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Constraint Satisfaction Problems

Let B = (B; PB
1 , . . . , PB

m ) be a relational structure

Def: CSP(B) is the following computational problem:

Input: A structure A = (A; PA
1 , . . . , PA

m )

Output: Is there an homomorphism from A to B?

An homomorphism is any mapping h : A → B such that for
every i ≤ m and every (a1, . . . , an) ∈ An

(a1, . . . , an) ∈ PA
i ⇒ (h(a1), . . . , h(an)) ∈ PB

i

If such h exists, we write A → B
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Many natural computational problems can be expressed as
CSP(B) by choosing an appropiate B.

If k-CLIQUE is a complete graph with k nodes then
CSP(k-CLIQUE) is the GRAPH k-COLORING problem

If B3-SAT is ({0, 1}; R0, R1, R2, R3) where

R0 = {0, 1}3 − {(0, 0, 0)}

R1 = {0, 1}3 − {(1, 0, 0)}

R2 = {0, 1}3 − {(1, 1, 0)}

R3 = {0, 1}3 − {(1, 1, 1)}

then CSP(B3-SAT) is 3-SAT.
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3-SAT example expanded

Recall that 3-SAT is the computational problem

Given a 3-CNF formula ϕ (the input), is it satisfiable?

It is easy to define a bijection σ between 3-CNF’s and
structures A that preserves satistiability and unsatisfiability

Indeed, let σ(ϕ) = (V, T0, T1, T2, T3) where

V is the set of variables of ϕ

T0 contains (x, y, z) if x ∨ y ∨ z is a clause of ϕ

T1 contains (x, y, z) if ¬x ∨ y ∨ z is a clause of ϕ

T2 contains (x, y, z) if ¬x ∨ ¬y ∨ z is a clause of ϕ

T3 contains (x, y, z) if ¬x ∨ ¬y ∨ ¬z is a clause of ϕ
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Complexity

For every B, CSP(B) is in NP.

Feder-Vardi Conjecture: For every B, CSP(B) is in P or
NP-complete

Research Project: Identify, for each B, the computational
complexity (in P, NP-complete, in NL, in L) of CSP(B)

A long list of partial results but still open
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Two main algorithmic principles to identify
tractable(=solvable in polynomial time) cases of CSP(B)

Few subalgebras property [Berman, Idziak, Markovic,
McKenzie, Valeriote, Willard] (P. Markovic talk)

Bounded Width (this talk)

Challenge: Investigate how these two principles can be
sistematically combined.
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Bounded width

The notion of bounded width admits several alternative
characterizations:

in terms of solvability by the k-consistency test

in terms of obstruction sets

in terms of definability in certain logics
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First view: the k-consistency test

Given k ≥ 1, A and B

Let H be the set of all partial homomorphisms f with
dom(h) ≤ k

Repeat (1) and (2) until stabilizes

1. Remove from H every f with dom(f) < k such that for
some a ∈ A there is not g ∈ H with f ⊆ g and a ∈ dom(f)

2. Remove from H every f such that g ⊆ f for some g 6∈ H

If H = ∅ then REJECT, otherwise ACCEPT

Constraint Satisfaction and Width – p.8/36



If k is fixed the k-consistency test runs in polynomial
time

Question 1: Given an structure B and some k > 1, does the
k-consitency test solve CSP(B)? that is, does every
instance that passes the k-consistency test have a solution?
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Second view: Obstruction sets

[Nes̆etr̆il, Pultr 78]

Obvious fact: if O → A and O 6→ B then A 6→ B

Def: An obstruction set for a structure B is a class OB of
structures such that, for all A,

A → B ⇔ O 6→ A for all O ∈ OB

Every structure B has a trivial obstruction set
containing all O such that O 6→ B

We are interested in those B for which is possible to
obtain “simple” obstruction sets.
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Examples

If B is a transitive tournament
−→
Tk on k vertices then one

can choose OB = {
−−−→
Pk+1} where

−−−→
Pk+1 is a directed path

on k + 1 vertices.

