For a finite ring the equivalence problem is

@ in P, if the ring is nilpotent,

@ is coNP-complete otherwise.
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Example

@ 7y is a Boolean ring:

e identity element

(] X2:X

@ form a Boolean algebra:
O XAy < Xx-y
o XVy < X+y-+xy
o X —1+4x

@ 3-SAT can be formulated:
@ (X1 VxoVRB)A - A(Xny V Xnp V Xng) ~>
o ((xa+x2+x1x)+ (1+x3)+ (1+x3)(x1 + x2 + x1x2)) - -~
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Different approaches of the Equivalence Problem over Rings

(O +x2 + xx2) + (14 x3) + (1 + x3) (1 + X2 +x10)) (X6 +x2---) -~ |

expand = exponentially many monoms J

Restriction for TERMS

@ any

o TERM;y (sum of monomials)
X1X§’X3 + x1 + xox1X3 + X19
TERMy-EQ(R) problem

@ monomial

just in the multiplicative semigroup TERM-EQ problem for the
multiplicative semigroup
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The s-version of the equivalence problem is

e in PifR/J(R) is commutative.

o If R = M,(F) is a finite simple non-commutative matrix ring, then
TERMs-EQ(R) is coNP-complete.

Szabs, VV (2004)
The s -version of the equivalence problem is

e in PifR/J(R) is commutative;

@ colNP-complete otherwise.
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Step 1. — Reduction to the Group case

Search for a big N such that

o for every non invertible matrix A € M,(F) : AN is idempotent
Everything can disappear!!

o 3B € SL,(q) with BN # 1.

Zsigmondy's Theorem

For almost all 1 < a, n € Z there exists a prime p such that:
epla—1
e pta —1, 0<i<n
e ptn
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Theorem

Horvath, Mérai, Lawrence, Szabé
TERM-EQ is coNP-complete for nonsolvable groups.
(Gabor Horvath's talk)

~> w a term that proves the coNP-completeness for GL,(q)
wN will be a proof for M,(q)
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Step 3. — Direct Sum of Matrix Rings

Find a polinomial f such that
e f(A) =0 in most of the coordinates but
e 1B € SL,(F) such that f(B) € GL,(F) for one coordinate

Hilbert Theorem 90's
There exist an element of norm 1 in 5 over .
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Step 4. — From Direct Sum of Matrix Rings to Rings

R a finite ring ,
J(R) its Jacobson-radical then

® R/T(R) = My (F1) @ --- & My, (Fr)
e J(R) is nilpotent, i.e. 7(R)" =0

w is a word that proves coNP-completeness for My, (F1) @ --- & M, (Fi)
then
w" proves the coNP-completeness for R
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Groups
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@ with constants (polynomials) = CSP

For any CSP(B) 3 a combinatorial 0-simple semigroup S such that:
POL-EQ(S) = CSP(B)

o unfortunately TERM-EQ is in P for these structures (Seif, Szabo)
@ 0-simple semigroups

o Sp V (Goldberg, WV)
o Hope: For any CSP(B) 3 a 0-simple semigroup S such that:
POL-EQ(S) = CSP(B) ?

NP-complete for bands % (Klima)

NP-complete for the Brandt monoid % (Klima, Seif)

e Combinatorial semigroups ?




Vége = The End

What about your favorite structure? J
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