Constraint Satisfaction and Width

Víctor Dalmau

Universitat Pompeu Fabra

Constraint Satisfaction Problems

Let $\mathbf{B} = (B; P_1^{\mathbf{B}}, \dots, P_m^{\mathbf{B}})$ be a relational structure

Def: CSP(B) is the following computational problem:

- Input: A structure $\mathbf{A} = (A; P_1^{\mathbf{A}}, \dots, P_m^{\mathbf{A}})$
- Output: Is there an homomorphism from A to B?

An *homomorphism* is any mapping $h : A \rightarrow B$ such that for every $i \leq m$ and every $(a_1, \ldots, a_n) \in A^n$

$$(a_1,\ldots,a_n) \in P_i^{\mathbf{A}} \Rightarrow (h(a_1),\ldots,h(a_n)) \in P_i^{\mathbf{B}}$$

If such h exists, we write $A \rightarrow B$

Many natural computational problems can be expressed as CSP(B) by choosing an appropriate B.

Many natural computational problems can be expressed as CSP(B) by choosing an appropriate B.

If k-CLIQUE is a complete graph with k nodes then CSP(k-CLIQUE) is the GRAPH k-COLORING problem Many natural computational problems can be expressed as CSP(B) by choosing an appropriate B.

- If k-CLIQUE is a complete graph with k nodes then CSP(k-CLIQUE) is the GRAPH k-COLORING problem
- If B_{3-SAT} is $(\{0,1\}; R_0, R_1, R_2, R_3)$ where

$$R_0 = \{0, 1\}^3 - \{(0, 0, 0)\}$$

$$R_1 = \{0, 1\}^3 - \{(1, 0, 0)\}$$

$$R_2 = \{0, 1\}^3 - \{(1, 1, 0)\}$$

$$R_3 = \{0, 1\}^3 - \{(1, 1, 1)\}$$

then $CSP(B_{3-SAT})$ is 3-SAT.

3-SAT example expanded

Recall that 3-SAT is the computational problem

s Given a 3-CNF formula φ (the input), is it satisfiable?

3-SAT example expanded

Recall that 3-SAT is the computational problem

• Given a 3-CNF formula φ (the input), is it satisfiable?

It is easy to define a bijection σ between 3-CNF's and structures A that preserves satisfiability and unsatisfiability

3-SAT example expanded

Recall that 3-SAT is the computational problem

• Given a 3-CNF formula φ (the input), is it satisfiable?

It is easy to define a bijection σ between 3-CNF's and structures A that preserves satisfiability and unsatisfiability

Indeed, let $\sigma(\varphi) = (V, T_0, T_1, T_2, T_3)$ where

- \checkmark V is the set of variables of φ
- T_0 contains (x, y, z) if $x \lor y \lor z$ is a clause of φ
- T_1 contains (x, y, z) if $\neg x \lor y \lor z$ is a clause of φ
- $\ \ \, {} {\scriptstyle \hspace*{-0.5ex} I} \hspace*{-0.5ex} T_2 \text{ contains } (x,y,z) \text{ if } \neg x \vee \neg y \vee z \text{ is a clause of } \varphi \\$
- T_3 contains (x, y, z) if $\neg x \lor \neg y \lor \neg z$ is a clause of φ

Complexity

For every \mathbf{B} , $CSP(\mathbf{B})$ is in NP.

Feder-Vardi Conjecture: For every ${\bf B},\, {\rm CSP}({\bf B})$ is in P or NP-complete

Complexity

For every \mathbf{B} , $CSP(\mathbf{B})$ is in NP.

Feder-Vardi Conjecture: For every ${\bf B},\, {\rm CSP}({\bf B})$ is in P or NP-complete

Research Project: Identify, for each B, the computational complexity (in P, NP-complete, in NL, in L) of $\mathrm{CSP}(\mathbf{B})$

A long list of partial results but still open

Two main algorithmic principles to identify tractable(=solvable in polynomial time) cases of CSP(B)

- Few subalgebras property [Berman, Idziak, Markovic, McKenzie, Valeriote, Willard] (P. Markovic talk)
- Bounded Width (this talk)

Two main algorithmic principles to identify tractable(=solvable in polynomial time) cases of CSP(B)

- Few subalgebras property [Berman, Idziak, Markovic, McKenzie, Valeriote, Willard] (P. Markovic talk)
- Bounded Width (this talk)

Challenge: Investigate how these two principles can be sistematically combined.