Constraint Satisfaction and Width – p.11/36



Examples

Algorithm for CSP(
−→
Tk)

1. input: directed graph
−→
A = (V, E)

2. C1 := V

3. i := 1

4. while i ≤ k do
4.1 Ci+1 := {v ∈ V | u ∈ Ci, (u, v) ∈ E}

4.2 i := i + 1

5. if Ck+1 = ∅ then ACCEPT, otherwise REJECT
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Examples

If B is a transitive tournament
−→
Tk on k vertices then one

can choose OB = {
−−−→
Pk+1} where

−−−→
Pk+1 is a directed path

on k + 1 vertices.

If B is 2-CLIQUE then OB can be chosen to consist of
all odd cycles.
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An obstruction is “simple” if it has small treewidth (tw)

A graph G is a k-tree if:

G is a k-clique, or

G can be obtained from a k-tree G′ by choosing a
k-clique of G′ and adding a new element adjacent to
them.

A graph has tw ≤ k if it is a subgraph of a k-tree

A structure has tw < k is so has its Gaiffman graph.

Question 2: Given a structure B and some k > 1, has B an
obstruction set consisting of structures with tw ≤ k?
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Third view: Logic

Let O = (O; PO
1 , . . . , PO

m ) be an structure with signature
{P1, . . . , Pm}.

Def: FO is the primitive positive (only existential
quantification and conjuntions) sentence in prefix normal
form with

variables of FO are elements in the universe of O

there is an atomic predicate Pi(v1, . . . , vk) for every tuple
(v1, . . . , vk) ∈ PO

i

Example: F−−−→
Pk+1

is the formula

∃v1, . . . , vk+1E(v1, v2) ∧ · · · ∧ E(vk, vk+1)
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Fact: [Chandra, Merlin 77]
For every A, O

O → A ⇔ A |= FO

If B has a finite obstruction set {O1, . . . ,Om} then ¬CSP(B)
is definable in existential positive FO

A ∈ ¬CSP(B) ⇔ A |= FO1
∨ · · · ∨ FOm
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We shall write existential positive formulas in form of rules

Example: The formula

∃x, y, z E(x, y) ∧ E(y, z) ∧ (z, x)

∨

∃x, y E(x, y) ∧ E(y, x)

can be rewriten as

Goal : − E(x, y), E(y, z), E(z, x)

Goal : − E(x, y), E(y, x)

Intuition: “Goal” is fired when the right side of a rule is
satisfied.
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Datalog Programs

Even if the obstruction set is infinite we still (sometimes)
can define ¬CSP(B) by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all
odd cycles
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Datalog Programs

Even if the obstruction set is infinite we still (sometimes)
can define ¬CSP(B) by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all
odd cycles

The following set of rules defines ¬CSP(2-CLIQUE)

oddpath(X, Y ) : − E(X, Y )

oddpath(X, Y ) : − oddpath(X, Z), E(Z, T ), E(T, Y )

Goal : − oddpath(X, X)
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Datalog Programs

Even if the obstruction set is infinite we still (sometimes)
can define ¬CSP(B) by using recursion

Example: 2-CLIQUE has an obstruction set consisting of all
odd cycles

The following set of rules defines ¬CSP(2-CLIQUE)

oddpath(X, Y ) : − E(X, Y )

oddpath(X, Y ) : − oddpath(X, Z), E(Z, T ), E(T, Y )

Goal : − oddpath(X, X)

The intensional database predicates (IDB) might occur both
in the head and body of a rule
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Question 3: Given a structure B and k > 1, is ¬CSP(B)
definable by a Datalog Program with at most k different
variables?
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[Hell, Nes̆etr̆il, Zhu 96][Feder,Vardi 98][Kolaitis,Vardi 00]

Theorem: Let B be a structure and k ≥ 1. Tfae:

k-consistency solves CSP(B)

B has an obstuction set consisting of structures of
trewidth ≤ k − 1

¬CSP(B) is definable by a datalog program with k

different variables

Def:

B has width k if it satisfies any of the previous conditions

B has bounded width if has width k for some k
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k-consistency solves CSP(B)
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If B has bounded width then CSP(B) is solvable in
polynomial time.

Indeed, bounded width explains in an uniform way many of
the existing results

Question: Determine which B have bounded width

Long list of partial results but still open
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Algebraic approach

Def: For every B = (B; R1, . . . , Rm) let AlgB the algebra with
universe B and whose basic operations are the
polymorphisms of {R1, . . . , Rm}.

