The free spectra of semigroups (Part I)

Gabriella Pluhár

ELTE, Hungary

17th July 2007

Gabriella Pluhár The free spectra of band varieties

(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the size of the free group generated by n elements in the variety generated by G is

- exponential in n, if G is nilpotent,
- double exponential, if G is not nilpotent.

(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the size of the free group generated by n elements in the variety generated by G is

- exponential in *n*, if *G* is nilpotent,
- double exponential, if G is not nilpotent.

(D. Hobby, R. McKenzie (1988)) If \mathcal{V} is a nontrivial locally finite congruence distributive variety, then for every c such that 0 < c < 1 and for every large n

$$2^{2^{cn}} \leq |\mathbf{F}_{\mathcal{V}}(n)|$$

(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the size of the free group generated by n elements in the variety generated by G is

- exponential in *n*, if *G* is nilpotent,
- double exponential, if G is not nilpotent.

(D. Hobby, R. McKenzie (1988)) If \mathcal{V} is a nontrivial locally finite congruence distributive variety, then for every c such that 0 < c < 1 and for every large n

 $2^{2^{cn}} \leq |\mathbf{F}_{\mathcal{V}}(n)|$

Aim

To find similar structure theorems for other classes of algebras.

The free spectrum of the \mathcal{V} variety ($|\mathbf{F}_{\mathcal{V}}(n)|$ (n = 0, 1, 2, ...) sequence): • the size of the free algebra generated by n elements

- the size of the free algebra generated by *n* elements
- the number of different *n*-ary terms

- the size of the free algebra generated by *n* elements
- the number of different *n*-ary terms

- the size of the free algebra generated by *n* elements
- the number of different *n*-ary terms

```
• Vector space over Z_p:
terms: \sum \lambda_i x_i,
|\mathbf{F}_{\mathcal{V}}(n)| = p^n
```

- the size of the free algebra generated by *n* elements
- the number of different *n*-ary terms

A algebra, if $|\mathbf{A}| = k > 1$, then

 $n \leq |\mathbf{F}_{\mathcal{V}(\mathcal{A})}(n)| \leq k^{k^n}$

A algebra, if $|\mathbf{A}| = k > 1$, then

$$n \leq |\mathbf{F}_{\mathcal{V}(\mathcal{A})}(n)| \leq k^{k^n}$$

n: the number of projections k^{k^n} : the number of functions

Known spectra

polynomial

exponential

double exponential

polynomial nothing in between (gap theorem) exponential

double exponential

polynomial nothing in between (gap theorem) exponential

double exponential

polynomial nothing in between (gap theorem)	
exponential	Then: <i>G</i> is nilpotent
double exponential	G is not nilpotent

The free spectra of semigroups

Simple semigroups

Will be discussed by Kamilla Kátai!

p_n sequence

Let $t = t(x_1, ..., x_n)$ be an *n*-ary term. A term operation t^A is said to be essentially n-ary, if it depends on all of its variables, i.e. if for all $1 \le i \le n$ there exist $a_1, ..., a_{i-1}, a, b, a_{i+1}, ..., a_n \in A$ such that

 $t(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n)\neq t(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n).$

p_n sequence

Let $t = t(x_1, ..., x_n)$ be an *n*-ary term. A term operation $t^{\mathbf{A}}$ is said to be essentially n-ary, if it depends on all of its variables, i.e. if for all $1 \le i \le n$ there exist $a_1, ..., a_{i-1}, a, b, a_{i+1}, ..., a_n \in A$ such that

 $t(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n)\neq t(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n).$

 $p_n(\mathbf{A})$: the number of essentially *n*-ary terms over **A**

p_n sequence

Let $t = t(x_1, ..., x_n)$ be an *n*-ary term. A term operation t^A is said to be essentially n-ary, if it depends on all of its variables, i.e. if for all $1 \le i \le n$ there exist $a_1, ..., a_{i-1}, a, b, a_{i+1}, ..., a_n \in A$ such that

$$t(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n)\neq t(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n).$$

 $p_n(\mathbf{A})$: the number of essentially *n*-ary terms over **A**

$$|\mathbf{F}_{\mathcal{V}}(n)| = \sum_{k=0}^{n} \binom{n}{k} p_{k}(\mathbf{A})$$