Bounded width

The notion of bounded width admits several alternative characterizations:

- \bullet in terms of solvability by the *k*-consistency test
- in terms of obstruction sets
- in terms of definability in certain logics

First view: the *k***-consistency test**

Given $k \ge 1$, A and B

Let *H* be the set of all partial homomorphisms *f* with $dom(h) \le k$

Repeat (1) and (2) until stabilizes

- 1. Remove from *H* every *f* with dom(f) < k such that for some $a \in A$ there is not $g \in H$ with $f \subseteq g$ and $a \in dom(f)$
- **2.** Remove from *H* every *f* such that $g \subseteq f$ for some $g \notin H$
- If $H = \emptyset$ then REJECT, otherwise ACCEPT

If k is fixed the k-consistency test runs in polynomial time

Question 1: Given an structure B and some k > 1, does the k-consitency test solve CSP(B)? that is, does every instance that passes the k-consistency test have a solution?

Second view: Obstruction sets

[Nešetřil, Pultr 78]

Obvious fact: if $\mathbf{O} \to \mathbf{A}$ and $\mathbf{O} \not\to \mathbf{B}$ then $\mathbf{A} \not\to \mathbf{B}$

Def: An obstruction set for a structure B is a class \mathcal{O}_B of structures such that, for all A,

 $\mathbf{A} \to \mathbf{B} \Leftrightarrow \mathbf{O} \not\to \mathbf{A} \text{ for all } \mathbf{O} \in \mathcal{O}_{\mathbf{B}}$

Second view: Obstruction sets

[Nešetřil, Pultr 78]

Obvious fact: if $\mathbf{O} \to \mathbf{A}$ and $\mathbf{O} \not\to \mathbf{B}$ then $\mathbf{A} \not\to \mathbf{B}$

Def: An obstruction set for a structure B is a class \mathcal{O}_B of structures such that, for all A,

$$\mathbf{A} \to \mathbf{B} \Leftrightarrow \mathbf{O} \not\to \mathbf{A} \text{ for all } \mathbf{O} \in \mathcal{O}_{\mathbf{B}}$$

Every structure B has a trivial obstruction set containing all O such that $O \not\rightarrow B$

Second view: Obstruction sets

[Nešetřil, Pultr 78]

Obvious fact: if $\mathbf{O} \to \mathbf{A}$ and $\mathbf{O} \not\to \mathbf{B}$ then $\mathbf{A} \not\to \mathbf{B}$

Def: An obstruction set for a structure B is a class \mathcal{O}_B of structures such that, for all A,

$$\mathbf{A} \to \mathbf{B} \Leftrightarrow \mathbf{O} \not\to \mathbf{A} \text{ for all } \mathbf{O} \in \mathcal{O}_{\mathbf{B}}$$

- Every structure B has a trivial obstruction set containing all O such that $O \not\rightarrow B$
- We are interested in those B for which is possible to obtain "simple" obstruction sets.

If B is a transitive tournament $\overrightarrow{\mathbf{T}_k}$ on k vertices then one can choose $\mathcal{O}_{\mathbf{B}} = \{\overrightarrow{\mathbf{P}_{k+1}}\}$ where $\overrightarrow{\mathbf{P}_{k+1}}$ is a directed path on k + 1 vertices.

