Varietal membership problem and alternation

Marcin Kozik

Eduard Čech Center Charles University Czech Republic

Algorithmics Research Group Jagiellonian University Poland

Algorithmic Complexity and Universal Algebra, Szeged 2007

Two problems

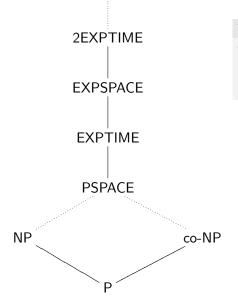
The universal membership problem

INPUT two finite algebras **A** and **B** PROBLEM decide whether $\mathbf{B} \in HSP(\mathbf{A})$.

The universal membership problem

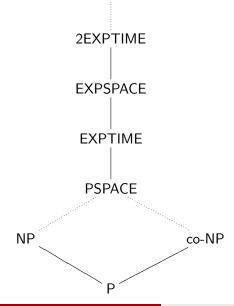
The membership problem for a fixed algebra A

 $\begin{array}{ll} \mathsf{INPUT} & \mathsf{a} \text{ finite algebra } \mathbf{B} \\ \mathsf{PROBLEM} & \mathsf{decide whether } \mathbf{B} \in \mathsf{HSP}(\mathbf{A}). \end{array}$



TIME

The amount of steps performed before accepting or rejecting the input.

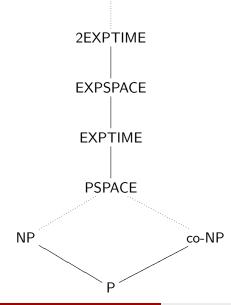


TIME

The amount of steps performed before accepting or rejecting the input.

SPACE

The amount of tape required to finish the computations.



TIME

The amount of steps performed before accepting or rejecting the input.

SPACE

The amount of tape required to finish the computations.

The rate of growth

The function bounding the amount of a resource.

Problem 2.5 [Margolis, Sapir 1995]

For every finite universal algebra **A** find the computational complexity of the membership problem for the variety generated by **A**. In particular is there a finite algebra **A** for which the problem cannot be solved in polynomial time or in polynomial space?

Problem 2.5 [Margolis, Sapir 1995]

For every finite universal algebra A find the computational complexity of the membership problem for the variety generated by A. In particular is there a finite algebra A for which the problem cannot be solved in polynomial time or in polynomial space?

Answer

We know "How hard can it be", which answers the second part of the question as well.

The second question

The equivalence problem

INPUTtwo finite algebras \mathbf{A} and \mathbf{B} PROBLEMdecide whether HSP(\mathbf{B}) = HSP(\mathbf{A}).

The second question

The equivalence problem

INPUTtwo finite algebras \mathbf{A} and \mathbf{B} PROBLEMdecide whether HSP(\mathbf{B}) = HSP(\mathbf{A}).

Problem 6.8 [Bergman, Slutzki 2000]

Is the equivalence problem complete for 2EXPTIME? Is it in EXPSPACE?

The second question

The equivalence problem

INPUTtwo finite algebras \mathbf{A} and \mathbf{B} PROBLEMdecide whether HSP(\mathbf{B}) = HSP(\mathbf{A}).

Problem 6.8 [Bergman, Slutzki 2000]

Is the equivalence problem complete for 2EXPTIME? Is it in EXPSPACE?

Answer

It is complete for 2EXPTIME.

The connected problem

The equivalence problem

INPUT	two finite algebras ${f A}$ and ${f B}$
PROBLEM	decide whether $HSP(\mathbf{B}) = HSP(\mathbf{A})$.

The connected problem

The equivalence problem

INPUTtwo finite algebras \mathbf{A} and \mathbf{B} PROBLEMdecide whether HSP(\mathbf{B}) = HSP(\mathbf{A}).

The reduction

A problem \Box is easier than problem \exists if every instance of problem \exists can be *easily* interpreted as an instance of problem \exists having the same answer.

The connected problem

The equivalence problem

INPUTtwo finite algebras \mathbf{A} and \mathbf{B} PROBLEMdecide whether HSP(\mathbf{B}) = HSP(\mathbf{A}).

The reduction

A problem \square is easier than problem \square if every instance of problem \square can be *easily* interpreted as an instance of problem \square having the same answer.