Examples

Gabriella Pluhár The free spectra of band varieties

• semilattice
$$(xy = yx)$$
,

- semilattice (xy = yx),
- left-zero semigroup (xy = x),

- semilattice (xy = yx),
- left-zero semigroup (xy = x),
- adding a formal identity element to a band we get another band

Birjukov, Fennemore, Gerhard (1970-71)

The description of the lattice of the band varieties:

Birjukov, Fennemore, Gerhard (1970-71)

The description of the lattice of the band varieties:

Birjukov, Fennemore, Gerhard (1970-71)

The description of the lattice of the band varieties:

- ▶ with relations,
- with identities,
- ▶ with generating semigroups

The lattice

With generating algebras

 \textbf{A}_i and \textbf{B}_i are the generating algebras. $\textbf{B}_i = \textbf{A}_i \cup \{1\}$ and $|\textbf{A}_i| = \frac{n^2 + n - 2}{2}$

With equations

Each variety can be defined with a single equation additionally to x(yz) = (xy)z and $x^2 = x$.

With relations

The free spectra of band varieties

• semilattices: xy = yx; $|\mathbf{F}_{\mathcal{V}}(n)| = 2^n - 1$, set of variables

- semilattices: xy = yx; $|\mathbf{F}_{\mathcal{V}}(n)| = 2^n 1$, set of variables
- left-zero semigroups: xy = x; $|\mathbf{F}_{\mathcal{V}}(n)| = n$, first variable

- semilattices: xy = yx; $|\mathbf{F}_{\mathcal{V}}(n)| = 2^n 1$, set of variables
- left-zero semigroups: xy = x; $|\mathbf{F}_{\mathcal{V}}(n)| = n$, first variable
- left-normal bands: xyz = xzy; $|\mathbf{F}_{\mathcal{V}}(n)| = n2^{n-1}$, first variable and set of variables

- semilattices: xy = yx; $|\mathbf{F}_{\mathcal{V}}(n)| = 2^n 1$, set of variables
- left-zero semigroups: xy = x; $|\mathbf{F}_{\mathcal{V}}(n)| = n$, first variable
- left-normal bands: xyz = xzy; $|\mathbf{F}_{\mathcal{V}}(n)| = n2^{n-1}$, first variable and set of variables
- rectengular bands: xyz = xz; $|\mathbf{F}_{\mathcal{V}}(n)| = n^2$, first and last variables

The lattice

$$p_n(\mathcal{V}) = \sqrt{p_n(\overline{\mathcal{V}})p_n(\underline{\mathcal{V}})}$$

The free spectra of band varieties

Gerhard

Gabriella Pluhár The free spectra of band varieties

•
$$p_n(k) = n^2 p_{k-2}^2(\infty) \prod_{j=k-1}^{n-1} j^2 p_j(k-1), \ n \ge k \text{ and } k \ge 4,$$

- $p_n(k) = n^2 p_{k-2}^2(\infty) \prod_{j=k-1}^{n-1} j^2 p_j(k-1), \ n \ge k \text{ and } k \ge 4,$
- $p_n(\infty) = n^2 p_{n-1}^2(\infty)$

•
$$p_n(k) = n^2 p_{k-2}^2(\infty) \prod_{j=k-1}^{n-1} j^2 p_j(k-1), \ n \ge k \text{ and } k \ge 4,$$

• $p_n(\infty) = n^2 n^2$ (∞)

• $p_n(\infty) = n^2 p_{n-1}^2(\infty)$

Our recurrence formula

$${m p}_n(k)={\it n}^2{m p}_{n-1}(k){m p}_{n-1}(k-1)$$
, $n\ge 1$ and $k\ge 4$

•
$$p_n(k) = n^2 p_{k-2}^2(\infty) \prod_{j=k-1}^{n-1} j^2 p_j(k-1), n \ge k \text{ and } k \ge 4,$$

• $p_n(\infty) = n^2 p_{n-1}^2(\infty)$

Our recurrence formula $p_n(k) = n^2 p_{n-1}(k) p_{n-1}(k-1)$, $n \ge 1$ and $k \ge 4$

The logarithm of $p_n(k)$ log $p_n(k) = \log p_{n-1}(k) + \log p_{n-1}(k-1) + 2\log n, n \ge 1$ and $k \ge 4$

The logarithm of $p_n(k)$

 $\log p_n(k) = \log p_{n-1}(k) + \log p_{n-1}(k-1) + 2 \log n, \ n \ge 1 \text{ and } k \ge 4$