Algorithm for $CSP(\overrightarrow{\mathbf{T}_k})$

- 1. input: directed graph $\overrightarrow{\mathbf{A}} = (V, E)$
- **2.** $C_1 := V$
- **3.** i := 1
- 4. while $i \le k$ do 4.1 $C_{i+1} := \{v \in V \mid u \in C_i, (u, v) \in E\}$ 4.2 i := i + 1
- 5. if $C_{k+1} = \emptyset$ then ACCEPT, otherwise REJECT

If B is a transitive tournament $\overrightarrow{\mathbf{T}_k}$ on k vertices then one can choose $\mathcal{O}_{\mathbf{B}} = \{\overrightarrow{\mathbf{P}_{k+1}}\}$ where $\overrightarrow{\mathbf{P}_{k+1}}$ is a directed path on k + 1 vertices.

If B is a transitive tournament $\overrightarrow{\mathbf{T}_k}$ on k vertices then one can choose $\mathcal{O}_{\mathbf{B}} = \{\overrightarrow{\mathbf{P}_{k+1}}\}$ where $\overrightarrow{\mathbf{P}_{k+1}}$ is a directed path on k + 1 vertices.

If B is 2-CLIQUE then \mathcal{O}_B can be chosen to consist of all odd cycles.

A graph G is a k-tree if:

- \blacksquare G is a k-clique, or
- G can be obtained from a k-tree G' by choosing a k-clique of G' and adding a new element adjacent to them.

A graph *G* is a *k*-tree if:

- \checkmark G is a k-clique, or
- G can be obtained from a k-tree G' by choosing a k-clique of G' and adding a new element adjacent to them.

A graph has tw $\leq k$ if it is a subgraph of a *k*-tree

A graph G is a k-tree if:

- \checkmark G is a k-clique, or
- G can be obtained from a k-tree G' by choosing a k-clique of G' and adding a new element adjacent to them.

A graph has tw $\leq k$ if it is a subgraph of a *k*-tree

A structure has tw < k is so has its Gaiffman graph.

A graph G is a k-tree if:

- G is a k-clique, or
- G can be obtained from a k-tree G' by choosing a k-clique of G' and adding a new element adjacent to them.
- A graph has tw $\leq k$ if it is a subgraph of a *k*-tree

A structure has tw < k is so has its Gaiffman graph.

Question 2: Given a structure B and some k > 1, has B an obstruction set consisting of structures with tw $\leq k$?

Third view: Logic

Let $\mathbf{O} = (O; P_1^{\mathbf{O}}, \dots, P_m^{\mathbf{O}})$ be an structure with signature $\{P_1, \dots, P_m\}$.

Def: F_{O} is the primitive positive (only existential quantification and conjuntions) sentence in prefix normal form with

- variables of $F_{\mathbf{O}}$ are elements in the universe of \mathbf{O}
- there is an atomic predicate $P_i(v_1, ..., v_k)$ for every tuple $(v_1, ..., v_k) \in P_i^{\mathbf{O}}$

Third view: Logic

Let $\mathbf{O} = (O; P_1^{\mathbf{O}}, \dots, P_m^{\mathbf{O}})$ be an structure with signature $\{P_1, \dots, P_m\}$.

Def: F_{O} is the primitive positive (only existential quantification and conjuntions) sentence in prefix normal form with

- variables of $F_{\mathbf{O}}$ are elements in the universe of \mathbf{O}
- there is an atomic predicate $P_i(v_1, ..., v_k)$ for every tuple $(v_1, ..., v_k) \in P_i^{\mathbf{O}}$

Example: $F_{\overrightarrow{\mathbf{P}_{k+1}}}$ is the formula

$$\exists v_1, \ldots, v_{k+1} E(v_1, v_2) \land \cdots \land E(v_k, v_{k+1})$$

Fact: [Chandra, Merlin 77] For every A, O $\mathbf{O} \rightarrow \mathbf{A} \Leftrightarrow \mathbf{A} \models F_{\mathbf{O}}$

Fact: [Chandra, Merlin 77] For every A, O $\mathbf{O} \rightarrow \mathbf{A} \Leftrightarrow \mathbf{A} \models F_{\mathbf{O}}$

