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Two problems

The universal membership problem

INPUT two finite algebras A and B
PROBLEM decide whether B ∈ HSP(A).

The membership problem for a fixed algebra A

INPUT a finite algebra B
PROBLEM decide whether B ∈ HSP(A).

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 2 / 17



Two problems

The universal membership problem

INPUT two finite algebras A and B
PROBLEM decide whether B ∈ HSP(A).

The membership problem for a fixed algebra A

INPUT a finite algebra B
PROBLEM decide whether B ∈ HSP(A).

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 2 / 17



2EXPTIME

EXPSPACE

EXPTIME

PSPACE

NP

LLLLLLLLLLL co-NP

pppppppppppp

P

TIME

The amount of steps performed
before accepting or rejecting the
input.

SPACE

The amount of tape required to
finish the computations.

The rate of growth

The function bounding the amount
of a resource.
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The first question

Problem 2.5 [Margolis, Sapir 1995]

For every finite universal algebra A find the computational complexity of
the membership problem for the variety generated by A. In particular is
there a finite algebra A for which the problem cannot be solved in
polynomial time or in polynomial space?

Answer

We know “How hard can it be”, which answers the second part of the
question as well.
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The second question

The equivalence problem

INPUT two finite algebras A and B
PROBLEM decide whether HSP(B) = HSP(A).

Problem 6.8 [Bergman, Slutzki 2000]

Is the equivalence problem complete for 2EXPTIME? Is it in EXPSPACE?

Answer

It is complete for 2EXPTIME.
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The connected problem

The equivalence problem

INPUT two finite algebras A and B
PROBLEM decide whether HSP(B) = HSP(A).

The reduction

A problem i is easier than problem ג if every instance of problem i can
be easily interpreted as an instance of problem ג having the same answer.

A reduction

Instead of asking whether B ∈ HSP(A) ask whether

HSP(B× A) = HSP(A).
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The upper bound

An algorithm [Bergman, Slutzki 2000]

For algebras A and B given on input let p0, . . . , p|B|−1 ⊆ AA|B|
denote the

projections

I let ϕ be a function from p0, . . . , p|B|−1 onto B

I REPEAT
for a basic operation t(x̄) and elements ā from the domain of ϕ

I if t(ā) is not in a domain of ϕ then extend ϕ,
I if ϕ(t(ā)) 6= t(ϕ(ā)) RETURN B /∈ HSP(A).

UNTIL ϕ is correctly extended to the subalgebra of AA|B|

I RETURN B ∈ HSP(A).

The complexity

The algorithm works in doubly exponential time.
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Some lower bounds
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Székely 1998

The flat graph algebra of this graph
generates a variety with NP-complete
membership problem.

Kozik, Kun 2005

Same for graph algebra.

Jackson, McKenzie 2005

A semigroup (based on this graph)
generating a variety with NP-hard
membership problem.
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Turing machines

A simple Turing machine

I states of the Turing machine are α and β

I the operations of the Turing machine are α 0 1β R, β 1 1β R,
β 0 1α L, α 1 1α L.
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Turing machines

A simple Turing machine

I states of the Turing machine are α and β

I the operations of the Turing machine are α 0 1β R, β 1 1β R,
β 0 1α L, α 1 1α L.

An instruction α 0 1 β R

I in state α

I reading 0

I write 1

I change state to β

I and move R right.
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Turing machines

A simple Turing machine

I states of the Turing machine are α and β

I the operations of the Turing machine are α 0 1β R, β 1 1β R,
β 0 1α L, α 1 1α L.

0 0 0 0 0 0 0 0 0 0

↑
α
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McKenzie’s A(T) (part I)

Ideas
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McKenzie’s A(T) (part I)

Ideas

I An element of A(T)n can encode
I a tape of length n.
I a position of a head on a tape.
I an internal state of the machine.

Problems

I The coordinates are indistinguishable.

I The coordinates are unordered.

I It cannot be done.
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McKenzie’s A(T) (part I)

Ideas

I An element of A(T)n can encode a configuration of the machine.

I Introduce special elements of A(T)n acting as markers for different
coordinates
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I A configuration and markers produce the next configuration.
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McKenzie’s A(T) (part I)

Ideas

I An element of A(T)n can encode a configuration of the machine.

I Introduce special elements of A(T)n acting as markers for different
coordinates

I We need to know “left” from “right” among markers.

I A configuration and markers produce the next configuration.

Solution

The markers are linearly ordered in subalgebras of A(T)n having
subdirectly irreducible homomorphic images.
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McKenzie’s A(T) (part II)

The construction

I Start with A(T)n ≥ B
onto−−→ S where S is subdirectly irreducible.

I The algebra B contains markers and some configuration of the Turing
machine T (determined by the algebra S).

I The algebra B contains the whole computation starting at this
configuration.

I If the computation ends in an accepting state then S is not
subdirectly irreducible.

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 11 / 17



McKenzie’s A(T) (part II)

The construction

I Start with A(T)n ≥ B
onto−−→ S where S is subdirectly irreducible.

I The algebra B contains markers and some configuration of the Turing
machine T (determined by the algebra S).

I The algebra B contains the whole computation starting at this
configuration.

I If the computation ends in an accepting state then S is not
subdirectly irreducible.

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 11 / 17



McKenzie’s A(T) (part II)

The construction

I Start with A(T)n ≥ B
onto−−→ S where S is subdirectly irreducible.

I The algebra B contains markers and some configuration of the Turing
machine T (determined by the algebra S).

I The algebra B contains the whole computation starting at this
configuration.

I If the computation ends in an accepting state then S is not
subdirectly irreducible.

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 11 / 17



McKenzie’s A(T) (part II)

The construction

I Start with A(T)n ≥ B
onto−−→ S where S is subdirectly irreducible.

I The algebra B contains markers and some configuration of the Turing
machine T (determined by the algebra S).

I The algebra B contains the whole computation starting at this
configuration.

I If the computation ends in an accepting state then S is not
subdirectly irreducible.

Marcin Kozik (ECC and UJ) Varietal membership problem Szeged 2007 11 / 17



The McKenzie’s A(T) and beyond

In the algebra B such that A(T)n ≥ B
onto−−→ S
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Main differences

McKenzie’s A(T)

I polynomial tape

I blank tape

I control over finite subdirectly
irreducible algebras

A modification of A(T)

I exponential tape

I tape with the input word

I control over sufficiently big set
of algebras
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Non-deterministic Turing machines

A simple Turing machine

I states of the Turing machine are α and β

I the operations of the Turing machine are α 0 1β R, β 1 1β R,
β 0 1α L, α 1 1α L,

α 1 1 (REJECT) L, β 1 1 (ACCEPT)R.

Facts

I The machine is non-deterministic.

I The machine can accept and reject the same input.
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NP and co-NP
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Acc Re Acc

Accepting

The machines are working in polynomial time and

I for NP: “ACCEPT if at least one computation ACCEPTS”.

I for co-NP: “ACCEPT if all computations ACCEPT”.
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Alternating Turing machines
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Accepting

A configuration is accepting if

I the state is ACCEPT,

I it is of the type ∃ and there is next accepting configuration,

I it is of the type ∀ and all next configurations are accepting.
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Some news

A bad news [Savitch 1970]

EXPSPACE = NEXPSPACE

A good news [Chandra, Kozen, Stockmeyer 1981]

AEXPSPACE = 2EXPTIME

Theorem

There exists a finite algebra generating a variety with a 2EXPTIME
complete membership problem.
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