Fact: Many properties of CSP(B) depend only on AlgB

Solvability in poly time [Jeavons, Cohen, Gyssens 98]

Bounded width and many others [Larose, Tesson 07]
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Sufficient conditions: B has bounded width if AlgB

has a semilattice [Jeavons, Cohen, Gyssens 97]

has a nu [Feder, Vardi 98]

has 2-semilattice [Bulatov 06]

is in CD(3) [Kiss,Valeriote 07]

. . .
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Necessary condition: Let B be a core with bounded width.
Then the following equivalent conditions hold:

var(AlgB) omits types 1 and 2 [Larose,Zadori 07]

AlgB has weak nufs of almost all arities [Maróti,
McKenzie 07]

An idempotent operation f of arity n ≥ 2 is a weak nuf it it
satisfies the identity

f(y, x, . . . , x) = f(x, y, . . . , x) = · · · = f(x, x, . . . , y)

It is conjectured [Larose,Zadori 07] that the condition is also
sufficient
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Width from an algebraic perspective

Def: An algebra A = (A; F ) is bounded if every structure B

with relations in Inv(F ) has bounded width.

We would like to redefine this concept in a simple way using
only algebraic terminology

I checked the references and couldn’t find one

I figured out one but it is messy

Solution: Work with a simplified version of width
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Width of an algebra

Let A be an algebra, let n ≥ k > 2, let H be a subuniverse
of An, and let {HI : I ⊆ {1, . . . , n}, |I| = k} the set of all its
k-ary projections

This set satisfies the following (consistency) condition:
HI and HJ coincide over I ∩ J , for every I, J

Def: A k-relation system (of arity n) is any collection of k-ary
relations, HI , one for each k-element subset I of {1, . . . , n}
that satisfies the consistency condition.
Informally, a k-relation system is any set of relations that
looks to us as the set of all k-ary projections of some
relation.

Def: A has width k if for every k-relation system there is a
tuple t ∈ An such that tI ∈ HI for every I.

Constraint Satisfaction and Width – p.24/36



Width of an algebra

Let A be an algebra, let n ≥ k > 2, let H be a subuniverse
of An, and let {HI : I ⊆ {1, . . . , n}, |I| = k} the set of all its
k-ary projections

This set satisfies the following (consistency) condition:
HI and HJ coincide over I ∩ J , for every I, J

Def: A k-relation system (of arity n) is any collection of k-ary
relations, HI , one for each k-element subset I of {1, . . . , n}
that satisfies the consistency condition.
Informally, a k-relation system is any set of relations that
looks to us as the set of all k-ary projections of some
relation.

Def: A has width k if for every k-relation system there is a
tuple t ∈ An such that tI ∈ HI for every I.

Constraint Satisfaction and Width – p.24/36



Width of an algebra

Let A be an algebra, let n ≥ k > 2, let H be a subuniverse
of An, and let {HI : I ⊆ {1, . . . , n}, |I| = k} the set of all its
k-ary projections

This set satisfies the following (consistency) condition:
HI and HJ coincide over I ∩ J , for every I, J

Def: A k-relation system (of arity n) is any collection of k-ary
relations, HI , one for each k-element subset I of {1, . . . , n}
that satisfies the consistency condition.

Informally, a k-relation system is any set of relations that
looks to us as the set of all k-ary projections of some
relation.

Def: A has width k if for every k-relation system there is a
tuple t ∈ An such that tI ∈ HI for every I.
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Why should we care about the width of an algebra?

B has width k whenever AlgB has width k and
k ≥ arity(B)

A is bounded whenever A has width k for infinitely
many k

all algebras known to be bounded have with k for
almost all k
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What we do not know:

For every k > 2, which algebras have width k?

Is it true that if B has bounded width then AlgB has
width k for some k > 2?

Has every algebra in CD(4) have width k for some
k > 2?

Is it true that if B has width k then it has width k + 1?

Is there an algebra that has width k for some k > 3 but
not width 3?
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Interesting cases of obstruction sets

Obstructions of bounded pathwidth

Trees

Finite obstruction set
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Obstructions of bounded pathwidth

Theorem: (D. 05)
The following conditions are equivalent:

B has an obtruction set consiting of structures of
pathwidth < k

¬CSP(B) is definable in linear k-datalog

A datalog program is linear if it has at most one IDB in the
body of each rule.