If B has a finite obstruction set $\{O_1, \ldots, O_m\}$ then $\neg \operatorname{CSP}(B)$ is definable in existential positive FO

$$\mathbf{A} \in \neg \operatorname{CSP}(\mathbf{B}) \Leftrightarrow \mathbf{A} \models F_{\mathbf{O}_1} \lor \cdots \lor F_{\mathbf{O}_m}$$

We shall write existential positive formulas in form of rules

Example: The formula

$$\exists x, y, z \quad E(x, y) \land E(y, z) \land (z, x) \\ \lor \\ \exists x, y \quad E(x, y) \land E(y, x)$$

can be rewriten as

Goal :- E(x,y), E(y,z), E(z,x)Goal :- E(x,y), E(y,x)

Intuition: "Goal" is fired when the right side of a rule is satisfied.

Even if the obstruction set is infinite we still (sometimes) can define $\neg \operatorname{CSP}(\mathbf{B})$ by using recursion

Even if the obstruction set is infinite we still (sometimes) can define $\neg \operatorname{CSP}(\mathbf{B})$ by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all odd cycles

Even if the obstruction set is infinite we still (sometimes) can define $\neg \operatorname{CSP}(\mathbf{B})$ by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all odd cycles

The following set of rules defines $\neg CSP(2\text{-}CLIQUE)$

 $\begin{aligned} \mathsf{oddpath}(X,Y) &: - & E(X,Y) \\ \mathsf{oddpath}(X,Y) &: - & \mathsf{oddpath}(X,Z), E(Z,T), E(T,Y) \\ & \mathsf{Goal} &: - & \mathsf{oddpath}(X,X) \end{aligned}$

Even if the obstruction set is infinite we still (sometimes) can define $\neg \operatorname{CSP}(\mathbf{B})$ by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all odd cycles

The following set of rules defines $\neg CSP(2\text{-}CLIQUE)$

 $\begin{aligned} \mathsf{oddpath}(X,Y) &: - & E(X,Y) \\ \mathsf{oddpath}(X,Y) &: - & \mathsf{oddpath}(X,Z), E(Z,T), E(T,Y) \\ & \mathsf{Goal} &: - & \mathsf{oddpath}(X,X) \end{aligned}$

The extensional database predicates (EDB) occur only in the *body* of a rule
Datalog Programs

Even if the obstruction set is infinite we still (sometimes) can define $\neg \operatorname{CSP}(\mathbf{B})$ by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all odd cycles

The following set of rules defines $\neg CSP(2\text{-}CLIQUE)$

 $\begin{aligned} \mathsf{oddpath}(X,Y) &: - & E(X,Y) \\ \mathsf{oddpath}(X,Y) &: - & \mathsf{oddpath}(X,Z), E(Z,T), E(T,Y) \\ & \mathsf{Goal} &: - & \mathsf{oddpath}(X,X) \end{aligned}$

The intensional database predicates (IDB) might occur both in the *head* and *body* of a rule

Question 3: Given a structure B and k > 1, is $\neg CSP(B)$ definable by a Datalog Program with at most k different variables?

[Hell, Nešetřil, Zhu 96][Feder, Vardi 98][Kolaitis, Vardi 00]

Theorem: Let B be a structure and $k \ge 1$. Tfae:

- *k*-consistency solves CSP(B)
- B has an obstuction set consisting of structures of trewidth $\leq k 1$
- ¬CSP(B) is definable by a datalog program with k
 different variables

[Hell, Nešetřil, Zhu 96][Feder, Vardi 98][Kolaitis, Vardi 00]

Theorem: Let B be a structure and $k \ge 1$. Tfae:

- *k*-consistency solves CSP(B)
- B has an obstuction set consisting of structures of trewidth $\leq k 1$

Def:

B has width k if it satisfies any of the previous conditionsB has bounded width if has width k for some k

Indeed, bounded width explains in an uniform way many of the existing results

Indeed, bounded width explains in an uniform way many of the existing results

Question: Determine which B have bounded width

Indeed, bounded width explains in an uniform way many of the existing results

Question: Determine which B have bounded width

Long list of partial results but still open

Algebraic approach

Def: For every $\mathbf{B} = (B; R_1, \dots, R_m)$ let $Alg_{\mathbf{B}}$ the algebra with universe *B* and whose basic operations are the polymorphisms of $\{R_1, \dots, R_m\}$.