A reduction

Instead of asking whether $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$ ask whether

```
HSP(\mathbf{B} \times \mathbf{A}) = HSP(\mathbf{A}).
```

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

- ▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B
- ► REPEAT

for a basic operation $t(\bar{x})$ and elements \bar{a} from the domain of φ

UNTIL φ is correctly extended to the subalgebra of $\mathbf{A}^{\mathcal{A}^{|\mathcal{B}|}}$

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

- ▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B
- REPEAT for a basic operation $t(\bar{x})$ and elements \bar{a} from the domain of φ
 - if $t(\bar{a})$ is not in a domain of φ then extend φ ,

UNTIL φ is correctly extended to the subalgebra of $\mathbf{A}^{\mathcal{A}^{|\mathcal{B}|}}$

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

- ▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B
- ► REPEAT

for a basic operation $t(\bar{x})$ and elements \bar{a} from the domain of φ

- if $t(\bar{a})$ is not in a domain of φ then extend φ ,
- if $\varphi(t(\bar{a})) \neq t(\varphi(\bar{a}))$ RETURN **B** \notin HSP(**A**).

UNTIL φ is correctly extended to the subalgebra of $\mathbf{A}^{A^{|B|}}$

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

- ▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B
- ► REPEAT

for a basic operation $t(\bar{x})$ and elements \bar{a} from the domain of φ

- if $t(\bar{a})$ is not in a domain of φ then extend φ ,
- if $\varphi(t(\bar{a})) \neq t(\varphi(\bar{a}))$ RETURN **B** \notin HSP(**A**).

UNTIL φ is correctly extended to the subalgebra of $\mathbf{A}^{A^{|B|}}$

▶ RETURN $\mathbf{B} \in HSP(\mathbf{A})$.

An algorithm [Bergman, Slutzki 2000]

For algebras **A** and **B** given on input let $p_0, \ldots, p_{|B|-1} \subseteq A^{A^{|B|}}$ denote the projections

- ▶ let φ be a function from $p_0, \ldots, p_{|B|-1}$ onto B
- ► REPEAT

for a basic operation $t(\bar{x})$ and elements \bar{a} from the domain of φ

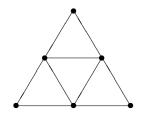
- if $t(\bar{a})$ is not in a domain of φ then extend φ ,
- if $\varphi(t(\bar{a})) \neq t(\varphi(\bar{a}))$ RETURN **B** \notin HSP(**A**).

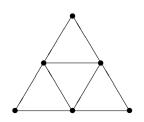
UNTIL φ is correctly extended to the subalgebra of $\mathbf{A}^{A^{|B|}}$

▶ RETURN $\mathbf{B} \in HSP(\mathbf{A})$.

The complexity

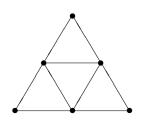
The algorithm works in doubly exponential time.





Székely 1998

The flat graph algebra of this graph generates a variety with NP-complete membership problem.

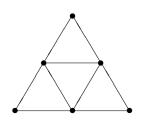


Székely 1998

The flat graph algebra of this graph generates a variety with NP-complete membership problem.

Kozik, Kun 2005

Same for graph algebra.



Székely 1998

The flat graph algebra of this graph generates a variety with NP-complete membership problem.

Kozik, Kun 2005

Same for graph algebra.

Jackson, McKenzie 2005

A semigroup (based on this graph) generating a variety with NP-hard membership problem.

A simple Turing machine

 \blacktriangleright states of the Turing machine are α and β

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

An instruction $\alpha 01\beta R$

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

An instruction $\alpha 0 1 \beta R$

- \blacktriangleright in state α
- reading 0

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

An instruction $\alpha 0 1 \beta R$

- \blacktriangleright in state α
- reading 0
- write 1

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

An instruction $\alpha 01\beta R$

- \blacktriangleright in state α
- reading 0
- write 1
- change state to β

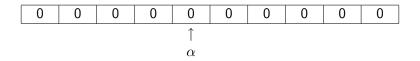
A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.

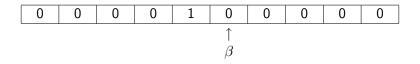
An instruction $\alpha 0 1 \beta R$

- \blacktriangleright in state α
- reading 0
- write 1
- \blacktriangleright change state to β
- and move R right.

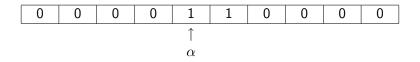
- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 0 1 \beta R$, $\beta 1 1 \beta R$, $\beta 0 1 \alpha L$, $\alpha 1 1 \alpha L$.



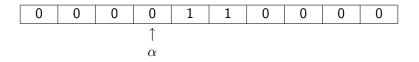
- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



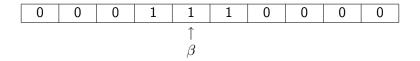
- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



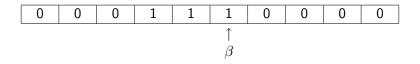
- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 0 1 \beta R$, $\beta 1 1 \beta R$, $\beta 0 1 \alpha L$, $\alpha 1 1 \alpha L$.



