Problem 0000000 Results 0 Quasilinear 0000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Clones and the complexity of TermSAT

Tomasz A. Gorazd¹ Jacek Krzaczkowski²

¹Algorithmics Research Group Jagiellonian University, Kraków

²Institute of Computer Science UMCS, Lublin

Algorithmic Complexity and Universal Algebra, Szeged, 2007

Problem
000000
Definitions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Definition

For an algebra ${\bf A}$ the term satisfiability problem (TERM-SAT({\bf A})) is a decision problem with

Instance: A pair of terms (s, t)

Question: Does the equation

$$s^{\mathbf{A}}(\overline{x}) = t^{\mathbf{A}}(\overline{x})$$

have a solution?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Definition

For an algebra ${\bf A}$ the term satisfiability problem (TERM-SAT({\bf A})) is a decision problem with

Instance: A pair of terms (s, t) with the tables of the fundamental operations of A corresponding to all function symbols occurring in s and t.

Question: Does the equation

$$s^{\mathbf{A}}(\overline{x}) = t^{\mathbf{A}}(\overline{x})$$

have a solution?

Definition

For an algebra ${\bf A}$ the term satisfiability problem (TERM-SAT({\bf A})) is a decision problem with

Instance: A pair of terms (s, t) with the tables of the fundamental operations of A corresponding to all function symbols occurring in s and t.

Question: Does the equation

$$s^{\mathbf{A}}(\overline{x}) = t^{\mathbf{A}}(\overline{x})$$

have a solution?

If (s,t) is a pair of polynomials we get the polynomial satisfiability problem (POL-SAT(A)).

Problem
000000
Some results

Results 0 Quasilinear

Lattices (*Schwarz*) For a lattice L • POL-SAT(L) in P if L is distributive • POL-SAT(L) is NP-complete, else.

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Problem
000000
Some results

Results 0 Quasilinear 0000000

Lattices (*Schwarz*) For a lattice L • POL-SAT(L) in P if L is distributive

• POL-SAT(L) is NP-complete, else.

Groups (Goldmann, Russell)

For a group ${\bf G}$

- ${\ \circ \ }\operatorname{POL-SAT}({\mathbf G})$ in P if ${\mathbf G}$ is nilpotent.
- ${\ \bullet \ }\operatorname{POL-SAT}({\mathbf G})$ is NP-complete if ${\mathbf G}$ is not solvable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem
000000
Problem

${\sf Question}\ 1$

Does the computational complexity of ${\rm TERM}\mbox{-}{\rm SAT}({\bf A})$ depend on $\mathit{Clo}({\bf A}),$ the clone of term operations of ${\bf A}$?

Example

• POL-SAT (S_3, \circ) is in P. (*G. Horváth, C.Szabó*)

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Problem	
0000000	
Bad news	

Example

- $\bullet \ \mathrm{POL}\text{-}\mathrm{SAT}(\mathrm{S}_3,\circ)$ is in P. (G. Horváth, C.Szabó)
- POL-SAT(S₃, \circ , []) is NP-complete. (*P. Idziak*) [x, y] = $x^{-1} \circ y^{-1} \circ x \circ y$

Problem	
0000000	
Bad news	

Example

- $POL-SAT(S_3, \circ)$ is in P. (*G. Horváth, C.Szabó*)
- POL-SAT(S₃, \circ , []) is NP-complete. (*P. Idziak*) [x, y] = $x^{-1} \circ y^{-1} \circ x \circ y$
- $Clo(S_3, \circ) = Clo(S_3, \circ, [])$

Theorem

For any two-element algebra \mathbf{A} the computational complexity of TERM-SAT(\mathbf{A}) depends only on $Clo(\mathbf{A})$.

Problem
000000
Goal

Definition

We say that $\operatorname{TERM-SAT}$ for a clone C is

- representation-independent iff for arbitrary algebras A, B such that Clo(A) = Clo(B) = C, TERM-SAT(A) and TERM-SAT(B) are polynomial-time equivalent.
- representation-dependent, else.

Problem
000000
Goal

Definition

We say that $\operatorname{TERM-SAT}$ for a clone C is

- representation-independent iff for arbitrary algebras A, B such that Clo(A) = Clo(B) = C, TERM-SAT(A) and TERM-SAT(B) are polynomial-time equivalent.
- representation-dependent, else.