Algebraic approach

Def: For every $\mathbf{B} = (B; R_1, \dots, R_m)$ let $Alg_{\mathbf{B}}$ the algebra with universe *B* and whose basic operations are the polymorphisms of $\{R_1, \dots, R_m\}$.

Fact: Many properties of $CSP(\mathbf{B})$ depend only on $Alg_{\mathbf{B}}$

- Solvability in poly time [Jeavons, Cohen, Gyssens 98]
- Bounded width and many others [Larose, Tesson 07]

Sufficient conditions: ${\bf B}$ has bounded width if ${\rm Alg}_{{\bf B}}$

- has a semilattice [Jeavons, Cohen, Gyssens 97]
- has a nu [Feder, Vardi 98]
- has 2-semilattice [Bulatov 06]
- is in CD(3) [Kiss, Valeriote 07]

9..

 \checkmark var(Alg_B) omits types 1 and 2 [Larose,Zadori 07]

- $var(Alg_B)$ omits types 1 and 2 [Larose,Zadori 07]
- Alg_B has weak nufs of almost all arities [Maróti, McKenzie 07]

An idempotent operation f of arity $n \ge 2$ is a weak nuf it it satisfies the identity

$$f(y, x, \dots, x) = f(x, y, \dots, x) = \dots = f(x, x, \dots, y)$$

- $var(Alg_B)$ omits types 1 and 2 [Larose,Zadori 07]
- Alg_B has weak nufs of almost all arities [Maróti, McKenzie 07]

An idempotent operation f of arity $n \ge 2$ is a weak nuf it it satisfies the identity

$$f(y, x, \dots, x) = f(x, y, \dots, x) = \dots = f(x, x, \dots, y)$$

It is conjectured [Larose,Zadori 07] that the condition is also sufficient

Def: An algebra $\mathcal{A} = (A; F)$ is bounded if every structure B with relations in Inv(F) has bounded width.

Def: An algebra $\mathcal{A} = (A; F)$ is bounded if every structure **B** with relations in Inv(F) has bounded width.

We would like to redefine this concept in a simple way using only algebraic terminology

Def: An algebra $\mathcal{A} = (A; F)$ is bounded if every structure **B** with relations in Inv(F) has bounded width.

We would like to redefine this concept in a simple way using only algebraic terminology

I checked the references and couldn't find one

Def: An algebra $\mathcal{A} = (A; F)$ is bounded if every structure **B** with relations in Inv(F) has bounded width.

We would like to redefine this concept in a simple way using only algebraic terminology

- I checked the references and couldn't find one
- I figured out one but it is messy

Def: An algebra $\mathcal{A} = (A; F)$ is bounded if every structure **B** with relations in Inv(F) has bounded width.

We would like to redefine this concept in a simple way using only algebraic terminology

- I checked the references and couldn't find one
- I figured out one but it is messy

Solution: Work with a simplified version of width

Let \mathcal{A} be an algebra, let $n \ge k > 2$, let H be a subuniverse of \mathcal{A}^n , and let $\{H_I : I \subseteq \{1, \ldots, n\}, |I| = k\}$ the set of all its k-ary projections

Let \mathcal{A} be an algebra, let $n \ge k > 2$, let H be a subuniverse of \mathcal{A}^n , and let $\{H_I : I \subseteq \{1, \ldots, n\}, |I| = k\}$ the set of all its k-ary projections

This set satisfies the following (consistency) condition: H_I and H_J coincide over $I \cap J$, for every I, J

Let \mathcal{A} be an algebra, let $n \ge k > 2$, let H be a subuniverse of \mathcal{A}^n , and let $\{H_I : I \subseteq \{1, \ldots, n\}, |I| = k\}$ the set of all its k-ary projections

This set satisfies the following (consistency) condition: H_I and H_J coincide over $I \cap J$, for every I, J

Def: A *k*-relation system (of arity *n*) is any collection of *k*-ary relations, H_I , one for each *k*-element subset *I* of $\{1, \ldots, n\}$ that satisfies the consistency condition.