The logarithm of $p_n(k)$

 $\log p_n(k) = \log p_{n-1}(k) + \log p_{n-1}(k-1) + 2\log n, \ n \ge 1 \ \text{and} \ k \ge 4$

The initial values

 $\log p_n(3) = 2 \log n,$ $\log p_1(k) = 0$

Closed form

Explicit form for $p_n(k)$

$$\log p_n(k) = 4 \sum_{m=1}^n \sum_{t=0}^{k-4} \binom{n-m-1}{t} \log m + 2 \log n$$

Explicit form for $p_n(k)$

$$\log p_n(k) = 4 \sum_{m=1}^n \sum_{t=0}^{k-4} \binom{n-m-1}{t} \log m + 2 \log n$$

$$\log p_n(k) = \frac{4}{(k-3)!} n^{k-3} \log n - \frac{4}{(k-3)!} n^{k-3} \sum_{j=1}^{k-3} \frac{1}{j} + O(n^{k-4} \log n)$$

Free spectrum (J. Wood, G. Pluhár)

$$\log |\mathbf{F}_k(n)| = \frac{4}{(k-3)!} n^{k-3} \log n - \frac{4}{(k-3)!} n^{k-3} \sum_{j=1}^{k-3} \frac{1}{j} + O(n^{k-4} \log n)$$

Recall

$$p_n(\infty) = n^2 p_{n-1}^2(\infty)$$

Recall

$$p_n(\infty) = n^2 p_{n-1}^2(\infty)$$

$$p_n(\infty)$$

$$p_n(\infty) = n!^2(n-1)!^2 \cdots 2!^2 1^2 = n^2(n-1)^{2^2}(n-2)^{2^3} \cdots 2^{2^{n-2}}$$

Recall

$$p_n(\infty) = n^2 p_{n-1}^2(\infty)$$

$p_n(\infty)$

$$p_n(\infty) = n!^2(n-1)!^2 \cdots 2!^2 1^2 = n^2(n-1)^{2^2}(n-2)^{2^3} \cdots 2^{2^{n-2}}$$

$\log p_n(\infty) = 2 \log n + 2^2 \log(n-1) + \ldots + 2^{n-1} \log 2 =$ $= 2^{n+1} \sum_{k=1}^{n} \frac{\log k}{2^k}$

The variety of all bands

$\log p_n(\infty)$ $\log p_n(\infty) = 2^{n+1} \sum_{1}^{n} \frac{\log k}{2^k}$

The variety of all bands

$\log p_n(\infty)$

$$\log p_n(\infty) = 2^{n+1} \sum_{1}^{n} \frac{\log k}{2^k}$$

The constant

$$\lim \sum_{1}^{\infty} \frac{\log k}{2^{k}} = C, \text{ where } e^{C} = \sqrt{2\sqrt{3\sqrt{4\sqrt{5\dots}}}} \sim 1.661687$$

The variety of all bands

 $\log p_n(\infty)$

$$\log p_n(\infty) = 2^{n+1} \sum_{1}^{n} \frac{\log k}{2^k}$$

The constant

$$\lim \sum_{1}^{\infty} \frac{\log k}{2^k} = C, \text{ where } e^C = \sqrt{2\sqrt{3\sqrt{4\sqrt{5\dots}}}} \sim 1.661687$$

Free spectrum (Cs. Szabó, G. Pluhár)
$$|\mathbf{F}_{\mathcal{V}}(n)| \approx p_n(\infty) \sim rac{1}{n^2} (1.661687)^{2^{n+1}}$$

Then: *G* is nilpotent

NEW!!! $2^{n^k \log n}$

double exponential (2^{2^n})

G is not nilpotent

Then: *G* is nilpotent

NEW!!! $2^{n^k \log n}$

double exponential (2^{2^n})

G is not nilpotent

Problems

Then: *G* is nilpotent

NEW!!! $2^{n^k \log n}$

double exponential (2^{2^n})

G is not nilpotent

Problems

• how this new kind of spectrum fits into the picture,

Then: *G* is nilpotent

NEW!!! $2^{n^k \log n}$

double exponential (2^{2^n})

G is not nilpotent

Problems

- how this new kind of spectrum fits into the picture,
- the characterization of the free spectra of semigroup varieties