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Abstract

The purpose of this note is the study of L-multialgebras

and fuzzy congruences of multialgebras. In this regards

first the notion of a L-multialgebras are introduced and

studied and then the notion of a P -fuzzy relations on mul-

tialgebra are given and is applied to introduce the notion of

P -fuzzy congruence of multialgebras. Finally, the lattices

of P -fuzzy (resp. strong) congruences of multialgebras is

constructed and and it is shown that is complete.
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1 Introduction

The concept of a hypergroup was introduced by F. Marty [22].

Since then many researchers studied in this field and developed;

for example [10, 11, 27]. Several aspects of homomorphisms,

subalgebras and subdirect decompositions of relational systems

of multialgebras ( hyperalgebra) developed in [23], [24] by Picket

and in [16] by Hansoul. In [26] D. Schweigert studied the congru-

ence of multialgebras. Ameri and Zahedi introduced the notion

of hyperalgebraic systems [1].

As it is well known Zadeh in 1965 [28] introduced the notion

of a fuzzy subset µ of a nonempty set X as a function from X to

unite real interval I = [0, 1]. J.E. Goguen in [15] replace I by a

complete lattice L in the definition of fuzzy sets and introduced

the notion of L-fuzzy sets.

Rosenfeld defined the concept of a fuzzy subgroup of a group

G [21]. and since then many researchers have worked in this area.

Zahedi and others introduced and studied the fuzzy hyperalge-
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braic structures ( for example [2, 3, 4, 12, 13, 25]). The purpose

of this note is the study of L-multialgebras and fuzzy congruences

of multialgebras. We introduce the notion of L-multialgebras, as

a generalization of multialgebras and fuzzy algebraic systems in-

vestigate the basic properties of L-multialgebras. Then we intro-

duce notion of P -relation and apply it to introducing the notions

of P -fuzzy congruence of multialgebras. Then we give the basic

results of these notions. In particular, we show that the set of all

P -fuzzy congruences on a given multialgebra via natural order,

forms a complete lattice.

2 Preliminaries

In this section we gather all definitions and simple properties

we require of hyperstructures and fuzzy subsets and set the no-

tions. In the sequel H is a fixed nonvoid set, P ∗(H) is the family

of all nonvoid subsets of H, and for a positive integer n we denote

for Hn the set of n-tuples over H (for more see [1]).

For a positive integer n a n-ary hyperoperation β on H is a

function β : Hn → P ∗(H). We say that n the arity of β. A subset

S of H is closed under the n-ary hyperoperation β if (x1, . . . , xn) ∈ Sn
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implies that β(x1, . . . , xn) ⊆ S. A nullary hyperoperation on H is

just an element of P ∗(H); i.e. a nonvoid subset of H.

An n-ary relation on H is a subset of Hn. We also say that

the arity of ρ is n. Orders and equivalence relations on H are the

best examples of binary (i.e. 2-array) relations on H. Henceforth

sometimes we use hyperoperation instead of the n-ary hyperop-

eration. A hyperalgebraic system 〈H, (βi, | i ∈ I), (αj | j ∈ J)〉 is the

set H with together a collection (βi, | i ∈ I) of hyperoperations on

H and a collections (αj | j ∈ J) of relations on H. 〈H, (βi, | i ∈ I)〉

is called a hyperoperational system or a multialgebra. Notice the set

〈H, (αj | j ∈ J)〉 is called a relational system.

A subset S of a multialgebra H = 〈H, (βi, | i ∈ I)〉 is a submulti-

algebra of H if for all i ∈ I, each hyperoperation βi is closed on S,

that is βi(a1, ..., an) ⊆ S, whenever (a1, ..., an) ∈ Sn. The type of H is

the map from I into the set N of nonnegative integers assigning

to each i ∈ I the arity of βi.

Let ρ be an h− ary relation on H. Extended ρ to P ∗(H) in two

ways. Let A1, ..., Ah ∈ P ∗(H) be arbitrary. Then

1) Set (A1, ..., A2) ∈ ρ if A1 × ... × Ah ⊆ ρ; i.e. if (a1, ..., ah) ∈ ρ

whenever ai ∈ Ai for all i = 1, ..., h.

2) For h > 1 set (A1×, ...,×Ah) ∈ ρ if for every 1 ≤ j ≤ h and all
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ai ∈ Ai for i = 1, ..., h, i 6= j we have (a1, ..., ah) ∈ ρ for some aj ∈ A.

For h = 1 (if ρ ⊆ H ) set ρ = ρ(= P ∗(ρ)).

For example, let h = 2, let ρ be an equivalence relation on H

and let A1, A2 ⊆ H. Then (A1, A2) ⊆ ρ if and only if A1, A2 ⊆ B for a

block (also called equivalence class ) of ρ, while (A1, A2) ∈ ρ if the

set A1 and A2 meet exactly the same blocks of ρ; in other words,

if both sets A1 and A2 have the same hull in ρ.

An h-ary relation ρ on H is strongly compatible with an n-ary

hyperoperation β on H if either (i) n > 0 and for every h × n

matrix M = [mij] over H whose column vectors are all in ρ, the

values of β on the rows of M form an h − tuple in ρ; explicitly if

(m1j, ..., mhj) ∈ ρ for all j = 1, ..., n, implies

(β(m11, ..., m1n), ..., β(mh1, ..., mhn)) ∈ ρ (1)

or

(ii) n = 0 and (β, ..., β) ∈ ρ (where β ∈ P ∗(H) is the value of β

). Strong compatiblity was introduced in [10]. If we replace ρ

by ρ we obtain the notion of compatiblity ([22] for equivalence

relation and independently [1] for h = 1, 2 ).

A binary relation ρ on a set M is called compatible (resp. strong

compatible ) with an n-ary hyperoperation β if x1ρy1, ..., xnρyn im-
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plies that

β(x1, ..., xn)ρβ(y1, ..., yn),

(β(x1, ..., xn)ρSβ(y1, ..., yn))

where for nonempty subsets A and B of M ,

AρB ⇐⇒ (∀a ∈ A ∃b ∈ B : aρb and ∀b ∈ B , ∃a ∈ A : bρa),

and

AρSB ⇐⇒ ∀a ∈ A, ∀b ∈ B aρb.

Let 〈H, (βi, | i ∈ I)〉 be a multialgebra. A binary relation ρ on M

is called (resp. strong) congruence if ρ is an equivalence relation

and (resp. strongly) compatible with every βi, i ∈ I.

For n > 0 we extend an n-ary hyperoperation β on H to P ∗(H)

by setting for all A1, ..., An ∈ P ∗(H)

β(A1, ..., An) =
⋃
{β(a1, ..., ah)|ai ∈ Ai(i = 1, ..., n)}.

Whenever possible we write a instead of the the singleton {a};

e.g. for a binary hyperoperation ◦ and a, b, c ∈ H we write a◦ (b◦c)

for {a} ◦ ({b} ◦ {c}) =
⋃
{a ◦ u|u ∈ b ◦ c}.

An equivalence relation on A compatible (strongly compatible)

with a multialgebra H on A is congruence (strong congruence) of
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H. Denote by Con(H)(Cons(H)) the set of all congruences (strong

congruences ) of H.

Let H = 〈A, (βi, | i ∈ I)〉 be a multialgebra and let θ ∈ Con(H).

Let A′{Bj|j ∈ J} be the set of blocks of θ. For every i ∈ I define

β ′
i on A′ as follows:

Let j1, ..., jMi
∈ J be arbitrary and let al ∈ Bjl

for l = 1, ..., Mi.

Let

β ′
i(Bj1, ..., BjMi

) = {Bj|j ∈ J, Bj meets βi(a1, ..., aMi
)} (2)

Since θ ∈ Con(H), it can be verified that β ′
i is well defined Mi-

ary hyperoperation on A′. Call H/θ = 〈A′, {Bj|j ∈ J}〉 a factor

multialgebra of H. If, moreover, θ ∈ Con(H), then every β ′
i is sin-

gleton valued, i.e. an operation on A′, and H/θ is an algebra. For

semihypergroups this fact are in [10]( see also [12], [19] and [20]),

the general case is in [1].

We view binary relation on A as subsets of A2 and so for a mul-

tialgebra H on A the sets Con(H) and Cons(H) are naturally or-

dered by set inclusion. First we characterize the poset (Con(H,⊆).

Recall that for a binary relations ρ and σ on A the relation prod-

uct ( also calledde Morgan product) is

ρ ◦ σ = {(x, y) ∈ A2|(x, u) ∈ ρ, (u, y) ∈ σ for someu ∈ A}.
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It is well known and easy to show that the relation product is

associative with the unital element ω = {(a, a)|a ∈ A}.

A hypergroupoid is a multialgebra of type (2), that is a set H

together with a (binary) hyperoperation ◦. A hypergroupoid

(H, ◦), which is associative, that is x◦(y◦z) = (x◦y)◦z for all x, y, z ∈

H is called a semihypergroup. A hypergroup is a semihypergroup such

that for all x ∈ H we have x◦H = H = H ◦x (called the reproduction

axiom).

Let H be a hypergroup. A nonempty subset K of H is a subhy-

pergroup of H if a ◦ K = K = K ◦ a for all a ∈ K.

An element e in a hypergroup H = (H, ◦) is called an identity of

H if for all x ∈ H

x ∈ (e ◦ x) ∩ (x ◦ e).

A polygroup is a semihypergroup H = (H, ◦) with e ∈ H such that

for all x, y ∈ H

(i)e ◦ x = x = x ◦ e;

(ii) there exists a unique element, x−1 ∈ H such that

e ∈ (x ◦ x−1) ∩ (x−1 ◦ x), x ∈
⋂

z∈x◦y
(z ◦ y−1), y ∈

⋂

z∈x◦y
(x−1 ◦ z).

In fact a polygroup is a multialgebra of type (2, 1, 0).

Let H = (H, ◦) be a polygroup. A subhypergroup K = (K, ◦) of
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H is a

(i) subpolygroup of H, in symbols K ≤P H, if e ∈ K = K−1

(ii) normal subpolygroup of H, in symbol KH, if for all x ∈ H we

get x ◦ K = K ◦ x.

Denote by L a complete distributive lattice. The meet, join,

and partial ordering of L will be written as ∧,∨,∨ ≤, respectively.

By an L-subset of X, we mean a function µ from X to L. The set

of all L-subsets of X is called L-power subsets of X and is denoted

by LX . In particular, when L is I = [0, 1], the L-subsets of X

are called the fuzzy subset and the set IX is refereed as the fuzzy

power set of X.

Let µ ∈ LX. Then the set {µ(x)|x ∈ X} is called the image of

µ and is denoted by µ(X) or Im(µ). The set {x ∈ X|µ(x) > 0} is

called the support of µ and is denoted by µ∗ or supp(µ).

Let {µi|i ∈ I} be a family of L-subsets of X, where I is a

nonempty index set, then
⋃

i∈I

µi and
⋂

i∈I

µi are given by

(
⋃

i∈I

µi)(x) =
∨

i∈I

µi(x),

(
⋂

i∈I

µi)(x) =
∧

i∈I

µi(x).

Let µ ∈ LX. For a ∈ L, define µa as follows:
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µa = {x ∈ X|µ(x) ≥ a}.

µa is called the a−level subset of µ.

It is easy to verify that for any µ, ν ∈ LX,

(1)µ ⊆ ν, a ∈ L =⇒ µa ⊆ νa,

(2)a ≤ b, a, b ∈ L =⇒ µb ⊆ µa

(3)µ = ν ⇐⇒ µa = νa ∀a ∈ L.

Definition 2.16. By an Ln -relation of X, we mean a function µ

from Xn to L.

If n = 2 we say L-relation instead L2-relation.

An L-relation R of X is said to be an L-similarity relation if

(i) is reflexive, that is

R(x, x) = 1, ∀x ∈ X;

(ii) is symmetric, that is

R(x, y) = R(y, x), ∀x, y ∈ X;

(iii) is transitive, that is

R(x, y) ≥
∨

z∈X

R(x, z) ∧ R(z, y).
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3 L-Multialgebras

In the sequel H denotes the multialgebra H = 〈H, (βi, | i ∈ I)〉.

Definition 3.1. Let H = 〈H, (βi, | i ∈ I)〉 be a multialgebra.

We say that µ ∈ LH is an L-submultialgebra of H, in symbol

µ <LHA H, iff

(i) for every i ∈ I such that arity ni of βi is positive, for all

a1, ..., ani
∈ H and all z ∈ βi(a1, ..., ani

)

µ(z) ≥ µ(a1) ∧ ... ∧ µ(ani
) (4)

in other words, every values of µ on the set βi(a1, ..., an) is at

least the least of µ(a1), ..., µ(an) and

(ii) for any nullary hyperoperation β and every z ∈ β

µ(c) ≥ µ(x) ∀x ∈ H.

Denote by LHA(H), the set of all L-submultialgebras of H.