Let \mathcal{A} be an algebra, let $n \ge k > 2$, let H be a subuniverse of \mathcal{A}^n , and let $\{H_I : I \subseteq \{1, \ldots, n\}, |I| = k\}$ the set of all its k-ary projections

This set satisfies the following (consistency) condition: H_I and H_J coincide over $I \cap J$, for every I, J

Def: A *k*-relation system (of arity *n*) is any collection of *k*-ary relations, H_I , one for each *k*-element subset *I* of $\{1, \ldots, n\}$ that satisfies the consistency condition.

Informally, a *k*-relation system is any set of relations that looks to us as the set of all *k*-ary projections of some relation.

Let \mathcal{A} be an algebra, let $n \ge k > 2$, let H be a subuniverse of \mathcal{A}^n , and let $\{H_I : I \subseteq \{1, \ldots, n\}, |I| = k\}$ the set of all its k-ary projections

This set satisfies the following (consistency) condition: H_I and H_J coincide over $I \cap J$, for every I, J

Def: A *k*-relation system (of arity *n*) is any collection of *k*-ary relations, H_I , one for each *k*-element subset *I* of $\{1, \ldots, n\}$ that satisfies the consistency condition.

Informally, a *k*-relation system is any set of relations that looks to us as the set of all *k*-ary projections of some relation.

Def: A has width k if for every k-relation system there is a tuple $t \in A^n$ such that $t_I \in H_I$ for every I.

B has width k whenever Alg_B has width k and $k \ge arity(B)$

- **B** has width k whenever Alg_B has width k and $k \ge arity(B)$

- **B** has width k whenever Alg_B has width k and $k \ge arity(B)$
- all algebras known to be bounded have with k for almost all k

• For every k > 2, which algebras have width k?

- For every k > 2, which algebras have width k?
- Is it true that if B has bounded width then Alg_B has width k for some k > 2?

- For every k > 2, which algebras have width k?
- Is it true that if B has bounded width then Alg_B has width k for some k > 2?
- Has every algebra in CD(4) have width k for some k > 2?

- For every k > 2, which algebras have width k?
- Is it true that if B has bounded width then Alg_B has width k for some k > 2?
- Has every algebra in CD(4) have width k for some k > 2?
- **•** Is it true that if **B** has width k then it has width k + 1?

- For every k > 2, which algebras have width k?
- Is it true that if B has bounded width then Alg_B has width k for some k > 2?
- Has every algebra in CD(4) have width k for some k > 2?
- **•** Is it true that if **B** has width k then it has width k + 1?
- Is there an algebra that has width k for some k > 3 but not width 3?

Interesting cases of obstruction sets
Interesting cases of obstruction sets

Obstructions of bounded pathwidth

Interesting cases of obstruction sets

- Obstructions of bounded pathwidth
- Trees

Interesting cases of obstruction sets

Obstructions of bounded pathwidth

Trees

Finite obstruction set

Obstructions of bounded pathwidth

Theorem: (D. 05) The following conditions are equivalent:

- B has an obtruction set consiting of structures of pathwidth < k</p>
- $\neg CSP(B)$ is definable in linear k-datalog

Obstructions of bounded pathwidth

Theorem: (D. 05) The following conditions are equivalent:

- B has an obtruction set consiting of structures of pathwidth < k</p>
- $\neg CSP(B)$ is definable in linear k-datalog

A datalog program is *linear* if it has at most one IDB in the body of each rule.