If TERM-SAT is representation-independent for ${\it C}$ we say

• TERM-SAT for C is in P.

or

- TERM-SAT for *C* is NP-complete. or
- TERM-SAT for C is . . .

Problem
000000
Casl

Goal

 $\label{eq:characterize} Characterize the clones where ${\rm TERM-SAT}$ is representation-independent.}$

Probl		Results	Quasilinear
0000	nal clones	•	0000000
waxir	nai ciones		
	Full clone		
	Theorem		
	For a primal algebra \mathbf{A} , TER	$M-SAT(\mathbf{A})$ is NP-complete.	

Full clone

Theorem

For a primal algebra $\mathbf{A},\,\mathrm{TERM}\text{-}\mathrm{SAT}(\mathbf{A})$ is NP-complete.

Maximal clones

Theorem

For every maximal clone C on a set A with |A| > 2 the TERM-SAT for C is representation-independent.

Moreover, TERM-SAT(\mathbf{A}), where $Clo(\mathbf{A}) = C$,

- is in P, if C is affine or determined by a singleton,
- is NP-complete otherwise.

Question 2 How hard is TERM-SAT for the previous clones really?

Problem
0000000

Definitions

Definition

- DQL is the class of decision problems solvable by deterministic multitype Turing machine in quasilinear time i.e. O(n(log(n)^k)).
- NQL is the class of decision problems solvable by nondeterministic multitype Turing machine in quasilinear time.
- For completeness in NQL we use reductions done by deterministic multitype Turing machines in quasilinear time.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Schnorr 1978)

- SAT is NQL-complete,
- 3-colorability is NQL-complete,
- Anticlique is NQL-complete,
- Graph isomorphism is in NQL.

Problem
0000000

Definitions

Theorem (Schnorr 1978)

- SAT is NQL-complete,
- 3-colorability is NQL-complete,
- Anticlique is NQL-complete,
- Graph isomorphism is in NQL.

Observation

For an algebra ${\bf A}$ with a finite number of basic operations ${\rm TERM}\text{-}{\rm SAT}({\bf A})$ is in NQL.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem	Results
0000000	0
Desults	

Theorem

For a two element algebra $\mathbf{A} = (2, f_1, f_2, \dots, f_r)$

- TERM-SAT(A) is NQL-complete if $Clo(2, d, \neg) \subseteq Clo(A)$
- TERM-SAT(\mathbf{A}) is DQL, else.

$$d(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$$

Results
0000000
Problem

Theorem

For a three element primal algebra $\mathbf{A} = (3, f_1, f_2, \dots, f_r)$ TERM-SAT(\mathbf{A}) is NQL-complete

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Theorem

For a three element primal algebra $\mathbf{A} = (3, f_1, f_2, \dots, f_r)$ TERM-SAT(\mathbf{A}) is NQL-complete

Theorem

For a three element algebra $\mathbf{A} = (3, f_1, f_2, \dots, f_r)$ such that $Clo(\mathbf{A})$ is maximal

- TERM-SAT(**A**) is NQL-complete if TERM-SAT(**A**) is NP-complete
- $\bullet \ \mathrm{TERM}\text{-}\mathrm{SAT}(\mathbf{A})$ is in DQL, else

Problem

Is TERM-SAT(A) for every primal algebra A NQL-complete?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Problem

Is $\mathrm{TERM}\text{-}\mathrm{SAT}(\mathbf{A})$ for every primal algebra \mathbf{A} NQL-complete?

Theorem

If the answer to the previous problem is positive then for an algebra $\mathbf{A} = (A, f_1, f_2, \dots, f_r)$ such that $Clo(\mathbf{A})$ is maximal

• TERM-SAT(**A**) is NQL-complete if TERM-SAT(**A**) is NP-complete,

• TERM-SAT(\mathbf{A}) is in DQL, else.

Results
0000000
Problem

Theorem

Let C be a maximal clone on a set A generated by an order relation. For an algebra $\mathbf{A} = (A, f_1, f_2, \dots, f_r)$ such that $Clo(\mathbf{A}) = C$

- TERM-SAT(A) is NQL-complete if A > 2
- TERM-SAT (\mathbf{A}) is in DQL, else

Problem 0000000 Results Results 0 Quasilinear

Thank you

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで