## **Generalized Associative Spectra**

#### Sebastian Liebscher

Institut für Algebra Technische Universität Dresden

#### Conference on Algorithmic Complexity and Universal Algebra, 2007



## Outline

- Definition of the Generalized Associative Spectrum
  - Definition of Bracketings
  - Definition of *p*-ary Groupoids and Regular Operations
  - Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms
- 3 New Results
  - A Binary Example with a Quadratic Spectrum
  - No Need for Groupoids for Associative Spectra
  - Examples with Polynomial Spectra of Arbitrary Degree

**Definition of Bracketings** 

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Outline

## Definition of the Generalized Associative Spectrum

#### Definition of Bracketings

Definition of *p*-ary Groupoids and Regular Operations
Definition of the Generalized Associative Spectrum

## 2 Generalizations of Basic Results

- General Associative Law
- Estimations of the Generalized Associative Spectrum
- Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



Definition of the Generalized Associative Spectrum

Generalizations of Basic Results New Results Summary

#### Definition of Bracketings

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Introductory Example

*p* = 2:

((xx)x) (x(xx))





Definition of the Generalized Associative Spectrum

Generalizations of Basic Results New Results Summary

#### Definition of Bracketings

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Introductory Example





Definition of Bracketings

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## **Definition of Bracketings**

#### **Definition (Bracketings)**

Term algebra: 
$$extsf{T}^{(m{p})} := \left( extsf{T}_{\omega}(x), \omega^{ extsf{T}^{(m{p})}} 
ight)$$
 with

- $p \in \mathbb{N}_{\geq 2}$
- alphabet {x}
- signature  $\{\omega\}, \ \omega p$ -ary operation symbol



**Definition of Bracketings** 

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## **Definition of Bracketings**

#### Definition (Bracketings)

Term algebra: 
$$\boldsymbol{T}^{(\boldsymbol{p})} := \left(T_{\omega}(x), \omega^{T^{(\boldsymbol{p})}}\right)$$
 with

- $p \in \mathbb{N}_{\geq 2}$
- alphabet {x}
- signature  $\{\omega\}$ ,  $\omega$  *p*-ary operation symbol

We call the (unary!) terms  $t \in T_{\omega}(x)$  bracketings.



**Definition of Bracketings** 

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

NISCHE

RSITÄT

## **Definition of Bracketings**

#### **Definition (Bracketings)**

Term algebra: 
$$\boldsymbol{T}^{(\boldsymbol{p})} := \left(T_{\omega}(x), \omega^{T^{(\boldsymbol{p})}}\right)$$
 with

- *p* ∈ ℕ<sub>≥2</sub>
- alphabet {x}
- signature  $\{\omega\}$ ,  $\omega$  *p*-ary operation symbol

We call the (unary!) terms  $t \in T_{\omega}(x)$  bracketings.

#### Definition (Occurence number)

The occurence number  $|t|_{\omega}$  of a bracketing  $t \in T_{\omega}(x)$  is the number of occurences of the symbol  $\omega$  in t.  $\implies |x|_{\omega} = 0, \qquad |\omega t_1 t_2 \dots t_p|_{\omega} = 1 + \sum_{k=1}^{p} |t_k|_{\omega}$ 

**Definition of Bracketings** 

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## **Definition of Bracketings - 2**

#### Notation

The set of bracketings with occurence number *n*:

$$\mathcal{B}_n^{(p)} := \{t \in \mathcal{T}_\omega(x) \mid |t|_\omega = n\}$$



#### **Definition of Bracketings**

Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Definition of Bracketings - 2

#### Notation

The set of bracketings with occurence number n:

$$B_n^{(p)} := \{t \in T_\omega(x) \mid |t|_\omega = n\}$$

• 
$$B_0^{(2)} = \{x\}$$
  
•  $B_1^{(2)} = \{\omega xx\} = \{(xx)\}$   
•  $B_2^{(2)} = \{\omega \omega xxx, \omega x \omega xx\} = \{((xx)x), (x(xx))\}$ 



