Andrei Krokhin - MAX CSP and supermodularity on lattices

Lattices and the complexity of maximum constraint satisfaction

1

Andrei Krokhin Durham University

Constraints

• D - a finite set with |D| > 1;

•
$$R_D^{(m)} = \{ f \mid f : D^m \to \{0, 1\} \}, \ R_D = \bigcup_{m=1}^{\infty} R_D^{(m)}.$$

Definition 1 A constraint over a set of variables $V = \{x_1, x_2, ..., x_n\}$ is an expression of the form $f(\mathbf{x})$ where

•
$$f \in R_D^{(m)}$$
 is the constraint function,

• $\mathbf{x} = (x_{i_1}, \ldots, x_{i_m})$ the constraint scope.

The constraint $f(\mathbf{x})$ is said to be satisfied on a tuple $\mathbf{a} = (a_{i_1}, \dots, a_{i_m}) \in D^m$ if $f(\mathbf{a}) = 1$.

Maximum constraint satisfaction problem

MAX CSP

Instance: A collection f₁(**x**₁),..., f_q(**x**_q) of constraints over V = {x₁,...,x_n}; each constraint f_i(**x**_i) has a weight w_i ∈ Z⁺.
Goal: Find an assignment φ : V → D that maximises the total weight of satisfied constraints; in other words, maximise the function f : Dⁿ → Z⁺, defined by

$$f(x_1,\ldots,x_n) = \sum_{i=1}^q w_i \cdot f_i(\mathbf{x}_i).$$

Parameterisation of MAX CSP

For a finite set $\mathcal{F} \subseteq R_D$,

MAX $CSP(\mathcal{F})$ consists of all MAX CSP instances in which all constraint functions f_i belong to \mathcal{F} .

Example 1 Let $D = \{0, 1\}$ and $\mathcal{F} = \{neq\}$ where neq(x, y) = 1 if $x \neq y$ and neq(x, y) = 0 otherwise. Then MAX $CSP(\mathcal{F})$ is precisely MAX CUT.

Indeed, for a graph G = (V, E) with $V = \{x_1, \ldots, x_n\}$, computing maximum cut is the same as maximising

$$f(x_1, \dots, x_n) = \sum_{e=(x_i, x_j) \in E} w_e \cdot neq(x_i, x_j).$$

Classification problem

Problem 1 Characterise (assuming that $P \neq NP$) sets \mathcal{F} such that

- MAX $CSP(\mathcal{F})$ is tractable (i.e., in **PO**)
- MAX $CSP(\mathcal{F})$ is **NP**-hard.

Example 2 The problem MAX $CSP(\{neq\})$ (MAX CUT) from the previous slide is **NP**-hard.

Supermodularity on lattices

Definition 2 Let \mathcal{L} be a lattice on a finite set D. A function $f: D^n \to \mathbb{Q}$ is called supermodular on \mathcal{L} if

 $f(\mathbf{a}) + f(\mathbf{b}) \le f(\mathbf{a} \sqcup \mathbf{b}) + f(\mathbf{a} \sqcap \mathbf{b}) \text{ for all } \mathbf{a}, \mathbf{b} \in D^n.$

Problem 2 Fix a finite lattice \mathcal{L} and let $SFM(\mathcal{L})$ be the problem of maximising a given n-ary supermodular function f on \mathcal{L} . Is there an algorithm solving $SFM(\mathcal{L})$ in polynomial time in n and FE?

Theorem 1 (Schrijver'00, Iwata et al.'01) SFM(\mathcal{L}) is tractable for any distributive lattice \mathcal{L} .

From $SFM(\mathcal{L})$ to $Max \ CSP(\mathcal{F})$

Assume that

- \mathcal{F} consists of supermodular 0-1 functions on \mathcal{L} , and
- $SFM(\mathcal{L})$ is tractable.

Then

- $f(x_1, \ldots, x_n) = \sum_{i=1}^q w_i \cdot f_i(\mathbf{x}_i)$ is supermodular on \mathcal{L} and, moreover, FE is linear in q,
- so the algorithm for $SFM(\mathcal{L})$ solves MAX $CSP(\mathcal{F})$ in polynomial time.

Corollary 1 MAX $CSP(\mathcal{F})$ is tractable if \mathcal{F} consists of supermodular 0-1 functions on a finite distributive lattice.

