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Natural duality

Given a finite algebra M = 〈M;F 〉, an alter ego of M is a finite
structure M∼ = 〈M;H,R,T〉, where T is the discrete topology and

(i) H is a collection of algebraic (partial) operations, i.e.
homomorphisms of the form h : A → M where A 6 Mn, for some
n ∈ ω; and

(ii) R is a collection of algebraic relations, i.e. subalgebras of the
form r 6 Mn, for some positive integer n.

The topological quasi-variety generated by M∼ is the class
IScP+(M∼), of all isomorphic copies of topologically closed
substructures of non-zero powers of M∼ .
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Infinite members of IScP+(M∼) possess a Boolean topology. That
is, any two distinct points can be separated by clopen sets.

Since the structure on M∼ is “compatible” with the algebra M, it
follows that there are dually adjoint hom-functors

D : ISP(M) → IScP+(M∼)

E : IScP+(M∼) → ISP(M)

D(A) = Hom(A,M) 6 M∼
A

and
E(X) = Hom(X,M∼) 6 MX .
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Question

Given a finite algebra M, does there exist an alter ego M∼ such that
the algebra ED(A) is isomorphic to A, for all A ∈ ISP(M)?

More specifically, is there an alter ego M∼ such that the natural
embedding eA : A → ED(A), given by

eA(a)(α) = α(a),

is an isomorphism, for all A ∈ ISP(M)?
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Duality

If M∼ is an alter ego of M such that eA : A → ED(A) is an
isomorphism, for all A ∈ ISP(M), we say “M and M∼ yield a
duality”.



Full Duality

Question

Assume that M and M∼ yield a duality. Does there exist an alter
ego M∼ such that DE(X) is isomorphic to X, for all X ∈ IScP+(M∼)?

More specifically, is there an alter ego M∼ such that the natural
embedding εX : X → DE(X), given by

εX(x)(ϕ) = ϕ(x),

is an isomorphism, for all X ∈ IScP+(M∼).
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Full Duality

If M and M∼ yield a duality, and εX : X → DE(X) is an
isomorphism, for all X ∈ IScP+(M∼), we say “M and M∼ yield a full
duality”.



Examples of full dualities

Stone duality for Boolean algebras. In this case

M = 〈{0, 1};∨,∧,′ , 0, 1〉

and
M∼ = 〈{0, 1};T〉.

Priestley duality for distributive lattices,

M = 〈{0, 1};∨,∧〉

and
M∼ = 〈{0, 1};6, 0, 1,T〉.
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Strong Duality

If M and M∼ yield a full duality and M∼ is injective in IScP+(M∼), we
say “M and M∼ yield a strong duality”.

That is,
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where ϕ : X → Y is an embedding.
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Question (Davey and Werner [3])

Does there exist a finite algebra M and a choice of alter ego M∼
such that M and M∼ yield a full but not strong duality?

Until 2006, every known example of a full duality was a strong
duality. Indeed, for many well known classes of algebras, the
notions of full and strong duality are equivalent.

Solution (Clark, Davey and Willard 2006 [2])

There is a 4-element quasi-primal algebra S and an alter ego S∼
such that S and S∼ yield a full but not strong duality.
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Clark, Davey and Willard’s example

The algebra

S = 〈{0, a, b, 1};∧,∨, t, 0, 1〉, where 〈{0, a, b, 1};∧,∨, 0, 1〉 is the
4-element bounded chain, with 0 < a < b < 1, and t is the ternary
discriminator function.

The alter ego

S∼ = 〈{0, a, b, 1}; r ,T〉, where r = {(0, 0), (a, b), (1, 1)}.

Note that S∼ is a relational structure!

It so happens that r is the graph of the “partial automorphism”
f : 0 7→ 0, a 7→ b, 1 7→ 1.
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Theorem (Niven 2006)

Let Q be a quasi-primal algebra. The following are equivalent.

(i) There exists a relational alter ego Q∼ such that Q and Q∼ yield
a full duality.

(ii) (A) Q has no one-element subalgebras, the only
automorphism on Q is the identity function, and
(B) for all subalgebras A,B 6 Q, if C 6 A ∩ B such that

C =
⋂

16i6l

{x ∈ Q | fi (x) = gi (x)},

for some homomorphisms f1, f2, . . . , fl : A → Q and
g1, g2, . . . , gl : B → Q, then every homomorphism h : C → Q
either extends to a homomorphism on A or to a
homomorphism on B.
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