Modes not embeddable into semimodules

Agata Pilitowska

(based on join work with A. Kravchenko, A. Romanowska and D. Stanovský)

Faculty of Mathematics and Information Sciences Warsaw University of Technology

Szeged, July 2007

• commutative cancellative semigroups into commutative groups

- commutative cancellative semigroups into commutative groups
- integral domains into fields

- commutative cancellative semigroups into commutative groups
- integral domains into fields

Theorem (A.I.Mal'cev)

The class of semigroups embeddable into groups is a quasivariety that cannot be defined by finitely may quasi-identities.

A groupoid (G, \cdot) is entropic if it satisfies the following entropic law:

$$(x \cdot y) \cdot (z \cdot w) \approx (x \cdot z) \cdot (y \cdot w).$$

A groupoid (G, \cdot) is entropic if it satisfies the following entropic law:

$$(x \cdot y) \cdot (z \cdot w) \approx (x \cdot z) \cdot (y \cdot w).$$

Theorem (M.Sholander)

Each cancellative entropic groupoid embeds into entropic quasigroup.

Modules and semimodules

Definition

A (commutative) semiring $(S, +, \circ)$:

- (S, +) a commutative semigroup
- (S, \circ) a (commutative) semigroup

•
$$(x+y) \circ z \approx (x \circ z) + (y \circ z)$$

•
$$z \circ (x + y) \approx (z \circ x) + (z \circ y).$$

A semimodule over a semiring $(S, +, \circ)$ - a commutative semigroup (M, +) together with a semiring homomorphism:

$$h: (S, +, \circ) \rightarrow (End(M, +), +, \circ),$$

 $s \mapsto h_s: M \rightarrow M; \quad m \mapsto h_s(m) := sm.$

Modes

Agata Pilitowska Modes not embeddable into semimodules

御下 ・ ヨト ・ ヨト

4

Modes

• entropic (all term operations commute each other)

3

- ∢ ≣ ▶

Modes

- entropic (all term operations commute each other)
- idempotent (each singleton is a subalgebra)

Modes

- entropic (all term operations commute each other)
- idempotent (each singleton is a subalgebra)

Example

Affine spaces - the full idempotent reducts of modules over commutative rings.

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation from the set Ω is a term operation of algebra (A, Γ) .

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation from the set Ω is a term operation of algebra (A, Γ) . A subreduct is a subalgebra of a reduct.

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation from the set Ω is a term operation of algebra (A, Γ) . A subreduct is a subalgebra of a reduct. An algebra (A, Ω) embeds as a subreduct into (B, Γ) if (A, Ω) is isomorphic to some subreduct of (B, Γ) .

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation from the set Ω is a term operation of algebra (A, Γ) . A subreduct is a subalgebra of a reduct. An algebra (A, Ω) embeds as a subreduct into (B, Γ) if (A, Ω) is isomorphic to some subreduct of (B, Γ) .

Example

Idempotent subreducts of semimodules over commutative semirings are modes.

A mode (A, Ω) is cancellative if it satisfies the quasi-identity:

$$f(a_1,\ldots,x_i,\ldots,a_n)=f(a_1,\ldots,y_i,\ldots,a_n) \rightarrow x_i=y_i.$$

for each *n*-ary operation $f \in \Omega$ and each $i = 1, \dots, n$.

A mode (A, Ω) is cancellative if it satisfies the quasi-identity:

$$f(a_1,\ldots,x_i,\ldots,a_n)=f(a_1,\ldots,y_i,\ldots,a_n) \rightarrow x_i=y_i.$$

for each *n*-ary operation $f \in \Omega$ and each $i = 1, \dots, n$.

Theorem (A.Romanowska and J.D.H.Smith)

Each cancellative mode embeds as a subreduct into an affine space.

Each reduct of an affine space is abelian.