Examples 3.2. (1) Let H = (H, ◦) be a hypergroupoid. Then

µ ∈ LH is a fuzzy subhypergroupoid of H if for all x, y ∈ H
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µ(z) ≥ µ(x) ∧ µ(y) (5)

(2) Let H = (H, ◦, e) be a hypergroupoid with an identity ele-

ment e (considered as a nullary hyperoperation). Then µ <FHA H

if and only if µ satisfies in (3) and µ(e) is the greatest element of

the range of µ. In this case we say that µ is an L-subhypergroupoid

of H.

(3) LetH = (H, ◦,−1 , e) be a polygroup (considered as a multi-

algebra of type (2, 1, 0)). Then µ <FHA H if and only µ satisfies

(3) and µ(e) is the greatest element of the range of µ and µ(x−1) =

µ(x) for all x ∈ H. Indeed from (2) we get µ(x−1) ≥ µ(x) for

all x ∈ H. From the unity of x−1 we get (x−1)−1 = x and so

µ(x) = µ((x−1)−1) ≥ µ(x−1) proving the equality. Then µ is an

L-subpolygroup if ∀x, y ∈ H the following conditions are satisfies:

(i)µ(z) ≥ µ(x) ∧ µ(y), ∀z ∈ x ◦ y;

(ii)µ(x−1) ≥ µ(x).
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Theorem 3.3 ( First Representation Theorem. Let µ ∈ FS(H). If all

nonempty t-level subset µt is a submultialgebra of H , then µ is an L-submultialgebra of

H .

Theorem 3.4 ( Second Representation Theorem). Let µ be a L-submultialgebra of H .

Then every nonempty t-level subset µt is a submultialgebra of H .

Proof. Let β be an n-ary hyperoperation (n ≥ 1) and a = (a1, ..., an) ∈ µt

n
. Then for

any z ∈ β(a1, ..., an)

µ(z) ≥ µ(a1) ∧ ... ∧ µ(an) ≥ t,

that is z ∈ µt, which means that µt is closed under β. For any nullary hyperoperation

β and z ∈ β, by (ii) of Definition 3.1 µ(z) ≥ µ(x). Thus µt is closed under nullary

hyperoperation, too. This complete the proof.

4 P -fuzzy Congruences

Let µ ∈ FS(A). Recall that the set

µp = {x ∈ A|µ(x) ≥ p}

is the p−level subset or p-cut of µ for every p ∈ L.

The following, property known, proposition links P -fuzzy sub-

set and this level sets.

Proposition 4.1. Let A be a nonvoid set and let and P = (P,≤)

be a nonempty ordered set. A family M = {Mp|p ∈ P} of subsets

13



of A is the family of all level subsets of P -fuzzy subset µ on A if

and only if

(i) M covers A,

(ii) for every a ∈ A the set Ma = {p ∈ P |a ∈ Mp}.

has a greatest element (i.e. there exists g ∈ Ma such that

g ≥ p, ∀p ∈ Ma).

Proposition 4.2. Let h ∈ N+ and let P = (P,≤) proving x ∈ µp be

a nonvoid ordered set. A P -fuzzy set on Hh is an h-ary P -fuzzy

relation on A.

For a subset Q of P set P = (P,≤) be nonvoid order, let

Q↓ = {p ∈ P |p ≤ q ∀q ∈ Q},

Q↑ = {p ∈ P |p ≥ q ∀q ∈ Q}.

The set of the form Q↓ and Q↑ are the Galois-closed sets on the

left and right in Galois connection induced by ≤ on P . We write

Q↓↑ for (Q↓)↑. The set {(Q↓)↑|Q ⊆ P}, ordered by ⊆, is the Mac

Neil completion of (P,≤). If (P,≤) is ∧− semilattice then for

every finite nonvoid subset Q = {g1, ..., gn} of P we have Q↓↑ =

{g1 ∧ ... ∧ gn}
↑.