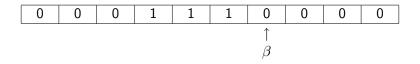
- states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



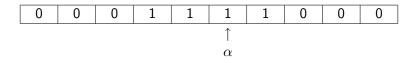
- states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



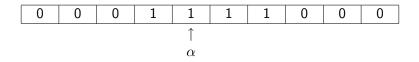
- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



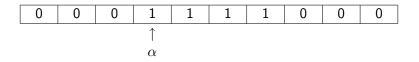
- states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



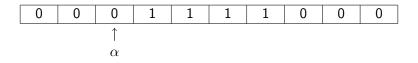
- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$.



- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 0 1 \beta R$, $\beta 1 1 \beta R$, $\beta 0 1 \alpha L$, $\alpha 1 1 \alpha L$.



Ideas

Ideas

• An element of $\mathbf{A}(\mathbf{T})^n$ can encode

- ▶ a *tape* of length *n*.
- a position of a head on a tape.
- an internal state of the machine.

Ideas

• An element of $A(T)^n$ can encode a configuration of the machine.

Ideas

• An element of $A(T)^n$ can encode a configuration of the machine.

Problems

• The coordinates are indistinguishable.

Marcin Kozik (ECC and UJ)

Varietal membership problem

Szeged 2007 10 / 17

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates

 $(0,\ldots,0,H,0,\ldots,0)\in A(\mathsf{T})$

Problems

The coordinates are indistinguishable.

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates

$$(0,\ldots,0,H,0,\ldots,0)\in A(\mathsf{T})$$

Problems

- The coordinates are indistinguishable.
- The coordinates are unordered.

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates
- ▶ We need to know "left" from "right" among markers.

Problems

- The coordinates are indistinguishable.
- The coordinates are unordered.

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates
- ▶ We need to know "left" from "right" among markers.

Problems

- The coordinates are indistinguishable.
- The coordinates are unordered.
- It cannot be done.

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates
- ▶ We need to know "left" from "right" among markers.

Solution

The *markers* are linearly ordered in subalgebras of $A(T)^n$ having subdirectly irreducible homomorphic images.

Ideas

- An element of $A(T)^n$ can encode a configuration of the machine.
- Introduce special elements of A(T)ⁿ acting as markers for different coordinates
- ▶ We need to know "left" from "right" among markers.
- ► A configuration and markers produce the next configuration.

Solution

The *markers* are linearly ordered in subalgebras of $A(T)^n$ having subdirectly irreducible homomorphic images.

The construction

Start with $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$ where **S** is subdirectly irreducible.

The construction

- Start with $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$ where **S** is subdirectly irreducible.
- The algebra B contains *markers* and some configuration of the Turing machine T (determined by the algebra S).

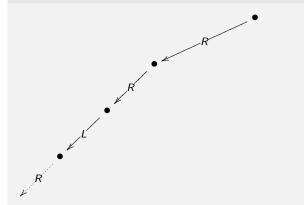
The construction

- Start with $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$ where **S** is subdirectly irreducible.
- The algebra B contains markers and some configuration of the Turing machine T (determined by the algebra S).
- The algebra B contains the whole computation starting at this configuration.

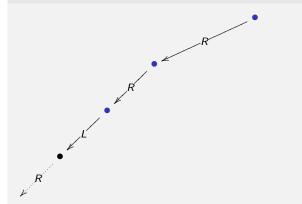
The construction

- Start with $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$ where **S** is subdirectly irreducible.
- The algebra B contains markers and some configuration of the Turing machine T (determined by the algebra S).
- The algebra B contains the whole computation starting at this configuration.
- If the computation ends in an accepting state then S is not subdirectly irreducible.

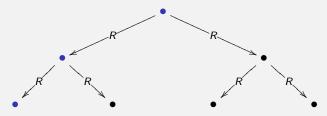
In the algebra ${\bf B}$ such that ${\bf A}({\bf T})^n \geq {\bf B} \xrightarrow[]{onto} {\bf S}$



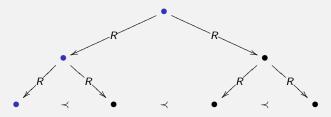
In the algebra ${\bf B}$ such that ${\bf A}({\bf T})^n \geq {\bf B} \xrightarrow[]{onto} {\bf S}$



In the algebra **B** such that $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$



In the algebra **B** such that $\mathbf{A}(\mathbf{T})^n \geq \mathbf{B} \xrightarrow{\text{onto}} \mathbf{S}$



A modification of A(T)

polynomial tape

A modification of A(T)

polynomial tape

exponential tape

- polynomial tape
- blank tape

A modification of A(T)

exponential tape

- polynomial tape
- blank tape

A modification of A(T)

- exponential tape
- tape with the input word

- polynomial tape
- blank tape
- control over finite subdirectly irreducible algebras

A modification of A(T)

- exponential tape
- tape with the input word

- polynomial tape
- blank tape
- control over finite subdirectly irreducible algebras

A modification of A(T)

- exponential tape
- tape with the input word
- control over sufficiently big set of algebras

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$,

Facts

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$, $\alpha 11$ (REJECT) L, $\beta 11$ (ACCEPT) R.