Definition

An abelian algebra (A, Ω) :

$$t(a, x_1, \ldots, x_n) = t(a, y_1, \ldots, y_n) \rightarrow$$

$$t(b, x_1, \ldots, x_n) = t(b, y_1, \ldots, y_n).$$

for each Ω -term t.

Not all modes are subreducts of modules

Example

$$(\mathbb{Z}_4, \cdot)$$
 - the reduct of the group $(\mathbb{Z}_4, +_4, -, 0)$, with $x \cdot y := 2y - x$:

•	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	3	1	3

Not all modes are subreducts of modules

Example

$$(\mathbb{Z}_4, \cdot)$$
 - the reduct of the group $(\mathbb{Z}_4, +_4, -, 0)$, with $x \cdot y := 2y - x$:

-

Not all modes are subreducts of modules

Example

$$(\mathbb{Z}_4, \cdot)$$
 - the reduct of the group $(\mathbb{Z}_4, +_4, -, 0)$, with $x \cdot y := 2y - x$:

•	0	1	2	3				1	2
0	Ο	2	Ο	2		·	0	1	<u> </u>
0	0	2	0	2	\rightarrow	0	0	0	0
1	3	1	3	1	h(0) = h(2)	-		1	-
C	2	Δ	2	Δ		T	3	T	T
2	2	U	2	0		3	1	3	3
3	1	3	1	3		5	- -	5	5
	-			2					

The homomorphic image $h(\mathbb{Z}_4, \cdot)$ is not a reduct of any affine space - it is not abelian:

$$0 \cdot 0 = 0 \cdot 1$$
 but $1 \cdot 0 \neq 1 \cdot 1$.

Theorem (J.Ježek and T.Kepka)

Each entropic groupoid embeds into a semimodule over a commutative semiring.

Theorem (J.Ježek and T.Kepka)

Each entropic groupoid embeds into a semimodule over a commutative semiring.

Corollary

Each groupoid mode embeds into a semimodule over a commutative semiring.

A mode is a semilattice mode if it has a binary term operation such that is a semilattice operation.

A mode is a semilattice mode if it has a binary term operation such that is a semilattice operation.

Theorem (K.Kearnes)

Each semilattice mode is a subreduct of a semimodule over a commutative semiring $(S, +, \cdot)$ with unity 1, satisfying the identities: $0 \cdot x = 0$ and 1 + x = 1.

Question

Is it true that each mode is a subreduct of some semimodule over a commutative semiring?

Question

Is it true that each mode is a subreduct of some semimodule over a commutative semiring? **NO**

Question

Is it true that each mode is a subreduct of some semimodule over a commutative semiring? **NO**

Theorem (M.Stronkowski)

A mode (A, Ω) embeds into a semimodule over a commutative semiring with unity iff it is so-called Szendrei mode - mode satisfying Szendrei identities:

$$f(f(x_{11},...,x_{1n}),...,f(x_{n1},...,x_{nn})) \approx f(f(x_{\pi(11)},...,x_{\pi(1n)}),...,f(x_{\pi(n1)},...,x_{\pi(nn)})),$$

for each *n*-ary operation $f \in \Omega$ and every transposition $\pi : ij \mapsto ji$ of indices.

Szendrei identities in the case of one ternary operation f(x, y, z):

- $f(f(x_{11}, x_{12}, x_{13}), f(x_{21}, x_{22}, x_{23}), f(x_{31}, x_{32}, x_{33})) \approx f(f(x_{11}, x_{21}, x_{13}), f(x_{12}, x_{22}, x_{23}), f(x_{31}, x_{32}, x_{33}))$
- $f(f(x_{11}, x_{12}, x_{13}), f(x_{21}, x_{22}, x_{23}), f(x_{31}, x_{32}, x_{33})) \approx f(f(x_{11}, x_{12}, x_{31}), f(x_{21}, x_{22}, x_{23}), f(x_{13}, x_{32}, x_{33}))$

 $f(f(x_{11}, x_{12}, x_{13}), f(x_{21}, x_{22}, x_{23}), f(x_{31}, x_{32}, x_{33})) \approx f(f(x_{11}, x_{12}, x_{13}), f(x_{21}, x_{22}, x_{32}), f(x_{31}, x_{23}, x_{33}))$

(M.Stronkowski) A free mode with at least one basic operation of arity at least three over a set of cardinality at least two, is not a Szendrei mode.

