Full dualities: quasi-primal algebras via relational structures

Todd Niven

Eduard Čech Center Institute of Mathematics of the Academy of Sciences Czech Republic

Algorithmic Complexity and Universal Algebra, Szeged 2007

Given a finite algebra $\underline{\mathbf{M}} = \langle M; F \rangle$, an alter ego of $\underline{\mathbf{M}}$ is a finite structure $\underline{\mathbf{M}} = \langle M; H, R, \mathcal{T} \rangle$, where \mathcal{T} is the discrete topology and

Given a finite algebra $\underline{\mathbf{M}} = \langle M; F \rangle$, an alter ego of $\underline{\mathbf{M}}$ is a finite structure $\underline{\mathbf{M}} = \langle M; H, R, \mathcal{T} \rangle$, where \mathcal{T} is the discrete topology and

(i) *H* is a collection of algebraic (partial) operations, i.e. homomorphisms of the form $h : \mathbf{A} \to \underline{\mathbf{M}}$ where $\mathbf{A} \leq \underline{\mathbf{M}}^n$, for some $n \in \omega$; and

Given a finite algebra $\underline{\mathbf{M}} = \langle M; F \rangle$, an alter ego of $\underline{\mathbf{M}}$ is a finite structure $\underline{\mathbf{M}} = \langle M; H, R, \mathcal{T} \rangle$, where \mathcal{T} is the discrete topology and

(i) *H* is a collection of algebraic (partial) operations, i.e. homomorphisms of the form $h : \mathbf{A} \to \underline{\mathbf{M}}$ where $\mathbf{A} \leq \underline{\mathbf{M}}^n$, for some $n \in \omega$; and

(ii) *R* is a collection of algebraic relations, i.e. subalgebras of the form $r \leq \underline{\mathbf{M}}^n$, for some positive integer *n*.

Given a finite algebra $\underline{\mathbf{M}} = \langle M; F \rangle$, an alter ego of $\underline{\mathbf{M}}$ is a finite structure $\underline{\mathbf{M}} = \langle M; H, R, \mathcal{T} \rangle$, where \mathcal{T} is the discrete topology and

(i) *H* is a collection of algebraic (partial) operations, i.e. homomorphisms of the form $h : \mathbf{A} \to \underline{\mathbf{M}}$ where $\mathbf{A} \leq \underline{\mathbf{M}}^n$, for some $n \in \omega$; and

(ii) *R* is a collection of algebraic relations, i.e. subalgebras of the form $r \leq \underline{\mathbf{M}}^n$, for some positive integer *n*.

The topological quasi-variety generated by \mathbf{M} is the class $\mathbb{IS}_{c}\mathbb{P}^{+}(\mathbf{M})$, of all isomorphic copies of topologically closed substructures of non-zero powers of \mathbf{M} .

Infinite members of $\mathbb{IS}_c \mathbb{P}^+(\mathbf{M})$ possess a Boolean topology. That is, any two distinct points can be separated by clopen sets.

Infinite members of $\mathbb{IS}_c \mathbb{P}^+(\mathbf{M})$ possess a Boolean topology. That is, any two distinct points can be separated by clopen sets.

Since the structure on ${\pmb M}$ is "compatible" with the algebra $\underline{\pmb M},$ it follows that there are dually adjoint hom-functors

 $D: \mathbb{ISP}(\underline{\mathsf{M}}) \to \mathbb{IS}_{c}\mathbb{P}^{+}(\underline{\mathsf{M}})$

 $\mathrm{E}: \mathbb{IS}_{c}\mathbb{P}^{+}(\underbrace{\mathsf{M}}) \to \mathbb{ISP}(\underline{\mathsf{M}})$

Infinite members of $\mathbb{IS}_c \mathbb{P}^+(\mathbf{M})$ possess a Boolean topology. That is, any two distinct points can be separated by clopen sets.

