Gabriella Pluhar

ELTE, Hungary

17th July 2007



(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the
size of the free group generated by n elements in the variety generated by
Gis

@ exponential in n, if G is nilpotent,

@ double exponential, if G is not nilpotent.
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(D. Hobby, R. McKenzie (1988)) If V is a nontrivial locally finite
congruence distributive variety, then for every ¢ such that 0 < ¢ < 1 and

for every large n
22" < |Fy(n)|
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(G. Higman (1967), P. Neumann (1963)) If G is a finite group, then the
size of the free group generated by n elements in the variety generated by
Gis

@ exponential in n, if G is nilpotent,

@ double exponential, if G is not nilpotent.

(D. Hobby, R. McKenzie (1988)) If V is a nontrivial locally finite
congruence distributive variety, then for every ¢ such that 0 < ¢ < 1 and

for every large n
2*" < |Fy(n)|

Aim J

To find similar structure theorems for other classes of algebras.
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The free spectrum of the V variety (|Fy(n)| (n=0,1,2,...) sequence):
@ the size of the free algebra generated by n elements
@ the number of different n-ary terms

@ Vector space over Zp:
terms: Z AiXi,
[Fv(n)| = p"
@ Boolean algebra: |Fy(n)| = 22"




A algebra, if |A| = k > 1, then

n < [Fyay(n)] < k<




A algebra, if |A| = k > 1, then

n < [Fyay(n)] < k<

n: the number of projections
kk": the number of functions
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polynomial

nothing in between (gap theorem)

exponential Then: G is nilpotent
double exponential G is not nilpotent







Will be discussed by Kamilla Katai! I




Let t = t(x1,...,X,) be an n-ary term. A term operation t* is said to be
essentially n-ary, if it depends on all of its variables, i.e. if forall 1 <i<n
there exist a1, ...,aj—-1,a, b, aj+1,...,a, € A such that

t(ala sy di=1,3,di415- - an) 5& t(ala o0 0 Elimily 12, Aitls- - an)~
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pn(A): the number of essentially n-ary terms over A J




pn sequence

Let t = t(x1,...,x,) be an n-ary term. A term operation t? is said to be

essentially n-ary, if it depends on all of its variables, i.e. if forall 1 </ <n

there exist a1, ...,aj-1,4a, b,ajt1,...,an € A such that

t(al, ey @i-1,8,3i41, -, a,,) =4 t(al, ceya@i—1, by aiv1, ..., a,,).

pn(A): the number of essentially n-ary terms over A

P =3 (§)erca)
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Band: idempotent semigroup (x? = x) J

e semilattice (xy = yx),
o left-zero semigroup (xy = x),

@ adding a formal identity element to a band we get another band




The description of the lattice of the band varieties:
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The description of the lattice of the band varieties:
» with relations,
» with identities,

» with generating semigroups







A; and B; are the generating glgebras.
B; = A; U {1} and |A;| = "~£0=2

V(By)

V(A1)

V(Bs)

V(As)

V(By)




Each variety can be defined with a single equation additionally to
x(yz) = (xy)z and x? = x.
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e semilattices: xy = yx; |Fy(n)] =2" -1,
set of variables

o left-zero semigroups: xy = x; |Fy(n)| = n,
first variable

o left-normal bands: xyz = xzy; |Fy(n)| = n2"71,
first variable and set of variables




The free spectra of band varieties

e semilattices: xy = yx; |Fy(n)|=2"-1,
set of variables

o left-zero semigroups: xy = x; |Fy(n)| = n,
first variable

o left-normal bands: xyz = xzy; |Fy(n)| = n2"71,
first variable and set of variables

e rectengular bands: xyz = xz; |Fy(n)| = n?,
first and last variables
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pn(V) = Pn(V)Pn(Z)







o pn(k) = mp}_o(c0) [/ 1 2pi(k — 1), n > k and k > 4,




e pu(k) = nzpﬁ_z(oo)]_[ _1J pJ(k —1), n>kand k > 4,
o pa(oc) = MR (o)




o pn(k) = n?p}_,(00) Tj4_1/%pi(k — 1), n > k and k > 4,

® pn(c0) = npj_1(0)

pn(k) = n?pp_1(k)pr_1(k — 1), n>1and k>4




o pn(k) = n?p}_,(00) Tj4_1/%pi(k — 1), n > k and k > 4,

® pn(00) = n?p;_y(0)

pn(k) = n?pp_1(k)pr_1(k — 1), n>1and k>4 l

log pn(k) = log pn—1(k) + log pn—1(k — 1) + 2logn, n>1and k > 4
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log pn(3) = 2log n,
log p1(k) =0




n k—4
log pn(k) = 4 (
1t=0

m=

)Iogm—l—2|ogn




n k—4
log pn(k) =4 ( ) logm+ 2log n
m=1 t=0
4 4 1
_ k—3 o k—3 - k—4
log pn(k) = (k_3)!n log n (k_3)!n J;J + O(n"""log n)




k=3
4 _ _ 1 -
log [Fi(n)| = (k_3)!nk log n — (k_3)!nk 3 Elj—i- O(n**log n)
J:

3 4
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pa(s0) = m2p2_, (o) l

pn(00) = n12(n—1)12...21212 = p2(n — 1)¥(n — 2)2* ... 22"

log pn(o0) = 2logn+22log(n — 1) + ...+ 2" 1log2 =




log p(o0) = 2" Z ot




log k

log p(o0) = 2" Z

Iimz logk _ C, where €€ = 1/21/3/4/5... ~ 1.661687
1

2k




log k
log pn(00) = on+1 Z og

lim> " % = C, where € = 1/2/3v/4V5... ~ 1.661687

—
N
—

|Fy(n)| = pn(c0) ~ ?(1.661687)2"“
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polinomial (nk)
nothing in between (gap theorem)
exponential (2"k) Then: G is nilpotent

NEW!! 27 logn

double exponential (22") G is not nilpotent

@ how this new kind of spectrum fits into the picture,

@ the characterization of the free spectra of semigroup varieties