(D. Stanovský) The 3-elements algebra $(D = \{0, 1, 2\}, f)$ with one ternary operation $f : D^3 \to D$; $(x, y, z) \mapsto f(x, y, z)$

$$f(x,y,z) := egin{cases} 2-x, & ext{if } y=z=1 \ x & ext{otherwise.} \end{cases}$$

is a mode, but not Szenderi: $((210)(000)(100)) = (201) = 2 \neq 0 = (200) = ((211)(000)(000)).$

$(D, f) \nleftrightarrow h(\mathbb{Z}_4, \cdot)$

・ロト ・四ト ・ヨト ・ヨト

4

 $(D, f) \nleftrightarrow h(\mathbb{Z}_4, \cdot)$

The homomorphic image $h(\mathbb{Z}_4, \cdot)$ belongs to the variety \mathcal{D}_2 of differential binary modes defined by two additional identities:

 $(x \cdot y) \cdot z \approx (x \cdot z) \cdot y$ (left normal law), $x \cdot y \approx x \cdot (y \cdot z)$ (left reduction law). $(D, f) \nleftrightarrow h(\mathbb{Z}_4, \cdot)$

The homomorphic image $h(\mathbb{Z}_4, \cdot)$ belongs to the variety \mathcal{D}_2 of differential binary modes defined by two additional identities:

 $(x \cdot y) \cdot z \approx (x \cdot z) \cdot y$ (left normal law), $x \cdot y \approx x \cdot (y \cdot z)$ (left reduction law).

The algebra (D, f) belongs to the variety \mathcal{D}_3 of differential ternary modes defined by two additional identities:

 $\begin{array}{rcl} f(f(x,y_1,y_2),z_1,z_2) &\approx & f(f(x,z_1,z_2),y_1,y_2), \\ & f(x,y_1,y_2) &\approx & f(x,f(y_1,z_1,z_2),f(y_2,z_1,z_2)). \end{array}$

Each algebra in the variety \mathcal{D}_2 or \mathcal{D}_3 has a left-zero quotient with the corresponding left-zero congruence classes.

Each algebra in the variety \mathcal{D}_2 or \mathcal{D}_3 has a left-zero quotient with the corresponding left-zero congruence classes.

Theorem (A.Romanowska and B.Roszkowska)

Each proper non-trivial subvariety of \mathcal{D}_2 is defined by a unique identity of the form

 $xy^{i+j} \approx xy^i$.

Each algebra in the variety \mathcal{D}_2 or \mathcal{D}_3 has a left-zero quotient with the corresponding left-zero congruence classes.

Theorem (A.Romanowska and B.Roszkowska)

Each proper non-trivial subvariety of \mathcal{D}_2 is defined by a unique identity of the form

$$xy^{i+j} \approx xy^i$$
.

The lattice $\mathfrak{L}(\mathcal{D}_2)$ of all subvarieties of \mathcal{D}_2 is isomorphic with the direct product of two lattices of natural numbers: one with the divisibility relation as an ordering relation and the other one with the usual linear ordering.

The lattice $\mathfrak{L}(\mathcal{D}_3)$ of all subvarieties of \mathcal{D}_3 contains sublattices isomorphic to the lattice of proper non-trivial subvarieties of the variety \mathcal{D}_2 .

The lattice $\mathfrak{L}(\mathcal{D}_3)$ of all subvarieties of \mathcal{D}_3 contains sublattices isomorphic to the lattice of proper non-trivial subvarieties of the variety \mathcal{D}_2 . (Each binary term operation of a ternary differential mode is a differential groupoid operation.)