Since the structure on ${\pmb M}$ is "compatible" with the algebra $\underline{\pmb M},$ it follows that there are dually adjoint hom-functors

$$\mathrm{D}: \mathbb{ISP}(\underline{\mathsf{M}}) \to \mathbb{IS}_{c}\mathbb{P}^{+}(\underline{\mathsf{M}})$$

$$\mathrm{E}: \mathbb{IS}_{c}\mathbb{P}^{+}(\underline{\mathsf{M}}) \to \mathbb{ISP}(\underline{\mathsf{M}})$$

$$\mathrm{D}(\mathsf{A}) = \mathsf{Hom}(\mathsf{A}, \underline{\mathsf{M}}) \leqslant \underbrace{\mathsf{M}}^{\mathcal{A}}$$

and

$$E(\mathbf{X}) = Hom(\mathbf{X}, \mathbf{M}) \leq \mathbf{M}^{X}.$$

Question

Given a finite algebra \underline{M} , does there exist an alter ego \underline{M} such that the algebra $\mathrm{ED}(\underline{A})$ is isomorphic to \underline{A} , for all $\underline{A} \in \mathbb{ISP}(\widetilde{\underline{M}})$?

Question

Given a finite algebra \underline{M} , does there exist an alter ego \underline{M} such that the algebra $ED(\underline{A})$ is isomorphic to \underline{A} , for all $\underline{A} \in \mathbb{ISP}(\underline{\widetilde{M}})$?

More specifically, is there an alter ego \mathbf{M} such that the natural embedding $e_{\mathbf{A}} : \mathbf{A} \to \mathrm{ED}(\mathbf{A})$, given by

$$e_{\mathbf{A}}(a)(\alpha) = \alpha(a),$$

is an isomorphism, for all $A \in \mathbb{ISP}(\underline{M})$?

Duality

If \underline{M} is an alter ego of \underline{M} such that $e_{A} : A \to ED(A)$ is an isomorphism, for all $A \in \mathbb{ISP}(\underline{M})$, we say " \underline{M} and \underline{M} yield a duality".

Full Duality

Question

Assume that \underline{M} and \underline{M} yield a duality. Does there exist an alter ego \underline{M} such that $DE(\widetilde{X})$ is isomorphic to X, for all $X \in IS_c \mathbb{P}^+(\underline{M})$?

Full Duality

Question

Assume that \underline{M} and \underline{M} yield a duality. Does there exist an alter ego \underline{M} such that $DE(\widetilde{X})$ is isomorphic to X, for all $X \in \mathbb{IS}_{c}\mathbb{P}^{+}(\underline{M})$?

More specifically, is there an alter ego \mathbf{M} such that the natural embedding $\varepsilon_{\mathbf{X}} : \mathbf{X} \to \mathrm{DE}(\mathbf{X})$, given by

 $\varepsilon_{\mathbf{X}}(x)(\varphi) = \varphi(x),$

is an isomorphism, for all $X \in \mathbb{IS}_{c}\mathbb{P}^{+}(M)$.

Full Duality

If \underline{M} and \underline{M} yield a duality, and $\varepsilon_{\mathbf{X}} : \mathbf{X} \to DE(\mathbf{X})$ is an isomorphism, for all $\mathbf{X} \in \mathbb{IS}_{c}\mathbb{P}^{+}(\underline{M})$, we say " \underline{M} and \underline{M} yield a full duality".

Examples of full dualities

Stone duality for Boolean algebras. In this case

$$\underline{\mathsf{M}} = \langle \{\mathsf{0},\mathsf{1}\}; \lor, \land, ', \mathsf{0}, \mathsf{1} \rangle$$

and

$$\underset{\sim}{\textbf{M}}=\langle\{0,1\}; \mathfrak{T}\rangle.$$

Examples of full dualities

Stone duality for Boolean algebras. In this case

$$\underline{\mathsf{M}} = \langle \{0,1\}; \lor, \land, ', 0, 1 \rangle$$

and

$$\underset{\sim}{\mathsf{M}} = \langle \{0,1\}; \mathfrak{T} \rangle.$$

Priestley duality for distributive lattices,

 $\underline{\textbf{M}}=\langle \{0,1\}; \lor, \land \rangle$

and

$$\underset{\sim}{\textbf{M}}=\langle\{0,1\};\leqslant,0,1,\mathbb{T}\rangle.$$

Strong Duality

If \underline{M} and \underline{M} yield a full duality and \underline{M} is injective in $\mathbb{IS}_{c}\mathbb{P}^{+}(\underline{M})$, we say " \underline{M} and \underline{M} yield a strong duality".

