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(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the
size of the free group generated by n elements in the variety generated by
G is

exponential in n, if G is nilpotent,

double exponential, if G is not nilpotent.

(D. Hobby, R. McKenzie (1988)) If V is a nontrivial locally finite
congruence distributive variety, then for every c such that 0 < c < 1 and
for every large n

22cn ≤ |FV(n)|

Aim

To find similar structure theorems for other classes of algebras.
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Free spectrum

The free spectrum of the V variety (|FV(n)| (n = 0, 1, 2, . . .) sequence):

the size of the free algebra generated by n elements

the number of different n-ary terms

Examples

Vector space over Zp:
terms:

∑
λixi ,

|FV(n)| = pn

Boolean algebra: |FV(n)| = 22n
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Trivial estimate

A algebra, if |A| = k > 1, then

n ≤ |FV(A)(n)| ≤ kkn

n: the number of projections
kkn

: the number of functions
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Known spectra

polynomial

nothing in between (gap theorem)

exponential

double exponential
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Known spectra

polynomial
nothing in between (gap theorem)
exponential Then: G is nilpotent

double exponential G is not nilpotent
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The free spectra of semigroups

Simple semigroups

Will be discussed by Kamilla Kátai!
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pn sequence

Let t = t(x1, . . . , xn) be an n-ary term. A term operation tA is said to be
essentially n-ary, if it depends on all of its variables, i.e. if for all 1 ≤ i ≤ n
there exist a1, . . . , ai−1, a, b, ai+1, . . . , an ∈ A such that

t(a1, . . . , ai−1, a, ai+1, . . . , an) 6= t(a1, . . . , ai−1, b, ai+1, . . . , an).

pn(A): the number of essentially n-ary terms over A

|FV(n)| =
n∑

k=0

(
n

k

)
pk(A)
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Band varieties

Band: idempotent semigroup (x2 = x)

Examples

semilattice (xy = yx),

left-zero semigroup (xy = x),

adding a formal identity element to a band we get another band
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The lattice

Birjukov, Fennemore, Gerhard (1970-71)

The description of the lattice of the band varieties:

I with relations,
I with identities,
I with generating semigroups
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The lattice
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With generating algebras

Ai and Bi are the generating algebras.
Bi = Ai ∪ {1} and |Ai| = n2+n−2
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With equations

Each variety can be defined with a single equation additionally to
x(yz) = (xy)z and x2 = x .
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With relations

���
���

���
�

�
���

���
���

��
���

���
���

���
�

�
���

���
���

���
��

���
���

���
���

���
���

��

��
���

���
���

���
���

���

�
���

���
���

���
���

���
���

���

H
HHH

H HH
HHH

HH
HHH

HHH
HH

HHH
HHH

HHH
HHH

HHH

HH
HHH

HHH
HHH

HHH
H

H
HHH

HHH
HHH

HHH
HHH

HHH
H

HHH
HHH

HHH
HHH

HHH
HHH

HH

HH
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HH

t
t
t
t
t

t t
t
t
t
t
t
t

t
t
t
t
t
t
t
t

t
t
t
t
t
t

t
t
t
t
t

R4, 6R4
∗, 6S4 6R4, R

∗
4, 6S∗

4

S4, R
∗
4 6S∗

4 S∗
4 , R4 6S4

6R4, 6R∗
4

S4, 6R∗
4,

R4, R
∗
4, 6S4, 6S4

∗

S∗
4 , 6R4

1

Gabriella Pluhár The free spectra of band varieties



The free spectra of band varieties

semilattices: xy = yx ; |FV(n)| = 2n − 1,
set of variables

left-zero semigroups: xy = x ; |FV(n)| = n,
first variable

left-normal bands: xyz = xzy ; |FV(n)| = n2n−1,
first variable and set of variables

rectengular bands: xyz = xz ; |FV(n)| = n2,
first and last variables
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The lattice

pn(V) =
√

pn(V)pn(V)
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The free spectra of band varieties

Gerhard

pn(k) = n2p2
k−2(∞)

∏n−1
j=k−1 j2pj(k − 1), n ≥ k and k ≥ 4,

pn(∞) = n2p2
n−1(∞)

Our recurrence formula

pn(k) = n2pn−1(k)pn−1(k − 1), n ≥ 1 and k ≥ 4

The logarithm of pn(k)

log pn(k) = log pn−1(k) + log pn−1(k − 1) + 2 log n, n ≥ 1 and k ≥ 4
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Our recurrence formula

The logarithm of pn(k)

log pn(k) = log pn−1(k) + log pn−1(k − 1) + 2 log n, n ≥ 1 and k ≥ 4

The initial values

log pn(3) = 2 log n,
log p1(k) = 0
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Closed form

Explicit form for pn(k)

log pn(k) = 4
n∑

m=1

k−4∑
t=0

(
n −m − 1

t

)
log m + 2 log n

log pn(k)

log pn(k) =
4

(k − 3)!
nk−3 log n − 4

(k − 3)!
nk−3

k−3∑
j=1

1

j
+ O(nk−4 log n)

Gabriella Pluhár The free spectra of band varieties



Closed form

Explicit form for pn(k)

log pn(k) = 4
n∑

m=1

k−4∑
t=0

(
n −m − 1

t

)
log m + 2 log n

log pn(k)

log pn(k) =
4

(k − 3)!
nk−3 log n − 4

(k − 3)!
nk−3

k−3∑
j=1

1

j
+ O(nk−4 log n)

Gabriella Pluhár The free spectra of band varieties



Free spectra of band varieties

Free spectrum (J. Wood, G. Pluhár)

log |Fk(n)| = 4

(k − 3)!
nk−3 log n − 4

(k − 3)!
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The variety of all bands

Recall

pn(∞) = n2p2
n−1(∞)

pn(∞)

pn(∞) = n!2(n − 1)!2 · · · 2!212 = n2(n − 1)2
2
(n − 2)2

3 · · · 22n−1

log pn(∞)

log pn(∞) = 2 log n + 22 log(n − 1) + . . . + 2n−1 log 2 =

= 2n+1
n∑
1

log k

2k
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The variety of all bands

log pn(∞)

log pn(∞) = 2n+1
n∑
1

log k

2k

The constant

lim
∞∑
1

log k

2k
= C , where eC =

√
2

√
3
√

4
√

5 . . . ∼ 1.661687

Free spectrum (Cs. Szabó, G. Pluhár)

|FV(n)| ≈ pn(∞) ∼ 1

n2
(1.661687)2

n+1
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The spectra

polinomial (nk)
nothing in between (gap theorem)

exponential (2nk
) Then: G is nilpotent

NEW!!! 2nk log n

double exponential (22n
) G is not nilpotent

Problems

how this new kind of spectrum fits into the picture,

the characterization of the free spectra of semigroup varieties
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