Free (m+k, m)-bands

Valentina Miovska and Dončo Dimovski

Abstract. The subject of this presentation is the class of (m+k, m)-bands, i.e. the class of vector-valued (m+k, m)-semigroups that are direct products of p-zero (m+k, m)-semigroups (an (m+k, m)-groupoid (Q; []) is said to be a p-zero (m+k, m)-groupoid, $0 \le p \le m$, if $[x_1^{m+k}] = x_1^p x_{p+k+1}^{m+k}$ for any $x_1^{m+k} \in Q^{m+k}$). Two characterizations of (m+k, m)-bands are given and free (m+k, m)-bands are described.

0. Introduction

We will introduce some notations which will be used further on:

1) The elements of Q^s , where Q^s denotes the *s*-th Cartesian power of Q, will be denoted by x_1^s . If $x_1 = x_2 = ... = x_s = x$, then x_1^s is denoted by the symbol $\overset{s}{x}$.

2) The symbol x_i^j denotes the sequence $x_i x_{i+1} \dots x_j$ for $i \le j$, and the empty sequence when i > j.

3) The set $\{1, 2, ..., s\}$ will be denoted by \mathbb{N}_s .

Let *m* and *k* be positive integers. An (m+k, m)-groupoid is a pair $\mathbf{Q}=(Q; [])$ where $Q\neq \emptyset$, [] is an (m+k, m)operation, i.e. a map []: $Q^{m+k} \rightarrow Q^m$.

Let [] be an (m+k, m)-operation on a set Q. We can associate a sequence of m m+k-ary operations []₁, []₂,..., []_m ([]_i: $Q^{m+k} \rightarrow Q$, $1 \le i \le m$) to [] by

$$[x_1^{m+k}]_i = y_i \iff [x_1^{m+k}] = y_1^m \tag{1}$$

for every $1 \le i \le m$.

An (m+k, m)-groupoid $\mathbf{Q}=(Q; [])$ is called an (m+k, m)semigroup if for each $x_1^{m+2k} \in Q^{m+2k}$, $1 \le i \le k$ $[x_1^i[x_{i+1}^{i+m+k}]x_{i+m+k+1}^{m+2k}] = [[x_1^{m+k}]x_{m+k+1}^{m+2k}].$ (2) 1. *p*-zero (m+k,m)-semigroups

Definition 1.1 An (m+k,m)-groupoid $\mathbf{Q}=(Q;[])$ is said to be a *projection* (m+k,m)-groupoid if there are $1 \le \alpha_1 < \alpha_2 < ... < \alpha_m \le m+k$, such that

$$[x_1^{m+k}] = x_{\alpha_1} x_{\alpha_2} \dots x_{\alpha_m}, \qquad (3)$$

for any $x_1^{m+k} \in Q^{m+k}$.

The left-zero (m+k,m)-groupoid (a pair A=(A;[]), where [] is an (m+k,m)-operation defined by $[x_1^{m+k}] = x_1^m$) and the right-zero (m + k, m)-groupoid (**B**=(B;[]), where [] is defined by $[x_1^{m+k}] = x_{k+1}^{m+k}$) are examples for projection (m+k,m) – groupoids which also are (m+k,m) – semigroups. general, In projection (m+k,m) – groupoids necessarily not are (m+k,m) – semigroups. For example, the (4,2) – groupoid **Q**=(Q;[]) where [] is defined by $[x_1^4] = x_2^3$, is a projection (4,2)-groupoid, but not a (4,2)-semigroup.

Definition 1.2 Let $0 \le p \le m$. An (m+k,m) – groupoid $\mathbf{Q}=(Q;[]^p)$ is said to be a *p*-zero (m+k,m) – groupoid if

$$[x_1^{m+k}]^p = x_1^p x_{p+k+1}^{m+k}, (4)$$

for any $x_1^{m+k} \in Q^{m+k}$.

Proposition 1.3 Any *p*-zero (m+k,m)-groupoid $\mathbf{Q}=(Q;[]^p)$ is an (m+k,m)-semigroup.

Proposition 1.4 If $\mathbf{Q}=(Q;[])$ is a projection (m+k,m)-groupoid which is also an (m+k,m)-semigroup, then \mathbf{Q} is a *p*-zero (m+k,m)-semigroup, for some $0 \le p \le m$.

Propositions 1.3 and 1.4 imply that there are exactly m+1 projection (m+k,m) – semigroups.