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Outline

## Definition of the Generalized Associative Spectrum Definition of Bracketings

- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Definition of *p*-ary Groupoids and Regular Operations

#### Definition (p-ary groupoid)

 $\boldsymbol{G} = \langle \boldsymbol{G}, \boldsymbol{f} \rangle$  *p*-ary groupoid : $\iff \boldsymbol{f} : \boldsymbol{G}^{p} \longrightarrow \boldsymbol{G}$  *p*-ary operation



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Definition of *p*-ary Groupoids and Regular Operations

#### Definition (p-ary groupoid)

 $\boldsymbol{G} = \langle \boldsymbol{G}, \boldsymbol{f} \rangle$  *p*-ary groupoid : $\iff \boldsymbol{f} : \boldsymbol{G}^{p} \longrightarrow \boldsymbol{G}$  *p*-ary operation

#### Definition (Enumeration)

For a bracketing  $t \in T_{\omega}(x)$ ,  $\varepsilon$  enumerates the symbols x in t beginning with 1.



Definition of the Generalized Associative Spectrum

Generalizations of Basic Results New Results Summary Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Introductory Example





Definition of the Generalized Associative Spectrum

Generalizations of Basic Results New Results Summary Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Introductory Example



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Definition of *p*-ary Groupoids and Regular Operations

#### Definition (p-ary groupoid)

 $\boldsymbol{G} = \langle \boldsymbol{G}, \boldsymbol{f} \rangle$  *p*-ary groupoid : $\iff \boldsymbol{f} : \boldsymbol{G}^{p} \longrightarrow \boldsymbol{G}$  *p*-ary operation

#### Definition (Enumeration)

For a bracketing  $t \in T_{\omega}(x)$ ,  $\varepsilon$  enumerates the symbols x in t beginning with 1.

#### Definition (Regular operation)

For a bracketing  $t \in T_{\omega}(x)$  and a *p*-ary groupoid *G*, the regular operation  $t^{\varepsilon; G}$  is the term operation of  $\varepsilon(t)$ .



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

## Outline

#### Definition of the Generalized Associative Spectrum

- Definition of Bracketings
- Definition of p-ary Groupoids and Regular Operations

### • Definition of the Generalized Associative Spectrum

- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Summary

## Definition of the Generalized Associative Spectrum

$$egin{array}{rll} ((xx)x)^{arepsilon;\langle\mathbb{R},-
angle} & (a_1,a_2,a_3) & = & (a_1-a_2)-a_3 \ (x(xx))^{arepsilon;\langle\mathbb{R},-
angle} & (a_1,a_2,a_3) & = & a_1-(a_2-a_3) \end{array}$$



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Summary

## Definition of the Generalized Associative Spectrum

$$\begin{array}{rcl} ((xx)x)^{\varepsilon;\langle\mathbb{R},-\rangle} \; (a_1,a_2,a_3) &=& (a_1-a_2)-a_3 \\ (x(xx))^{\varepsilon;\langle\mathbb{R},-\rangle} \; (a_1,a_2,a_3) &=& a_1-(a_2-a_3) \\ ((x(xx))x)^{\varepsilon;\langle\mathbb{R},-\rangle} \; (a_1,a_2,a_3,a_4) &=& (a_1-(a_2-a_3))-a_4 \\ (x(x(xx)))^{\varepsilon;\langle\mathbb{R},-\rangle} \; (a_1,a_2,a_3,a_4) &=& a_1-(a_2-(a_3-a_4)) \end{array}$$



Definition of Bracketings Definition of *p*-ary Groupoids and Regular Operations Definition of the Generalized Associative Spectrum

Summary

## Definition of the Generalized Associative Spectrum

$$\neq \begin{bmatrix} ((xx)x)^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3) &= (a_1-a_2)-a_3 \\ (x(xx))^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3) &= a_1-(a_2-a_3) \\ = \begin{bmatrix} ((x(xx))x)^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3,a_4) &= (a_1-(a_2-a_3))-a_4 \\ (x(x(xx)))^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3,a_4) &= a_1-(a_2-(a_3-a_4)) \end{bmatrix}$$