Strong Duality

If \underline{M} and \underline{M} yield a full duality and \underline{M} is injective in $\mathbb{IS}_{c}\mathbb{P}^{+}(\underline{M})$, we say " \underline{M} and \underline{M} yield a strong duality".

That is, $\begin{array}{c} \mathbf{X} \xrightarrow{\psi} \mathbf{M} \\ \varphi \\ \varphi \\ \mathbf{Y} \end{array}$ where $\varphi : \mathbf{X} \to \mathbf{Y}$ is an embedding.

Question (Davey and Werner [3])

Does there exist a finite algebra \underline{M} and a choice of alter ego \underline{M} such that \underline{M} and \underline{M} yield a full but not strong duality?

Question (Davey and Werner [3])

Does there exist a finite algebra \underline{M} and a choice of alter ego \underline{M} such that \underline{M} and \underline{M} yield a full but not strong duality?

Until 2006, every known example of a full duality was a strong duality. Indeed, for many well known classes of algebras, the notions of full and strong duality are equivalent.

Question (Davey and Werner [3])

Does there exist a finite algebra \underline{M} and a choice of alter ego \underline{M} such that \underline{M} and \underline{M} yield a full but not strong duality?

Until 2006, every known example of a full duality was a strong duality. Indeed, for many well known classes of algebras, the notions of full and strong duality are equivalent.

Solution (Clark, Davey and Willard 2006 [2])

There is a 4-element quasi-primal algebra \underline{S} and an alter ego \underline{S} such that \underline{S} and \underline{S} yield a full but not strong duality.

The algebra

 $\underline{\mathbf{S}} = \langle \{0, a, b, 1\}; \land, \lor, t, 0, 1 \rangle$, where $\langle \{0, a, b, 1\}; \land, \lor, 0, 1 \rangle$ is the 4-element bounded chain, with 0 < a < b < 1, and t is the ternary discriminator function.

The algebra

 $\underline{\mathbf{S}} = \langle \{0, a, b, 1\}; \land, \lor, t, 0, 1 \rangle$, where $\langle \{0, a, b, 1\}; \land, \lor, 0, 1 \rangle$ is the 4-element bounded chain, with 0 < a < b < 1, and t is the ternary discriminator function.

The alter ego

$$\mathbf{S} = \langle \{0, a, b, 1\}; r, \mathbb{T} \rangle$$
, where $r = \{(0, 0), (a, b), (1, 1)\}$.

The algebra

 $\underline{\mathbf{S}} = \langle \{0, a, b, 1\}; \land, \lor, t, 0, 1 \rangle$, where $\langle \{0, a, b, 1\}; \land, \lor, 0, 1 \rangle$ is the 4-element bounded chain, with 0 < a < b < 1, and t is the ternary discriminator function.

The alter ego

$$\mathbf{S} = \langle \{0, a, b, 1\}; r, \mathbb{T} \rangle$$
, where $r = \{(0, 0), (a, b), (1, 1)\}$.

Note that \mathbf{S} is a relational structure!

The algebra

 $\underline{\mathbf{S}} = \langle \{0, a, b, 1\}; \land, \lor, t, 0, 1 \rangle$, where $\langle \{0, a, b, 1\}; \land, \lor, 0, 1 \rangle$ is the 4-element bounded chain, with 0 < a < b < 1, and t is the ternary discriminator function.

The alter ego

$$\mathbf{S} = \langle \{0, a, b, 1\}; r, \mathbb{T} \rangle$$
, where $r = \{(0, 0), (a, b), (1, 1)\}$.

Note that \mathbf{S}_{i} is a relational structure!

It so happens that r is the graph of the "partial automorphism" $f: 0 \mapsto 0, a \mapsto b, 1 \mapsto 1$.

Theorem (Niven 2006)

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

(i)~ There exists a relational alter ego ${\bm Q}$ such that ${\bm Q}$ and ${\bm Q}$ yield a full duality.

Theorem (Niven 2006)

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

- (i)~ There exists a relational alter ego ${\bm Q}$ such that ${\bm Q}$ and ${\bm Q}$ yield a full duality.

