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Embeddability of algebras

Example

commutative cancellative semigroups into commutative groups
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Embeddability of algebras

Example

commutative cancellative semigroups into commutative groups

integral domains into fields

Theorem (A.I.Mal’cev)

The class of semigroups embeddable into groups is a quasivariety
that cannot be defined by finitely may quasi-identities.
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Embeddability of entropic groupoids

Definition

A groupoid (G , ·) is entropic if it satisfies the following entropic
law:

(x · y) · (z · w) ≈ (x · z) · (y · w).
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Embeddability of entropic groupoids

Definition

A groupoid (G , ·) is entropic if it satisfies the following entropic
law:

(x · y) · (z · w) ≈ (x · z) · (y · w).

Theorem (M.Sholander)

Each cancellative entropic groupoid embeds into entropic
quasigroup.
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Modules and semimodules

Definition

A (commutative) semiring (S , +, ◦):

(S , +) - a commutative semigroup

(S , ◦) - a (commutative) semigroup

(x + y) ◦ z ≈ (x ◦ z) + (y ◦ z),

z ◦ (x + y) ≈ (z ◦ x) + (z ◦ y).

A semimodule over a semiring (S , +, ◦) - a commutative
semigroup (M, +) together with a semiring homomorphism:

h : (S , +, ◦) → (End(M, +), +, ◦),
s 7→ hs : M → M; m 7→ hs(m) := sm.
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Definition

Modes
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Modes

Definition

Modes

entropic (all term operations commute each other)
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Modes

Definition

Modes

entropic (all term operations commute each other)

idempotent (each singleton is a subalgebra)
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Modes

Definition

Modes

entropic (all term operations commute each other)

idempotent (each singleton is a subalgebra)

Example

Affine spaces - the full idempotent reducts of modules over
commutative rings.
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Reducts and subreducts

Definition

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation
from the set Ω is a term operation of algebra (A, Γ).

Agata Pilitowska Modes not embeddable into semimodules



Reducts and subreducts

Definition

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation
from the set Ω is a term operation of algebra (A, Γ).
A subreduct is a subalgebra of a reduct.
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Reducts and subreducts

Definition

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation
from the set Ω is a term operation of algebra (A, Γ).
A subreduct is a subalgebra of a reduct.
An algebra (A, Ω) embeds as a subreduct into (B, Γ) if (A, Ω) is
isomorphic to some subreduct of (B, Γ).
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Reducts and subreducts

Definition

Algebra (A, Ω) is a reduct of an algebra (A, Γ) if each operation
from the set Ω is a term operation of algebra (A, Γ).
A subreduct is a subalgebra of a reduct.
An algebra (A, Ω) embeds as a subreduct into (B, Γ) if (A, Ω) is
isomorphic to some subreduct of (B, Γ).

Example

Idempotent subreducts of semimodules over commutative
semirings are modes.
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Embeddability modes into modules

Definition

A mode (A, Ω) is cancellative if it satisfies the quasi-identity:

f (a1, . . . , xi , . . . , an) = f (a1, . . . , yi , . . . , an) → xi = yi .

for each n-ary operation f ∈ Ω and each i = 1, · · · , n.
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Embeddability modes into modules

Definition

A mode (A, Ω) is cancellative if it satisfies the quasi-identity:

f (a1, . . . , xi , . . . , an) = f (a1, . . . , yi , . . . , an) → xi = yi .

for each n-ary operation f ∈ Ω and each i = 1, · · · , n.

Theorem (A.Romanowska and J.D.H.Smith)

Each cancellative mode embeds as a subreduct into an affine space.
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Embeddability modes into modules

Fact

Each reduct of an affine space is abelian.