Example: The following program is linear

oddpath(X,Y) := E(X,Y) oddpath(X,Y) := oddpath(X,Z), E(Z,T), E(T,Y)non2colorable := oddpath(X,X)

Indeed, all CSPs known to be in NL have bounded pathwidth duality

Indeed, all CSPs known to be in NL have bounded pathwidth duality

Theorem: If B is a core with an obstruction of bounded pathwidth then $var(Alg_B)$ omits types 1,2, and 5 [Larose, Tesson 07]

Indeed, all CSPs known to be in NL have bounded pathwidth duality

Theorem: If B is a core with an obstruction of bounded pathwidth then $var(Alg_B)$ omits types 1,2, and 5 [Larose, Tesson 07]

Theorem: If B is invariant under a majority then it has an obstruction set of bounded pathwidth [D., Krokhin 07]

Does every B invariant under a nuf have an obstruction set of bounded pathwidth?

- Does every B invariant under a nuf have an obstruction set of bounded pathwidth?
- Does every B with Alg_B in CD(3) have an obstruction set of bounded pathwidth?

- Does every B invariant under a nuf have an obstruction set of bounded pathwidth?
- Does every B with Alg_B in CD(3) have an obstruction set of bounded pathwidth?
- Does it exists any B without an obstruction set of bounded patwidth such that $\neg CSP(B)$ is in NL.

Trees

Theorem [Feder, Vardi 98]. Let B be a structure. Tfae:

- B has an obstruction set consisting of trees
- $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a Datalog program with monadic IDBs and with at most one EDB per rule.
- **B** is a retract of a structure invariant under a semilattice

Trees

Theorem [Feder, Vardi 98]. Let B be a structure. Tfae:

- B has an obstruction set consisting of trees
- $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a Datalog program with monadic IDBs and with at most one EDB per rule.
- B is a retract of a structure invariant under a semilattice Theorem [D., Krokhin] Let B be a structure. Tfae:
- **B** has an obstruction set consisting of caterpillars.
- $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a Dat. program with monadic IDBs and with at most one EDB and one IDB per rule.
- **B** is a retract of a structure invariant under a lattice.

A caterpillar is a tree in which every node is adjacent to at most 2 non-leaves

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

1. Define a notion of consistency that captures the type of obstruction considered

First stage

The restriction of the *k*-consistency test that corresponds to trees is the arc-consistency test.

Arc consistency test.

Input $A = (A; P_1^A, \dots, P_l^A, B = (B; P_1^B, \dots, P_l^B)$:

Let *H* be the mapping $A \to 2^B$ such that H(a) = B for all *a*.

1. For every P_i , every tuple $(a_1, \ldots, a_r) \in P_i^A$, and every $1 \le j \le r$ remove from $H(a_j)$ all those values not in $\operatorname{pr}_j R^B \cap H(a_1) \times \cdots \times H(a_r)$

Iterate (1) until stabilizes

If $H(a) = \emptyset$ for some $a \in \mathbf{A}$ then REJECT otherwise accept

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

1. Define a notion of consistency that captures the type of obstruction considered

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

- 1. Define a notion of consistency that captures the type of obstruction considered
- 2. Find out the *most difficult example* (structure) for the corresponding consistency test

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of *B* and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation *R* of $P_i^{\mathbf{B}}$.

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of B and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation R of $P_i^{\mathbf{B}}$. Formally:

A passes the arc-consistency test $\Leftrightarrow \mathbf{A} \rightarrow U(\mathbf{B})$

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of B and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation R of $P_i^{\mathbf{B}}$. Formally:

A passes the arc-consistency test $\Leftrightarrow \mathbf{A} \rightarrow U(\mathbf{B})$

Proof:

If *f* and *g* are homomorphisms from A to $U(\mathbf{B})$ then so is $h(a) = f(a) \cup g(a)$

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of B and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation R of $P_i^{\mathbf{B}}$. Formally:

A passes the arc-consistency test $\Leftrightarrow \mathbf{A} \rightarrow U(\mathbf{B})$

Proof:

If *f* and *g* are homomorphisms from A to $U(\mathbf{B})$ then so is $h(a) = f(a) \cup g(a)$

H is precisely the maximal homomorphism, if exists.