2. (m + k, m) – bands

Let $\mathbf{A}_i = (A_i; []^i), i = 1, 2, ..., t$ be (m + k, m) – semigroups. Their direct product is an (m + k, m) – semigroup, where the (m + k, m) – operation [] is defined by $[x_1^{m+k}] = y_1^m \iff x_i = (x_{i,1}, x_{i,2}, ..., x_{i,t}), y_j = (y_{j,1}, y_{j,2}, ..., y_{j,t}),$

$$y_{j,r} = [x_{1,j}x_{2,j}...x_{m+k,j}]^r, i \in \mathbb{N}_{m+k}, j \in \mathbb{N}_m, r \in \mathbb{N}_t.$$
(5)

Definition 2.1 Let $\mathbf{A}_p = (A_p; []^p)$ be p-zero (m+k,m)-semigroups, $0 \le p \le m$. The direct product of A_m, A_{m-1}, \dots, A_0 is called (m+k,m)-band.

If $(A_m \times A_{m-1} \times ... \times A_0; [])$ is an (m + k, m)-band then its (m + k, m)-operation [] is of the form

$$[x_{1}^{m+k}] = y_{1}^{m} \Leftrightarrow x_{i} = (x_{i,1}, x_{i,2}, ..., x_{i,m+1}),$$

$$y_{j} = (x_{j,1}, x_{j,2}, ..., x_{j,m+1-j}, x_{j+k,m+2-j}, ..., x_{j+k,m+1}),$$

$$i \in \mathbb{N}_{m+k}, j \in \mathbb{N}_{m}.$$
(6)

Proposition 2.2 An (m + k, m) – semigroup $\mathbf{Q} = (Q; [])$ is an (m + k, m) – band if and only if the following conditions are satisfied in \mathbf{Q} :

(I)
$$\begin{bmatrix} x_1^{m+k} \end{bmatrix}_i = \begin{bmatrix} y_1^{i-1} x_i y_{i+1}^{i+k-1} x_{i+k} y_{i+k+1}^{m+k} \end{bmatrix}_i, i \in \mathbb{N}_m;$$

(II) $\begin{bmatrix} j^{-1} \begin{bmatrix} i-1 & k-1 & m-i \\ a & x & a & y & a \end{bmatrix}_i^{k-1} \begin{bmatrix} a & -j \\ a & z & a \end{bmatrix}_j^{k-1} = \begin{bmatrix} i-1 & k-1 & m-j \\ a & x & a & a & a \end{bmatrix}_j^{m-i} \begin{bmatrix} a & -j \\ a & y & a & z & a \end{bmatrix}_j^{m-i} \begin{bmatrix} a & -j \\ a & y & a & z & a & a \end{bmatrix}_j^{m-i},$

for *a* fixed element of *Q* and $j \le i$;

(III)
$$\begin{bmatrix} i-1 \\ a \begin{bmatrix} j-1 & k-1 & m-j \\ a & x & a & y & a \end{bmatrix}_{j} \begin{bmatrix} k-1 & m-i \\ a & z & a \end{bmatrix}_{i} = \begin{bmatrix} i-1 & k-1 & m-i \\ a & x & a & z & a \end{bmatrix}_{i}$$
, for *a* fixed

element of Q and $j \leq i$;

(IV)
$$\begin{bmatrix} j-1 & k-1 \\ a & x & a \end{bmatrix} \begin{bmatrix} i-1 & k-1 & m-i \\ a & y & a & z & a \end{bmatrix}_i \begin{bmatrix} m-j \\ a & x & a & z & a \end{bmatrix}_j = \begin{bmatrix} j-1 & k-1 & m-j \\ a & x & a & z & a \end{bmatrix}_j$$
, for a fixed

element of Q and $j \leq i$;

$$(\mathbf{V})\begin{bmatrix} {}^{m+k}\\ x\end{bmatrix} = \overset{m}{x}.$$

3. A characterization of (m+k,m)-bands

In the sequel we will give a characterization of (m+k,m)-bands using the usual rectangular bands, where a rectangular band is a semigroup (Q;*) that satisfies the following two identities

$$x * y * z = x * z \text{ and } x * x = x,$$
 (7)

for each $x, y, z \in Q$.

Proposition 3.1 $\mathbf{Q} = (Q; [])$ is an (m+k,m)-band if and only if there are rectangular bands $(Q; *_i)$, $i \in \mathbb{N}_m$, such that

(i)
$$(x *_{i} y) *_{j} z = x *_{i} (y *_{j} z), j \leq i;$$

(ii) $(x *_{j} y) *_{i} z = x *_{i} z, j \leq i;$
(iii) $x *_{j} (y *_{i} z) = x *_{j} z, j \leq i;$
and $[x_{1}^{m+k}]_{i} = x_{i} *_{i} x_{i+k}, x_{1}^{m+k} \in Q^{m+k}, i \in \mathbb{N}_{m}.$
(8)

4. Free (m + k, m) – bands

Let $B \neq \emptyset$. We define a sequence of sets $B_0, B_1, ..., B_p$, ... by induction as follows:

 $B_{\rm o}=B;$

Let B_p be defined and let $C_p = \{xy \mid x, y \in B_p\}$. Then we take $B_{p+1} = B_p \cup (\mathbb{N}_m \times C_p)$ and $\overline{B} = \bigcup_{p \ge 0} B_p$.