Definition

An abelian algebra (A, Ω):

t(a, x1, . . . , xn) = t(a, y1, . . . , yn) →

t(b, x1, . . . , xn) = t(b, y1, . . . , yn).

for each Ω-term t.
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Not all modes are subreducts of modules

Example

(Z4, ·) - the reduct of the group (Z4, +4,−, 0), with
x · y := 2y − x :

· 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3
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Not all modes are subreducts of modules

Example

(Z4, ·) - the reduct of the group (Z4, +4,−, 0), with
x · y := 2y − x :

· 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

−−−−−−−−→
h(0) = h(2)

· 0 1 3

0 0 0 0
1 3 1 1
3 1 3 3

Agata Pilitowska Modes not embeddable into semimodules



Not all modes are subreducts of modules

Example

(Z4, ·) - the reduct of the group (Z4, +4,−, 0), with
x · y := 2y − x :

· 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

−−−−−−−−→
h(0) = h(2)

· 0 1 3

0 0 0 0
1 3 1 1
3 1 3 3

The homomorphic image h(Z4, ·) is not a reduct of any affine
space - it is not abelian:

0 · 0 = 0 · 1 but 1 · 0 6= 1 · 1.
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Groupoid modes

Theorem (J.Ježek and T.Kepka)

Each entropic groupoid embeds into a semimodule over a
commutative semiring.
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Groupoid modes

Theorem (J.Ježek and T.Kepka)

Each entropic groupoid embeds into a semimodule over a
commutative semiring.

Corollary

Each groupoid mode embeds into a semimodule over a
commutative semiring.
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Semilattice modes

Definition

A mode is a semilattice mode if it has a binary term operation
such that is a semilattice operation.

Agata Pilitowska Modes not embeddable into semimodules



Semilattice modes

Definition

A mode is a semilattice mode if it has a binary term operation
such that is a semilattice operation.

Theorem (K.Kearnes)

Each semilattice mode is a subreduct of a semimodule over a
commutative semiring (S , +, ·) with unity 1, satisfying the
identities: 0 · x = 0 and 1 + x = 1.
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Embeddability modes into semimodules

Question

Is it true that each mode is a subreduct of some semimodule over
a commutative semiring?
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Embeddability modes into semimodules

Question

Is it true that each mode is a subreduct of some semimodule over
a commutative semiring? NO
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Embeddability modes into semimodules

Question

Is it true that each mode is a subreduct of some semimodule over
a commutative semiring? NO

Theorem (M.Stronkowski)

A mode (A, Ω) embeds into a semimodule over a commutative
semiring with unity iff it is so-called Szendrei mode - mode
satisfying Szendrei identities:

f (f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) ≈

f (f (x
π(11), . . . , xπ(1n)), . . . , f (x

π(n1), . . . , xπ(nn))),

for each n-ary operation f ∈ Ω and every transposition π : ij 7→ ji
of indices.
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Non Szendrei modes

Example

Szendrei identities in the case of one ternary operation f (x , y , z):

f (f (x11, x12, x13), f (x21, x22, x23), f (x31, x32, x33)) ≈

f (f (x11, x21, x13), f (x12, x22, x23), f (x31, x32, x33))

f (f (x11, x12, x13), f (x21, x22, x23), f (x31, x32, x33)) ≈

f (f (x11, x12, x31), f (x21, x22, x23), f (x13, x32, x33))

f (f (x11, x12, x13), f (x21, x22, x23), f (x31, x32, x33)) ≈

f (f (x11, x12, x13), f (x21, x22, x32), f (x31, x23, x33))
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Non Szendrei modes

Example

(M.Stronkowski) A free mode with at least one basic operation of
arity at least three over a set of cardinality at least two, is not a
Szendrei mode.
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Ternary modes

Example

(D. Stanovský) The 3-elements algebra (D = {0, 1, 2}, f ) with one
ternary operation f : D3 → D; (x , y , z) 7→ f (x , y , z)

f (x , y , z) :=

{

2 − x , if y = z = 1

x otherwise.

is a mode, but not Szenderi:
((210)(000)(100)) = (201) = 2 6= 0 = (200) = ((211)(000)(000)).
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(D, f ) ! h(Z4, ·)
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(D, f ) ! h(Z4, ·)

The homomorphic image h(Z4, ·) belongs to the variety D2 of
differential binary modes defined by two additional identities:

(x · y) · z ≈ (x · z) · y (left normal law),

x · y ≈ x · (y · z) (left reduction law).
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(D, f ) ! h(Z4, ·)

The homomorphic image h(Z4, ·) belongs to the variety D2 of
differential binary modes defined by two additional identities:

(x · y) · z ≈ (x · z) · y (left normal law),

x · y ≈ x · (y · z) (left reduction law).