Definition 4.3. Let h ∈ N+ and µ be an h − ary P -fuzzy relation

on H. For an h−ary hyperoperation β on A is strongly compatible
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with µ if for every h×n matrix on A with rows r1, ..., rh and columns

c1, ..., cn

µ(β(r1) × .... × β(rn)) ⊆ {µ(c1), ..., µ(cn)}
↓↑ (6)

where by µ(β(r1) × ....× β(rn)) we mean
∧

ui∈β(ri)

n∨

i=1

µ(ui)

Definition 4.4. Let P = (P,≤) be a nontrivial ordered set, let

h ∈ N+ and let µ be an h-ary P -fuzzy relation on A. For n ∈ N+ are

n-ary hyeroperation β on H is compatible with µ if for every h×n

matrix with rows r1, ..., rh and columns c1, ..., cn for each 1 ≤ i ≤ h,

for every 1 ≤ j ≤ h, j 6= i, for all uj ∈ β(rj) there exists ui ∈ β(ri)

such that

µ(u1, ..., uh) ∈ {µ(c1), ..., µ(cn)}
↓↑ (7)

A nullary hyperoperation on H is compatible with µ if it is

strongly compatible with µ.

A multialgebra 〈H, (βi, | i ∈ I)〉 is compatible with µ if each βi is

compatible with µ.

Remark 4.5. If P = (L,∨,∧) is a complete lattice. Then the

condition (7) is expressible in lattice terms:

h∧

i=1

h∧

j=1,j 6=i

∧

uj∈β(rj)

∨

ui∈β(ri)

µ(u1, ..., uh) ≥
h∧

k=1

µ(ck) (8)
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In particular, if P = ([0, 1],≤) (the unit interval of real numbers

with the natural order) then the P -fuzzy sets are the standard

fuzzy sets and (8) becomes

mini=1,...,hminj=1,...,h,j 6=iinfuj
∈ β(rj)supui∈β(ri)µ(u1, ..., uh) ≥ mink=1,...,hµ(ck).

Proposition 4.6. Let P = (P,≤) be a nontrivial order, let H =

〈H, (βi, | i ∈ I)〉 be a multialgebra and let µ be an h-ary P -fuzzy

relation on H. Then µ is compatible (resp. strongly compati-

ble) with H if and only if for every l ∈ L the multialgebra H is

compatible (strongly compatible) with the level relation µl.

Definition 4.7. Denote by FhPA, the set of h-ary P -fuzzy relation

on A. The set FhPH is naturally ordered pointwise as a set of

maps from Hh into the ordered set P : For µ, ν ∈ F set µ � ν if

and only if µ(a) ≤ ν(a) for all a ∈ Hh.

The following proposition expresses � in terms of the level

relations.

Proposition 4.8. Let P = (P,≤) be an ordered set and µ, ν ∈ FhPH.

Thus µ � ν if and only if µP ⊆ νp for all p ∈ P .

The following definition extends equivalence relations to P -

fuzzy relations.

Definition 4.9. Let P = (P,≤) be an ordered set with the greatest
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element 1. A binary P -fuzzy relation θ on H is a similarity if for

all x, y, z ∈ H.

θ(x, x) = 1, θ(y, x) = θ(x, y), (9)

θ(x, z) ∈ {θ(x, y), θ(y, z)}↓↑. (10)

Lemma 4.10. Let θ be a binary P -fuzzy relation on H such that

θ(a, a) = 1 for all a ∈ H. Then θ is a similarity relation if and only

if all θp are equivalence relations.

Definition 4.11. Let H be a multialgebra and P an ordered set

with a greatest element 1. A similarity θ on H is a P -fuzzy

congruence (strong P -fuzzy congruence) with θ. We denote by

ConPH ( ConsPH) the set of P -fuzzy congruences ( strong P -fuzzy

congruences) of H. Further we denote by ε the constant map (

from A2 into P) with value 1. If, moreover, H has a least element

0. We denote by η the map from A2 into P defined by setting

η(a, a′ = 1 if a = a′ and η(a, a′) = 0 if a 6= a′.

Lemma 4.12. Let P have a least element 0 and greatest element

1. Then ε is the least element and η the greatest element of

(ConPH,�) for every multialgebra H on A.

Proposition 4.13. If H is a multialgebra on A and P an ordered set

with a least element 0 and greatest element 1. Then (ConPH,�) is
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a complete lattice with the least element η and greatest element

ε.

Proof. If P, Q ∈ ConPH, then P ∩ Q ∈ ConPH and it is the

greatest lower bound, while unique smallest P -fuzzy congruence

containing P ∪ Q, in fact it is the intersection of the family of all

P -fuzzy congruence on H containing P ∪ Q is their least upper

bound. It is easy to replacing the set {P, Q} by an arbitrary

family of P -fuzzy congruence, and so the lattice (ConPH,⊆,∩,∨)

is a complete lattice. Acknowledgment
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