Example: The following program is linear
oddpath(X, Y ) : − E(X, Y )

oddpath(X, Y ) : − oddpath(X, Z), E(Z, T ), E(T, Y )

non2colorable : − oddpath(X, X)
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Fact: If B has an obstruction set of bounded pathwidth then
¬CSP(B) is solvable with non-deterministic logarithmic
space (NL)

Indeed, all CSPs known to be in NL have bounded
pathwidth duality

Theorem: If B is a core with an obstruction of bounded
pathwidth then var(AlgB) omits types 1,2, and 5 [Larose,
Tesson 07]

Theorem: If B is invariant under a majority then it has an
obstruction set of bounded pathwidth [D., Krokhin 07]
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Some open questions:

Does every B invariant under a nuf have an obstruction
set of bounded pathwidth?

Does every B with AlgB in CD(3) have an obstruction
set of bounded pathwidth?

Does it exists any B without an obstruction set of
bounded patwidth such that ¬CSP(B) is in NL.
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Trees

Theorem [Feder, Vardi 98]. Let B be a structure. Tfae:

B has an obstruction set consisting of trees

¬CSP(B) is definable by a Datalog program with
monadic IDBs and with at most one EDB per rule.

B is a retract of a structure invariant under a semilattice

Theorem [D., Krokhin] Let B be a structure. Tfae:

B has an obstruction set consisting of caterpillars.

¬CSP(B) is definable by a Dat. program with monadic
IDBs and with at most one EDB and one IDB per rule.

B is a retract of a structure invariant under a lattice.

A caterpillar is a tree in which every node is adjacent to at
most 2 non-leaves
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Why is it possible in the case of trees and caterpillars to find
an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

1. Define a notion of consistency that captures the type of
obstruction considered
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First stage

The restriction of the k-consistency test that corresponds to
trees is the arc-consistency test.

Arc consistency test.
Input A = (A; PA

1 , . . . , PA

l ,B = (B; PB
1 , . . . , PB

l ):

Let H be the mapping A → 2B such that H(a) = B for all a.

1. For every Pi, every tuple (a1, . . . , ar) ∈ PA
i , and every

1 ≤ j ≤ r remove from H(aj) all those values not in
prj RB ∩ H(a1) × · · · × H(ar)

Iterate (1) until stabilizes

If H(a) = ∅ for some a ∈ A then REJECT otherwise accept
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Second stage

The most difficult example for the arc-consistency test is
structure U(B).
Def: U(B) is the structure whose nodes are nonempty sets
of B and such that for every Pi, P

U(B)
i contains

(pr1 R, . . . , prr R) for every subrelation R of PB
i .

Formally:
A passes the arc-consistency test ⇔ A → U(B)

Hence,
Arc-consistency solves CSP(B) ⇔ U(B) → B
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Why is it possible in the case of trees and caterpillars to find
an exact algebraic characterization?

Answer: there is a methodology, due to Feder and Vardi.

1. Define a notion of consistency that captures the type of
obstruction considered

2. Find out the most difficult example (structure) for the
corresponding consistency test

3. Algebraic characterization follows from the analysis of
the structure.
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Third stage

Finally, tfae:

U(B) → B

B is the retraction of a structure invariant under a
semilattice

(⇒) U(B) is invariant under ∪ (a semilattice) and contains B

(⇐) If B is invariant under a semilattice ∨ then
h({a1, . . . , an}) = ∨{a1, . . . , an} is an homomorphism
from U(B) to B.
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Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



Finite obstruction set

Theorem. Tfae:

B has a finite obstruction set

B has a finite obstruction set consisting of trees
[Foniok, Nes̆etr̆il, Tardif 06]

¬CSP(B) is definable in existential positive FO

¬CSP(B) is definable in FO [Atserias 05] [Rossman 05]

B
2 dismantles to its diagonal [Larose, Loten, Tardiff 07]

Furthermore if B satisfies any of the previous conditions
then tfae [Loten, Tardif]:

B has a finite obstruction set consiting of caterpillars

B is invariant under a majority

Constraint Satisfaction and Width – p.38/36



THANKS FOR YOUR ATTENTION!!!!

For more details on this see:

Slides of L.Zadori’s talk at Vanderbilt

Upcoming survey by A.Bulatov, A. Krokhin, and B.
Larose
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