Definition of the Generalized Associative Spectrum

NISCHE RSITAT )FN

Summary

## Definition of the Generalized Associative Spectrum

#### Example

$$= \begin{bmatrix} ((xx)x)^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1, a_2, a_3) &= (a_1 - a_2) - a_3 \\ (x(xx))^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1, a_2, a_3) &= a_1 - (a_2 - a_3) \\ = \begin{bmatrix} ((x(xx))x)^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1, a_2, a_3, a_4) &= (a_1 - (a_2 - a_3)) - a_4 \\ (x(x(xx)))^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1, a_2, a_3, a_4) &= a_1 - (a_2 - (a_3 - a_4)) \end{bmatrix}$$

#### Definition (Associative spectrum)

For a *p*-ary groupoid **G**, the *n*-th element of the associative spectrum of G is the number of different regular operations of bracketings of occurrence number n:

$$s_{\boldsymbol{G}}(\boldsymbol{n}) := \left| \left\{ t^{\varepsilon; \boldsymbol{G}} \mid t \in B_{\boldsymbol{n}}^{(\boldsymbol{p})} \right\} \right|.$$

Summarv

General Associative Law Estimations of the Generalized Associative Spectru Substructures, Homomorphic Images and Isomorph

## Outline

#### Definition of the Generalized Associative Spectrum

- Definition of Bracketings
- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



Summarv

#### General Associative Law

Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

## **General Associative Law**

$$\neq \begin{bmatrix} ((xx)x)^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3) &= (a_1-a_2)-a_3, \\ (x(xx))^{\varepsilon;\langle\mathbb{R},-\rangle} (a_1,a_2,a_3) &= a_1-(a_2-a_3) \\ s_{\langle\mathbb{R},-\rangle}(2) = 2 \end{bmatrix}$$



Summarv

#### General Associative Law

Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

## **General Associative Law**

#### Example

$$\neq \boxed{((xx)x)^{\varepsilon;\langle \mathbb{R}, -\rangle} (a_1, a_2, a_3) = (a_1 - a_2) - a_3,}_{(x(xx))^{\varepsilon;\langle \mathbb{R}, -\rangle} (a_1, a_2, a_3) = a_1 - (a_2 - a_3)}$$
$$s_{\langle \mathbb{R}, -\rangle}(2) = 2$$

#### Proposition (General associative law)

For a *p*-ary groupoid **G** it holds:

• **G** is associative (i.e. 
$$s_{\boldsymbol{G}}(2) = 1$$
)  $\iff \forall n \in \mathbb{N} : s_{\boldsymbol{G}}(n) = 1$ 

Summarv

#### General Associative Law

Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

## **General Associative Law**

#### Example

$$\neq \boxed{((xx)x)^{\varepsilon;\langle \mathbb{R}, -\rangle} (a_1, a_2, a_3) = (a_1 - a_2) - a_3,}_{(x(xx))^{\varepsilon;\langle \mathbb{R}, -\rangle} (a_1, a_2, a_3) = a_1 - (a_2 - a_3)}$$
$$s_{\langle \mathbb{R}, -\rangle}(2) = 2$$

#### Proposition (General associative law)

For a *p*-ary groupoid **G** it holds:

- **G** is associative (i.e.  $s_{\mathbf{G}}(2) = 1$ )  $\iff \forall n \in \mathbb{N} : s_{\mathbf{G}}(n) = 1$
- $s_{\boldsymbol{G}}(n) = 1$  for  $n \in \mathbb{N}_{\geq 2} \implies \forall m \in \mathbb{N}, m \geq n : s_{\boldsymbol{G}}(m) = 1$

General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

## Outline

### Definition of the Generalized Associative Spectrum

Summarv

- Definition of Bracketings
- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum

## Generalizations of Basic Results

General Associative Law

#### Estimations of the Generalized Associative Spectrum

Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

Summary

## Estimations of the Generalized Associative Spectrum

#### Definition (Generalized CATALAN numbers)

Generalized CATALAN numbers  $(C_n^{(p)})_{n \in \mathbb{N}}$ :

$$C_n^{(p)} := \frac{1}{(p-1)\cdot n+1} \cdot \binom{p \cdot n}{n}$$



General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

1 n

Estimations of the Generalized Associative Spectrum

Definition (Generalized CATALAN numbers)

Generalized CATALAN numbers  $(C_n^{(p)})_{n \in \mathbb{N}}$ :

$$C_n^{(p)} := \frac{1}{(p-1)\cdot n + 1} \cdot \binom{p \cdot n}{n}$$

#### Proposition

For a *p*-ary groupoid **G** it holds:

•  $\forall n \in \mathbb{N}$ :  $1 \leq s_{\boldsymbol{G}}(n) \leq C_n^{(p)}$ 

• 
$$\forall n \in \mathbb{N}_{>0}$$
:  $s_{\boldsymbol{G}}(n) \leq \sum_{i:\{1,\dots,p\} \to \mathbb{N}, \sum_{k=1}^{p} i(k)=n-1} \left( \prod_{j=1}^{r} s_{\boldsymbol{G}}(i(j)) \right)$ 

General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

## Outline

#### Definition of the Generalized Associative Spectrum

Summarv

- Definition of Bracketings
- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum

## Generalizations of Basic Results

- General Associative Law
- Estimations of the Generalized Associative Spectrum

### • Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

# Substructures, Homomorphic Images and Isomorphisms

#### Proposition

For two *p*-ary groupoids *G*, *H* it holds:

• if *H* and *G* are isomorphic or antiisomorphic then

$$\forall n \in \mathbb{N} : s_H(n) = s_G(n).$$

Remark (antiisomorphic)

$$\varphi\left(f_{\boldsymbol{H}}\left(g_{1},\ldots,g_{p}\right)\right)=f_{\boldsymbol{G}}\left(\varphi(g_{p}),\ldots,\varphi(g_{1})\right)$$

General Associative Law Estimations of the Generalized Associative Spectrum Substructures, Homomorphic Images and Isomorphisms

# Substructures, Homomorphic Images and Isomorphisms

Summarv

#### Proposition

For two *p*-ary groupoids *G*, *H* it holds:

• if *H* and *G* are isomorphic or antiisomorphic then

$$\forall n \in \mathbb{N} : s_H(n) = s_G(n).$$

• if *H* is a subgroupoid or homorphic image of *G* then

$$\forall n \in \mathbb{N} : s_H(n) \leq s_G(n).$$

#### Remark (antiisomorphic)

$$\varphi\left(f_{\boldsymbol{H}}\left(g_{1},\ldots,g_{p}\right)\right)=f_{\boldsymbol{G}}\left(\varphi(g_{p}),\ldots,\varphi(g_{1})\right)$$

A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary De

## Outline

### Definition of the Generalized Associative Spectrum

Summarv

- Definition of Bracketings
- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

NISCHE

A Binary Example with a Quadratic Spectrum

#### Example

The associative spectrum of the groupoid  $\bm{G}:=\langle \mathbb{Z}_6[\textbf{Y}],\oplus\rangle$  with the operation

is quadratic:

$$\forall n \in \mathbb{N}_{\geq 2}: \ s_{\boldsymbol{G}}(n) = \frac{n^2 + n - 2}{2}.$$

(The operations occurring in the definition of  $\oplus$  are addition and multiplication in the polynomial ring  $\langle \mathbb{Z}_6[Y], +, \cdot \rangle$ .)