The subvariety \mathcal{SD}_3 : $f(x, x, y) \approx f(x, y, x) \approx x$

御下 ・ ヨト ・ ヨトー

3

The subvariety \mathcal{SD}_3 : $f(x, x, y) \approx f(x, y, x) \approx x$

Theorem

The Szendrei subvarieties of the variety SD_3 coincides with the variety of the left-zero algebras ($f(x, y, z) \approx x$).

The subvariety \mathcal{SD}_3 : $f(x, x, y) \approx f(x, y, x) \approx x$

Theorem

The Szendrei subvarieties of the variety SD_3 coincides with the variety of the left-zero algebras ($f(x, y, z) \approx x$).

Proposition

Let B and C be two non-empty disjoint sets. Put $A = B \cup C$. Let $f_{ij}: B \to B$, $i, j \in C$, be a collection of mappings such that $f_{ij}f_{kl} = f_{kl}f_{ij}$ for every $i, j, k, l \in C$. Define a ternary operation by

$$f(x,y,z) := egin{cases} f_{yz}(x), & ext{if } y,z\in C ext{ and } x\in B \ x & ext{in all other cases.} \end{cases}$$

The algebra $\mathbf{A} = (A, f)$ belongs to the variety SD_3 . If $f_{ij} \neq id$ for at least one ij, then \mathbf{A} is not a Szendrei mode.

Let
$$k \ge 0$$
 and $n > 1$ be natural numbers,
 $B = \{-k, \dots, -1, 0, 1, \dots, n-1\}$ and $C = \{a\}$. Let
 $f_{aa}(x) = \begin{cases} x + n 1, & \text{if } x \in \{0, \dots, n-1\}\\ x + 1, & \text{if } x \in \{-1, \dots, -k\} \end{cases}$

The algebra $\textbf{A} \in \mathcal{SD}_3$ is a non-Szendrei mode which satisfies

$$f(x, y, z) \approx f(x, z, y)$$

$$f(f(\dots f(f(x, \underbrace{y, z), y, z)}_{(k+n)-times}) \approx$$

$$f(f(\dots f(f(x, \underbrace{y, z), y, z}_{k-times})), \underbrace{y, z}_{k-times}).$$

문제 문

Let
$$k \ge 0$$
 and $n > 1$ be natural numbers,
 $B = \{-k, \dots, -1, 0, 1, \dots, n-1\}$ and $C = \{a\}$. Let

$$f_{aa}(x) = \begin{cases} x + n 1, & \text{if } x \in \{0, \dots, n-1\}\\ x + 1, & \text{if } x \in \{-1, \dots, -k\} \end{cases}$$

The algebra $\bm{A}\in\mathcal{SD}_3$ is a non-Szendrei mode which satisfies

$$f(x, y, z) \approx f(x, z, y)$$

$$f(f(\dots f(f(x, \underbrace{y, z), y, z}) \dots), y, z)) \approx f(f(\dots f(f(x, \underbrace{y, z), y, z}) \dots), y, z))$$

$$f(f(\dots f(f(x, \underbrace{y, z), y, z}) \dots), y, z))$$

$$k-times$$

In particular, for k = 0 and n = 2, $\mathbf{A} = (D, f)$.

3 N 3

For $B = \mathbb{N}$, $C = \{a\}$ and $f_{aa}(x) = x + 1$ the algebra $\mathbf{A} \in SD_3$ is a non-Szendrei differential mode.

For any $k, n \in \mathbb{N}$, $n \neq 0$,

$$f(f(\dots f(f(x, \underline{y}, z), y, z) \dots), y, z) \neq (k+n)-times$$

$$f(f(\dots f(f(x, \underline{y}, z), y, z) \dots), y, z) + (k-times)$$

Thank you for your attention