We define a *length* for elements of \overline{B} , i.e. a map $||:\overline{B} \to \mathbb{N}$, in the following way:

For each $a \in B$, |a| = 1;

Let |u| be defined for each $u \in B_p$, then for $(i, xy) \in B_{p+1}$, we put |(i, xy)| = 1 + |x| + |x||y|.

By induction on the length we define a map $\varphi: \overline{B} \to \overline{B}$ as follows:

If $a \in B$ then

(D0)
$$\varphi(a) = a$$

Let $u = (i, xy) \in \overline{B}$ and suppose that for each $v \in \overline{B}$, with $|v| < |u|, \phi(v)$ be defined and:

i)
$$\varphi(v) \neq v \Rightarrow |\varphi(v)| < |v|$$

ii) $\varphi(\varphi(v)) = \varphi(v)$.
Let $\varphi(x) \neq x$ or $\varphi(y) \neq y$. Then
(D1) $\varphi(i, xy) = \varphi(i, \varphi(x)\varphi(y))$.

Let $\varphi(x) = x$ and $\varphi(y) = y$.

If u = (i, xx) then

(D2)
$$\varphi(u) = \varphi(x)$$
.

If $u = (i, (j, zw)y), j \le i$ then

(D3) $\varphi(u) = \varphi(i, zy)$.

If $u = (i, x(j, zw)), i \le j$ then

(D4)
$$\varphi(u) = \varphi(i, xw)$$
.

If u = (i, (j, zw)y), i < j then

(D5)
$$\phi(u) = (j, z(i, wy)).$$

If u = (i, x(j, xz)), j < i then

(D6)
$$\varphi(u) = \varphi(j, xz)$$
.

If φ(*u*) can not be defined by (D1), (D2), (D3), (D4), (D5) or (D6) then

(D7)
$$\varphi(u) = u$$
.

Proposition 4.1 ϕ is a well defined mapping.

Proposition 4.2 a) For each $u \in \overline{B}$, $|\varphi(u)| \le |u|$;

b) For $u \in \overline{B}$, if $\varphi(u) \neq u$ then $|\varphi(u)| < |u|$;

c) For each $u \in \overline{B}$, $\varphi(\varphi(u)) = \varphi(u)$.

Proposition 4.3 Let $u = (i, xy) \in \overline{B}$. Then:

a)
$$\varphi(u) = \varphi(i, \varphi(x) \varphi(y));$$

b) $\varphi(u) = \varphi(i, \varphi(x)y) = \varphi(i, x\varphi(y)).$

Proposition 4.4 Let $u = (i, xx) \in \overline{B}$. Then $\varphi(u) = \varphi(x)$.

Proposition 4.5 (I) Let u = (i, (j, zw)y), $j \le i$. Then $\varphi(u) = \varphi(i, zy)$. (II) Let u = (i, x(j, zw)), $i \le j$. Then $\varphi(u) = \varphi(i, xw)$.

(III) Let u = (i, (j, zw)y), i < j. Then $\varphi(u) = (j, z(i, wy))$.

(IV) Let u = (i, x(j, xz)), j < i. Then $\varphi(u) = \varphi(j, xz)$.

Let $Q = \varphi(\overline{B})$. If $u \in Q$ then there is $v \in \overline{B}$ such that $\varphi(v)=u$, and by Proposition 4.2 c) we have $\varphi(u) = \varphi(\varphi(v)) = \varphi(v) = u$. It is clear that if $\varphi(u)=u$ then $u \in \varphi(\overline{B}) = Q$. Hence, $Q = \{u \mid u \in \overline{B}, \varphi(u) = u\}$.

We define maps
$$*_i : Q \times Q \to Q, i \in \mathbb{N}_m$$
 by
 $x *_i y = \varphi(i, xy).$ (9)

Proposition 4.6 For each $i \in \mathbb{N}_m$, $(Q; *_i)$ are rectangular bands that satisfy (*i*), (*ii*) and (*iii*) from Proposition 3.1.

Let [] be the (m + k, m) – operation on Q defined by

$$[x_1^{m+k}]_i = x_i *_i x_{i+k}, \ x_1^{m+k} \in Q^{m+k}, \ i \in \mathbb{N}_m.$$
(10)

Theorem 4.7 (Q; []) is a free (m+k, m)-band with a basis *B*.