Free objects in the class of power left and right idempotent groupoids

V. Celakoska-Jordanova
Faculty of Natural Sciences and Mathematics,
Skopje, Macedonia

1 Preliminaries

Let \mathcal{V} be any variety of groupoids. A groupoid \mathbf{G} is called an n- \mathcal{V} -groupoid iff

$$(\forall a_1, a_2, \ldots, a_n \in G) \ \langle a_1, a_2, \ldots, a_n \rangle \in \mathcal{V}.$$

The class of all n- \mathcal{V} -groupoids is denoted by n- \mathcal{V} .

1-V-groupoids are called power V-groupoids; p V.

 $\mathcal{V} \subseteq n\text{-}\mathcal{V}$ and $(n+k)\text{-}\mathcal{V} \subseteq n\text{-}\mathcal{V}$, for any $n, k \geq 1$. If the variety has the axiomatic rank n, then $n\text{-}\mathcal{V}=\mathcal{V}$.

$$\mathcal{U} = Var[x^2y^2 \approx xy]$$
:

[1] Čupona G., Celakoski N., On groupoids with the identity $x^2y^2 = xy$, MANU (1997), 5–15

 $p\mathcal{U}$ -groupoids:

groupoids G such that $(\forall a \in G) \langle a \rangle \in \mathcal{U}$

B – arbitrary nonempty set

 $\mathbf{F} = (F, \cdot)$ – the set of all groupoid terms over B in the signature \cdot . The terms are denoted by t, u, v, w, ... $\mathbf{F} = (F, \cdot)$ is the absolutely free groupoid with the free basis B, where the operation is defined by $(u, v) \mapsto uv$.

For each $v \in F$, we define the length |v| of v and the set of subterms P(v) of v by:

$$|b| = 1, |tu| = |t| + |u|$$
 (1.1)

$$P(b) = \{b\}, \ P(tu) = \{tu\} \cup P(t) \cup P(u), \tag{1.2}$$

for each $b \in B$ and $t, u \in F$.

 $E = (E, \cdot)$ – the absolutely free groupoid with oneelement basis $\{e\}$; the elements of E are called *groupoid* powers and are denoted by f, g, h, \ldots

For any groupoid $\mathbf{G} = (G, \cdot)$, each element $f \in E$ induces a transformation $f^{\mathbf{G}} : G \to G$ (called an *interpretation* of f in \mathbf{G}) defined by:

$$e^{G}(x) = x, (gh)^{G}(x) = g^{G}(x)h^{G}(x)$$
 (1.3)

for any $g, h \in E$ and $x \in G$.

2 Construction of free objects in the variety $p\mathcal{U}$

It is shown in [1] that the axiom $x^2y^2 \approx xy$ is equivalent with the system of axioms $x^2y \approx xy$, $xy^2 \approx xy$; Also, if $G \in \mathcal{U}$, then $a \in G$ is a square iff a is an idempotent.

Theorem 2.1.
$$G \in p\mathcal{U}$$
 iff

$$(\forall x \in G)(\forall f \in E \setminus \{e\}) \ f(x) = x^2.$$

Corollary 2.1. $G \in pU$ iff

$$(f(x))^{2}(g(x))^{2} = f(x)g(x)$$
 (2.1)

for any $x \in G$ and $f, g \in E$.

Corollary 2.2. The class of pU-groupoids is a variety defined by the identities

$$x^2 \approx x^2 x \approx x x^2 \approx x^2 x^2. \tag{2.2}$$

An element $c \in G$ is said to be primitive in G iff

$$(\forall a \in G)(\forall f \in E \setminus \{e\}) \ c \neq f(a).$$

Lemma 2.1. For any $v \in \mathbf{F}$ there is a uniquely determined primitive element $u \in F$ and uniquely determined $f \in E \setminus \{e\}$ such that v = f(u).

In that case we say that u is a base of v, f is the power of v, |f| the exponent of v, and denote it by $\underline{v} = u$, $v^{\sim} = f$ and $|v^{\sim}|$, respectively.

Lemma 2.2. Let $v, w \in F$.

- a) If v and w have different bases, then vw is primitive element in \mathbf{F} , i.e. $(\underline{v} \neq \underline{w} \Rightarrow vw = \underline{vw})$.
- b) The elements v, w have the same base t iff t is a base of vw (i.e. $t = \underline{vw}$) and the power of vw equals the product of the power of v and the power of w (i.e. $\underline{v} = \underline{w} = t \Leftrightarrow t = \underline{vw} \& (vw)^{\sim} = v^{\sim}w^{\sim}$).

Define a carrier R of a free object in the variety $p\mathcal{U}$ as follows:

$$R = \{ t \in F : (\forall u \in P(t)) \mid u^{\sim} | \le 2 \}.$$

Define an operation * on R by:

$$t,u\in R\Rightarrow t*u=\begin{cases} tu, & \text{if} \ tu\in R\\ x^2, & \text{if} \ \underline{t}=\underline{u}=x, \mid t^{\sim}\mid +\mid u^{\sim}\mid \geq 3. \end{cases}$$

1°. $\mathbf{R} = (R, *)$ is a groupoid, B is the set of primes in \mathbf{R} and generates \mathbf{R} .

Let $t \in R$, $f \in E$. We define $f_*(t)$ as follows:

$$e_*(t) = t, (fg)_*(t) = f_*(t) * g_*(t).$$
 (2.3)

- 2° . Let $t \in R$ and $f \in E \setminus \{e\}$.
- a) If t is not a square in \mathbf{F} , then $f_*(t) = t^2$, and, specially, $t * t = t^2$.
- b) If t is a square in \mathbf{F} , i.e. $t = x^2$, where x is a primitive element in \mathbf{F} , then $f_*(t) = t$, and, specially, t * t = t.