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of B and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation R of $P_i^{\mathbf{B}}$. Formally:

A passes the arc-consistency test $\Leftrightarrow \mathbf{A} \rightarrow U(\mathbf{B})$

The most difficult example for the arc-consistency test is structure $U(\mathbf{B})$.

Def: $U(\mathbf{B})$ is the structure whose nodes are nonempty sets of B and such that for every P_i , $P_i^{U(\mathbf{B})}$ contains $(\operatorname{pr}_1 R, \ldots, \operatorname{pr}_r R)$ for every subrelation R of $P_i^{\mathbf{B}}$. Formally:

A passes the arc-consistency test $\Leftrightarrow \mathbf{A} \rightarrow U(\mathbf{B})$

Hence,

Arc-consistency solves $CSP(\mathbf{B}) \Leftrightarrow U(\mathbf{B}) \rightarrow \mathbf{B}$

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

- 1. Define a notion of consistency that captures the type of obstruction considered
- 2. Find out the *most difficult example* (structure) for the corresponding consistency test

Why is it possible in the case of trees and caterpillars to find an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

- 1. Define a notion of consistency that captures the type of obstruction considered
- 2. Find out the *most difficult example* (structure) for the corresponding consistency test
- 3. Algebraic characterization follows from the analysis of the structure.

Third stage

Finally, tfae:

- $D(\mathbf{B}) \to \mathbf{B}$
- B is the retraction of a structure invariant under a semilattice

Third stage

Finally, tfae:

- $U(\mathbf{B}) \to \mathbf{B}$
- B is the retraction of a structure invariant under a semilattice
- $(\Rightarrow) U(\mathbf{B})$ is invariant under \cup (a semilattice) and contains B

Third stage

Finally, tfae:

- $D(\mathbf{B}) \to \mathbf{B}$
- B is the retraction of a structure invariant under a semilattice
- (\Rightarrow) $U(\mathbf{B})$ is invariant under \cup (a semilattice) and contains B
- (\Leftarrow) If B is invariant under a semilattice \lor then $h(\{a_1, \ldots, a_n\}) = \lor \{a_1, \ldots, a_n\}$ is an homomorphism from $U(\mathbf{B})$ to B.

Theorem. Tfae:

B has a finite obstruction set

- B has a finite obstruction set
- B has a finite obstruction set consisting of trees [Foniok, Nešetřil, Tardif 06]

- B has a finite obstruction set
- B has a finite obstruction set consisting of trees [Foniok, Nešetřil, Tardif 06]
- $\neg CSP(B)$ is definable in existential positive FO

- B has a finite obstruction set
- B has a finite obstruction set consisting of trees [Foniok, Nešetřil, Tardif 06]
- $\neg CSP(B)$ is definable in existential positive FO
- $\neg CSP(B)$ is definable in FO [Atserias 05] [Rossman 05]

- B has a finite obstruction set
- B has a finite obstruction set consisting of trees [Foniok, Nešetřil, Tardif 06]
- $\neg CSP(B)$ is definable in existential positive FO
- $\neg CSP(B)$ is definable in FO [Atserias 05] [Rossman 05]
- **9** \mathbf{B}^2 dismantles to its diagonal [Larose, Loten, Tardiff 07]
Finite obstruction set

Theorem. Tfae:

- B has a finite obstruction set
- B has a finite obstruction set consisting of trees [Foniok, Nešetřil, Tardif 06]
- $\neg CSP(B)$ is definable in existential positive FO
- $\neg CSP(B)$ is definable in FO [Atserias 05] [Rossman 05]
- \mathbf{B}^2 dismantles to its diagonal [Larose, Loten, Tardiff 07] Furthermore if \mathbf{B} satisfies any of the previous conditions then tfae [Loten, Tardif]:
 - B has a finite obstruction set consiting of caterpillars
- **B** is invariant under a majority

THANKS FOR YOUR ATTENTION!!!!

For more details on this see:

- Slides of L.Zadori's talk at Vanderbilt
- Upcoming survey by A.Bulatov, A. Krokhin, and B. Larose