Facts

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ▶ the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$, $\alpha 11$ (REJECT) L, $\beta 11$ (ACCEPT) R.

Facts

The machine is non-deterministic.

A simple Turing machine

- \blacktriangleright states of the Turing machine are α and β
- ► the operations of the Turing machine are $\alpha 01\beta R$, $\beta 11\beta R$, $\beta 01\alpha L$, $\alpha 11\alpha L$, $\alpha 11$ (REJECT) L, $\beta 11$ (ACCEPT) R.

Facts

- ▶ The machine is non-deterministic.
- ▶ The machine can accept and reject the same input.

NP and co-NP

Accepting

The machines are working in polynomial time and

▶ for NP: "ACCEPT if at least one computation ACCEPTS".

Marcin Kozik (ECC and UJ)

Varietal membership problem

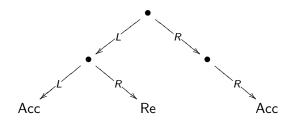
NP and co-NP

Accepting

The machines are working in polynomial time and

- ▶ for NP: "ACCEPT if at least one computation ACCEPTS".
- ▶ for co-NP: "ACCEPT if all computations ACCEPT".

NP and co-NP

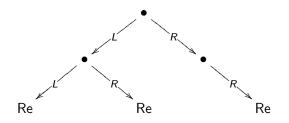


Accepting

The machines are working in polynomial time and

- ▶ for NP: "ACCEPT if at least one computation ACCEPTS".
- ▶ for co-NP: "ACCEPT if all computations ACCEPT".

NP and co-NP

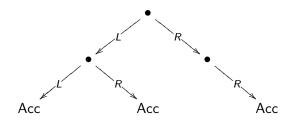


Accepting

The machines are working in polynomial time and

- ▶ for NP: "ACCEPT if at least one computation ACCEPTS".
- ▶ for co-NP: "ACCEPT if all computations ACCEPT".

NP and co-NP



Accepting

The machines are working in polynomial time and

- ▶ for NP: "ACCEPT if at least one computation ACCEPTS".
- ▶ for co-NP: "ACCEPT if all computations ACCEPT".

Accepting

A configuration is accepting if

▶ the state is ACCEPT,

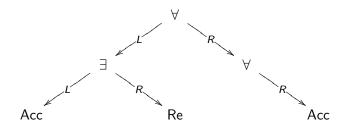
Marcin Kozik (ECC and UJ)

Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,

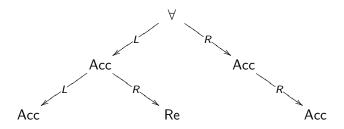
Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



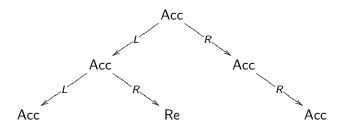
Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



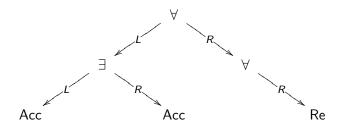
Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



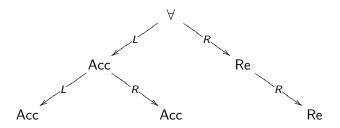
Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



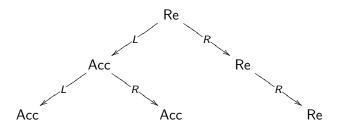
Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.



Accepting

- the state is ACCEPT,
- ▶ it is of the type \exists and there is *next* accepting configuration,
- ▶ it is of the type \forall and all *next* configurations are accepting.

Some news

A bad news [Savitch 1970]

 $\mathsf{EXPSPACE} = \mathsf{NEXPSPACE}$

Some news

A bad news [Savitch 1970]

 $\mathsf{EXPSPACE} = \mathsf{NEXPSPACE}$

A good news [Chandra, Kozen, Stockmeyer 1981] AEXPSPACE = 2EXPTIME

Some news

A bad news [Savitch 1970]

 $\mathsf{EXPSPACE} = \mathsf{NEXPSPACE}$

A good news [Chandra, Kozen, Stockmeyer 1981]

AEXPSPACE = 2EXPTIME

Theorem

There exists a finite algebra generating a variety with a 2EXPTIME complete membership problem.