 3° . $\mathbf{R} \in p\mathcal{U}$.

 4° . \mathbf{R} has the universal mapping property for $p\mathcal{U}$ over B.

Theorem 2.2. $\mathbf{R} = (R, *)$ is a free groupoid in $p\mathcal{U}$ with a free basis B.

The class of free objects in $p\mathcal{U}$ will be denoted by $p\mathcal{U}_{fr}$.

Note that, if $a, b \in B$ are distinct elements in B, then $a*(b*b) = a*b^2 = ab^2 \neq ab = a*b$, and therefore: if $|B| \geq 2$, then $\mathbf{R} \notin \mathcal{U}$.

Proposition 2.1. a) For any $x \in R$, x*x is an idempotent in \mathbf{R} .

- b) $t \in R$ is an idempotent in \mathbf{R} iff t is a square in \mathbf{R} .
- c) If $t \in R$ is an idempotent in \mathbf{R} , then there is a unique nonidempotent $x \in R$ (i.e. $x \neq x * x$) such that t = x * x.
- d) $t \in R$ is primitive in \mathbf{R} iff t is primitive in \mathbf{F} .

Proposition 2.2. Let I be the set of all idempotents in \mathbf{R} and N be the set of all nonidempotents in \mathbf{R} . If $z \in R$ is a nonidempotent and z is not prime in \mathbf{R} , then one of the following cases is possible:

- 1) $z = \alpha * \beta$, $\alpha, \beta \in I$, $\alpha \neq \beta$;
- 2) $z = x * \alpha, \ \alpha \in I, \ x \in N;$
- 3) $z = \alpha * x$, $\alpha \in I$, $x \in N$;
- 4) $z = x * y, x, y \in N, x \neq y.$

Proposition 2.3. For any $t \in R \setminus B$ there is exactly one pair $(u, v) \in R^2$, such that t = uv = u * v.

(We say that (u, v) is the pair of divisors of t in \mathbf{R} . In this case: u = v iff $u^2 \in R$ (iff u is not a square); then we say that u is the divisor of t).

Remark. The proposition 2.3. does not exclude existence of distinct pairs $(u_1, v_1), (u_2, v_2) \in \mathbb{R}^2$, such that $u_1 * v_1 = u_2 * v_2$.

3 Injective objects in $p\mathcal{U}$

We say that a groupoid $\mathbf{H} = (H, \cdot)$ is injective in $p\mathcal{U}$ (i.e. $p\mathcal{U}$ -injective) iff

- 0) $\boldsymbol{H} \in p\mathcal{U}$
- 1) If $a \in H$ is an idempotent, then there is a unique nonidempotent $c \in H$, such that $a = c^2$ and the equality a = xy holds iff $\{x, y\} \subseteq \{c, c^2\}$.

(In that case we say that c is the divisor of a or c is the base of a.)

2) If $a \in H$ is an nonidempotent and is not prime in \mathbf{H} , then there is a unique pair $(c, d) \in H^2$, such that a = cd and $\underline{c} \neq \underline{d}$.

(Note that c, d could be both idempotents; one idempotent and the other nonidempotent; both nonidempotents.)

The class of all $p\mathcal{U}$ -injective groupoids will be denoted by $p\mathcal{U}_{inj}$.

Proposition 3.1. Every $p\mathcal{U}$ -free object is $p\mathcal{U}$ -injective, i.e. $p\mathcal{U}_{fr} \subseteq p\mathcal{U}_{inj}$.

If $\mathbf{H} = (H, \cdot) \in p\mathcal{U}_{inj}$ and $a \in H$, then the subgroupoid $Q = \{a^2\}$ of \mathbf{H} is not $p\mathcal{U}$ -injective.

Proposition 3.2. Neither of the classes $p\mathcal{U}_{fr}$, $p\mathcal{U}_{inj}$ is hereditary.

Theorem 3.1. (Bruck Theorem for the variety $p\mathcal{U}$) A groupoid $\mathbf{H} \in p\mathcal{U}$ is $p\mathcal{U}$ -free iff the following conditions are satisfied:

- (i) \mathbf{H} is $p\mathcal{U}$ -injective.
- (ii) The set P of primes in \mathbf{H} is nonempty and generates \mathbf{H} .

A construction of pU-injective groupoid that is not pU-free.

Let N be an infinite set, I a set equivalent and disjoint with N, $H = N \cup I$ and $\varphi : N \to I$ a bijection. We define the set $D = \{(x,y) : x,y \in N \cup I, x \neq y\}$. Since N is infinite it follows that the sets N, I and D are equivalent. This implies that there is an injection $\psi : D \to N$.

Define an operation "\cdot" in $H = N \cup I$ by:

$$n \cdot n = \varphi(n), \quad i \cdot i = i, \quad x \cdot y = \psi(x, y),$$

for any $n \in N$, $i \in I$, $(x, y) \in D$.

We obtain that $\mathbf{H} = (H, \cdot)$ is a groupoid that is $p\mathcal{U}$ injective. When ψ is a bijection, then there are no prime
elements in \mathbf{H} . So, \mathbf{H} is not $p\mathcal{U}$ -free. Thus:

Proposition 3.3. The class of $p\mathcal{U}$ -free groupoids is a proper subclass of the class of $p\mathcal{U}$ -injective groupoids, i.e. $p\mathcal{U}_{fr} \subset p\mathcal{U}_{inj}$.