Interval-doubling construction

Finite bounded lattices

Definition 3 A finite bounded lattice is a lattice that can be obtained from the one-element lattice by successive doubling of intervals.

Example 3 The pentagon N_5 is a bounded lattice.

A tractability result

Theorem 2 (AK, Larose '06)

For any fixed finite bounded lattice \mathcal{L} , the problem $SFM(\mathcal{L})$ can be solved in polynomial time in n and FE.

Facts about the class of finite bounded lattices:

- contains all finite distributive lattices
- pseudovariety (closed under H, S, P_{fin})
- satisfies no non-trivial lattice identity
- the smallest lattice not in the class is the diamond M_3

Corollary 2 MAX $CSP(\mathcal{F})$ is tractable if \mathcal{F} consists of supermodular 0-1 functions on a finite bounded lattice.

Supermodular 0-1 functions

Let \mathcal{L} be a lattice on D and f an m-ary 0-1 function on D. Set $S_f = \{ \mathbf{x} \in D^m \mid f(\mathbf{x}) = 1 \}.$ Then the supermodularity (on \mathcal{L}) condition for f

 $f(\mathbf{a}) + f(\mathbf{b}) \le f(\mathbf{a} \sqcup \mathbf{b}) + f(\mathbf{a} \sqcap \mathbf{b})$

can be expressed as the following

- 1. $\mathbf{a}, \mathbf{b} \in S_f \Rightarrow \mathbf{a} \sqcup \mathbf{b}, \mathbf{a} \sqcap \mathbf{b} \in S_f$ where \sqcup and \sqcap act component-wise (i.e., S_f is a sublattice of \mathcal{L}^m), and
- 2. $\mathbf{a} \in S_f, \mathbf{b} \notin S_f \Rightarrow {\mathbf{a} \sqcup \mathbf{b}, \mathbf{a} \sqcap \mathbf{b}} \cap S_f \neq \emptyset,$ i.e., S_f is a sort of "semi-ideal, semi-filter" of \mathcal{L}^m .

Examples

igodot - elements in S_f

2-monotone functions on lattices

Definition 4 A function $f \in R_D^{(m)}$ is called 2-monotone on a lattice \mathcal{L} if S_f is either an ideal, or a filter, or a union of an ideal and a filter in \mathcal{L}^m .

Fact 1 f is 2-monotone on $\mathcal{L} \Rightarrow f$ is supermodular on \mathcal{L} .

Theorem 3 (Cohen, Cooper, Jeavons, AK '05) Let \mathcal{L} be a lattice on D, and $\mathcal{F} \subseteq R_D$ consist of 2-monotone functions on \mathcal{L} . Then MAX $\text{CSP}(\mathcal{F})$ is in **PO**.

• For each finite lattice \mathcal{L} , there exists MAX $\operatorname{CSP}(\mathcal{F})$ whose tractability can (now) be explained only by supermodularity on this lattice \mathcal{L} .

Classification for small domains

For |D| = 2, the complexity of MAX $CSP(\mathcal{F})$ was classified by Creignou (1995) without using supermodularity.

Theorem 4 (Jonsson, Klasson, AK '06) Let $|D| \leq 3$ and let $\mathcal{F} \subseteq R_D$ be a core.

- If there is a chain \mathcal{L} on D such that all functions in \mathcal{F} are supermodular on \mathcal{L} then MAX $CSP(\mathcal{F})$ is in **PO**.
- Otherwise, MAX $CSP(\mathcal{F})$ is **NP**-hard.

NB. This classification result is a dichotomy theorem, it says problems are either easy or as hard as can be.

Classification with "constants"

For $d \in D$, let $u_d(x) = 1$ iff x = d. Let $\mathcal{C}_D = \{u_d \mid d \in D\}$.

Having $\mathcal{C}_D \subseteq \mathcal{F}$ is equivalent to allowing constraints of the form $w_i \cdot u_d(x)$, specifying how much you want that x = d.

Theorem 5 (Deineko, Jonsson, Klasson, AK '06) Let D be any finite set and let $C_D \subseteq \mathcal{F} \subseteq R_D$.

- If there is a chain \mathcal{L} on D such that all functions in \mathcal{F} are supermodular on \mathcal{L} then MAX $CSP(\mathcal{F})$ is in **PO**.
- Otherwise, MAX $CSP(\mathcal{F})$ is **NP**-hard.

NB. It is easy to check that every u_d is supermodular on a lattice iff the lattice is a chain.