The algebra (D, f ) belongs to the variety D3 of differential ternary
modes defined by two additional identities:

f (f (x , y1, y2), z1, z2) ≈ f (f (x , z1, z2), y1, y2),

f (x , y1, y2) ≈ f (x , f (y1, z1, z2), f (y2, z1, z2)).
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The variety D2

Fact

Each algebra in the variety D2 or D3 has a left-zero quotient with
the corresponding left-zero congruence classes.
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The variety D2

Fact

Each algebra in the variety D2 or D3 has a left-zero quotient with
the corresponding left-zero congruence classes.

Theorem (A.Romanowska and B.Roszkowska)

Each proper non-trivial subvariety of D2 is defined by a unique
identity of the form

xy i+j ≈ xy i
.
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The variety D2

Fact

Each algebra in the variety D2 or D3 has a left-zero quotient with
the corresponding left-zero congruence classes.

Theorem (A.Romanowska and B.Roszkowska)

Each proper non-trivial subvariety of D2 is defined by a unique
identity of the form

xy i+j ≈ xy i
.

The lattice L(D2) of all subvarieties of D2 is isomorphic with the
direct product of two lattices of natural numbers: one with the
divisibility relation as an ordering relation and the other one with
the usual linear ordering.
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The variety D3

Fact

The lattice L(D3) of all subvarieties of D3 contains sublattices
isomorphic to the lattice of proper non-trivial subvarieties of the
variety D2.
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The variety D3

Fact

The lattice L(D3) of all subvarieties of D3 contains sublattices
isomorphic to the lattice of proper non-trivial subvarieties of the
variety D2.
(Each binary term operation of a ternary differential mode is a
differential groupoid operation.)
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The subvariety SD3: f (x , x , y) ≈ f (x , y , x) ≈ x

Agata Pilitowska Modes not embeddable into semimodules



The subvariety SD3: f (x , x , y) ≈ f (x , y , x) ≈ x

Theorem

The Szendrei subvarieties of the variety SD3 coincides with the
variety of the left-zero algebras (f (x , y , z) ≈ x).
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The subvariety SD3: f (x , x , y) ≈ f (x , y , x) ≈ x

Theorem

The Szendrei subvarieties of the variety SD3 coincides with the
variety of the left-zero algebras (f (x , y , z) ≈ x).

Proposition

Let B and C be two non-empty disjoint sets. Put A = B ∪ C. Let
fij : B → B, i , j ∈ C, be a collection of mappings such that
fij fkl = fkl fij for every i , j , k , l ∈ C. Define a ternary operation by

f (x , y , z) :=

{

fyz(x), if y , z ∈ C and x ∈ B

x in all other cases.

The algebra A = (A, f ) belongs to the variety SD3.
If fij 6= id for at least one ij , then A is not a Szendrei mode.
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Example

Let k ≥ 0 and n > 1 be natural numbers,
B = {−k , . . . ,−1, 0, 1, . . . , n − 1} and C = {a}. Let

faa(x) =

{

x +n 1, if x ∈ {0, . . . , n − 1}

x + 1, if x ∈ {−1, . . . ,−k}

The algebra A ∈ SD3 is a non-Szendrei mode which satisfies

f (x , y , z) ≈ f (x , z , y)

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

(k+n)−times

) ≈

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

k−times

).
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Example

Let k ≥ 0 and n > 1 be natural numbers,
B = {−k , . . . ,−1, 0, 1, . . . , n − 1} and C = {a}. Let

faa(x) =

{

x +n 1, if x ∈ {0, . . . , n − 1}

x + 1, if x ∈ {−1, . . . ,−k}

The algebra A ∈ SD3 is a non-Szendrei mode which satisfies

f (x , y , z) ≈ f (x , z , y)

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

(k+n)−times

) ≈

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

k−times

).

In particular, for k = 0 and n = 2, A = (D, f ).
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Example

For B = N, C = {a} and faa(x) = x + 1 the algebra A ∈ SD3 is a
non-Szendrei differential mode.
For any k , n ∈ N, n 6= 0,

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

(k+n)−times

) 6=

f (f (. . . f (f (x , y , z), y , z) . . .), y , z
︸ ︷︷ ︸

k−times

)
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The End

Thank you for your attention
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