Theorem (Niven 2006)

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

- (i)~ There exists a relational alter ego $\overset{}{Q}$ such that $\overset{}{\underline{Q}}$ and $\overset{}{\underline{Q}}$ yield a full duality.
- (ii) (A) $\underline{\mathbf{Q}}$ has no one-element subalgebras, the only automorphism on $\underline{\mathbf{Q}}$ is the identity function, and (B) for all subalgebras $\mathbf{A}, \mathbf{B} \leq \mathbf{Q}$, if $\mathbf{C} \leq \mathbf{A} \cap \mathbf{B}$ such that

$$C = \bigcap_{1 \leq i \leq l} \{x \in Q \mid f_i(x) = g_i(x)\},\$$

for some homomorphisms $f_1, f_2, \ldots, f_l : \mathbf{A} \to \underline{\mathbf{Q}}$ and $g_1, g_2, \ldots, g_l : \mathbf{B} \to \underline{\mathbf{Q}}$, then every homomorphism $h : \mathbf{C} \to \underline{\mathbf{Q}}$ either extends to a homomorphism on \mathbf{A} or to a homomorphism on \mathbf{B} .

Corollary

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

 $\begin{array}{ll} (i) & \mbox{There exists a relational alter ego } {\bf Q} \mbox{ such that } \underline{{\bf Q}} \mbox{ and } {\bf Q} \mbox{ yield} \\ & \mbox{ a full but not strong duality.} \end{array}$

Corollary

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

- $(i) \ \ {\rm There\ exists\ a\ relational\ alter\ ego\ } {\bf Q} \ \ {\rm such\ that\ } {\bf Q} \ \ {\rm and\ } {\bf Q} \ \ {\rm yield} \ \ {\rm a\ full\ but\ not\ strong\ duality.}$
- $\begin{array}{ll} (ii) & (A) \; \underline{\mathbf{Q}} \; \text{has no one-element subalgebras, the only} \\ \text{automorphism on } \underline{\mathbf{Q}} \; \text{is the identity function, } \underline{\mathbf{Q}} \; \text{has a} \\ \text{non-trivial partial automorphism, and} \end{array}$

Corollary

Let $\underline{\mathbf{Q}}$ be a quasi-primal algebra. The following are equivalent.

- $(i) \ \ {\rm There\ exists\ a\ relational\ alter\ ego\ } {\bf Q} \ \ {\rm such\ that\ } {\bf Q} \ \ {\rm and\ } {\bf Q} \ \ {\rm yield} \ \ {\rm a\ full\ but\ not\ strong\ duality.}$
- (ii) (A) $\underline{\mathbf{Q}}$ has no one-element subalgebras, the only automorphism on $\underline{\mathbf{Q}}$ is the identity function, $\underline{\mathbf{Q}}$ has a non-trivial partial automorphism, and (B) for all subalgebras $\mathbf{A}, \mathbf{B} \leq \mathbf{Q}$, if $\mathbf{C} \leq \mathbf{A} \cap \mathbf{B}$ such that

$$C = \bigcap_{1 \leqslant i \leqslant l} \{ x \in Q \mid f_i(x) = g_i(x) \},\$$

for some homomorphisms $f_1, f_2, \ldots, f_l : \mathbf{A} \to \underline{\mathbf{Q}}$ and $g_1, g_2, \ldots, g_l : \mathbf{B} \to \underline{\mathbf{Q}}$, then every homomorphism $h : \mathbf{C} \to \underline{\mathbf{Q}}$ either extends to a homomorphism on \mathbf{A} or to a homomorphism on \mathbf{B} .

Bibliography

- D.M. Clark and B.A. Davey, *Natural Dualities for the Working Algebraist*, Cambridge University Press, Cambridge, 1998.
- D.M. Clark, B.A. Davey and R. Willard, Not every full duality is strong!, *Algebra Universalis*, (to appear)
- B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in *Contributions to Lattice Theory* (*Szeged, 1980*), (A.P. Huhn and E.T. Schmidt, eds) Coll. Math. Soc. János Bolyai **33**, North-Holland, Amsterdam, 1983, pp. 101–275.