A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

## Outline

Definition of the Generalized Associative Spectrum

Summarv

- Definition of Bracketings
- Definition of *p*-ary Groupoids and Regular Operations
- Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degr

> NISCHE .RSITÄT

Summary

Congruence Relations with the Invariance Property

#### Proposition

For a *p*-ary groupoid **G** the bracketing congruence

$$\mathit{Id}_{m{G}} := \left\{ \left. (s,t) \in \left( \mathit{T}_{\omega}(x) 
ight)^2 \ \right| \ s^{arepsilon; m{G}} = t^{arepsilon; m{G}} 
ight\}$$

A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

DCITX

Summary

Congruence Relations with the Invariance Property

#### Proposition

For a *p*-ary groupoid **G** the bracketing congruence

$$\mathit{Id}_{\mathbf{G}} := \left\{ \left. (s,t) \in \left( \mathit{T}_{\omega}(x) 
ight)^2 \ \right| \ s^{arepsilon; \mathbf{G}} = t^{arepsilon; \mathbf{G}} 
ight\}$$

is a congruence relation in  $T^{(p)}$  with the invariance property:

• 
$$\forall (s,t) \in Id_{\mathbf{G}} : |s|_{\omega} = |t|_{\omega}$$
  
•  $\forall (s,t) \in Id_{\mathbf{G}} \forall t_1, \dots, t_k \in T_{\omega}(x) :$   
 $\left(s^{\varepsilon; \mathcal{T}^{(p)}}(t_1, \dots, t_k), t^{\varepsilon; \mathcal{T}^{(p)}}(t_1, \dots, t_k)\right) \in Id_{\mathbf{G}}$ 

where k is the number of symbols x in s (and t).

A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

Summary

## Congruence Relations with the Invariance Property Are All You Need

#### Remark

For a *p*-ary groupoid **G** it holds:

$$\forall n \in \mathbb{N} : s_{\mathbf{G}}(n) = \left| \left\{ [t]_{ld_{\mathbf{G}}} \in T_{\omega}(x)_{/ld_{\mathbf{G}}} \mid t \in B_{n}^{(p)} \right\} \right|.$$



A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

Summary

## Congruence Relations with the Invariance Property Are All You Need

#### Remark

For a *p*-ary groupoid **G** it holds:

$$\forall n \in \mathbb{N} : s_{\mathbf{G}}(n) = \left| \left\{ [t]_{ld_{\mathbf{G}}} \in T_{\omega}(x)_{/ld_{\mathbf{G}}} \mid t \in B_{n}^{(p)} \right\} \right|.$$

#### Theorem (No need for groupoids)

For a congruence relation  $\Sigma$  in  $T^{(p)}$  with the invariance property there exists a *p*-ary groupoid **G** with:

$$\Sigma = Id_{\mathbf{G}}.$$

New Results

Summary

A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

## Outline

- Definition of the Generalized Associative Spectrum
  - Definition of Bracketings
  - Definition of *p*-ary Groupoids and Regular Operations
  - Definition of the Generalized Associative Spectrum
- 2 Generalizations of Basic Results
  - General Associative Law
  - Estimations of the Generalized Associative Spectrum
  - Substructures, Homomorphic Images and Isomorphisms

- A Binary Example with a Quadratic Spectrum
- No Need for Groupoids for Associative Spectra
- Examples with Polynomial Spectra of Arbitrary Degree



A Binary Example with a Quadratic Spectrum No Need for Groupoids for Associative Spectra Examples with Polynomial Spectra of Arbitrary Degree

Summary

Examples with Polynomial Spectra of Arbitrary Degree

#### Theorem

With the concept of the congruence relations with the invariance property it is possible to find the following spectra:

$$s_{k}^{(p)}(n) = \begin{cases} C_{n}^{(p)} & \text{for } n < k \\ \frac{(p-1) \cdot (n-k) + 1}{k!} \\ \cdot \prod_{\ell=1}^{k-1} ((p-1) \cdot n + k + 1 - \ell) & \text{for } n \ge k \end{cases}$$

with  $k \in \mathbb{N}, k \ge 1$ .

## Summary

- Associative spectra can be generalized to *p*-ary operations in a natural way.
- The concept of the congruence relations with the invariance property is a powerful tool to study associative spectra.



## Summary

- Associative spectra can be generalized to *p*-ary operations in a natural way.
- The concept of the congruence relations with the invariance property is a powerful tool to study associative spectra.

## Thank you

