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e a surjective operation that depends on more than one variable,
then C = Oy4.

The set of all operations f € O4 such that
o f is essentially unary (i.e., depends on at most one variable) or
e f is nonsurjective

is a clone, called Stupecki’s clone on A.

Stupecki’s Completeness Theorem (restated): There is a unique maximal
clone on A that contains all unary operations: Stupecki’s clone.
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for maximal clone of type also for the clones
o Affn [Sz'95] e of simple affine algebras [Sz'95]
e Unary Centr [Lau’06(92)] o det by sets of singletons [Sz’91],[Lau]
e Perm [Rosenberg-Sz’85] e det by regular perm grps [Sz’84]
e Eq with unique nontriv block [Lau’06]
o Stupecki’s clone [Haddad-Rosenberg’94] e containing all nonsurj. ops [Sz’137]

e BPO of a chain of size k < 5 [Machida’81, k = 3], [Larose’94, k = 4, 5]
e all types if k = 3 [Lau’82]
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st. f=goh /

ef=cg & [f<cg&f>cg
Easy Facts: ¢ < is a quasiorder, =¢ is an equivalence relation
0 CCD = <¢cC<p
o f=0,8 < f(A)=g(A) [Henno71]
o Fa :={C : = has finitely many equiv classes} (# )
is an order filter in the lattice of clones on finite A
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The Main Results The Question

Question: Which subclones of Q. := {o.}* (c € A) belong to F4?
Op (A={1,2,...,k})
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The Main Results Theorem 1

The subclones of Q. in F4 (c € A, |A| =k > 3):

Q. :={o.}*+
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The Main Results Theorem 1

The subclones of Q. in F4 (c € A, |A| =k > 3):
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The Main Results Theorem 1

The subclones of Q. in F4 (c € A, |A| =k > 3):

Q. :={o.}*+

Qc(c) = {oe, {c}}+

JN\&  U:={De§a:DCQ, DY Q)
| szch(c) Lo={E€Fa:EC Q)

| S |

Theorem 1.
£ec L. = £=Q.c)NR"* for some set R of reflexive rels on A.

Corollary. £ € £, = £ =DnN Q.(c) for some D € ..
Pf: Choose D = Q. N R™*

Thus, 4. determines £,.
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The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
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A(p):={a€A:(a,a) € p}is {c}, orA

A. Szendrei (CU Boulder/U Szeged) Clones w finitely many R-classes Szeged 2012



The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4

(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fu for S = py, pa, or A(p)

A. Szendrei (CU Boulder/U Szeged) Clones w finitely many R-classes Szeged 2012 11/13



The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4

(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fu for S = py, pa, or A(p)

(2)plp £ D forB:=A\{c} = A(p) =A,ie. pisreflexive

A. Szendrei (CU Boulder/U Szeged) Clones w finitely many R-classes Szeged 2012 11/13



The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4
(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fu for S = py, pa, or A(p)
(2)plp £ D forB:=A\{c} = A(p) =A,ie. pisreflexive

e otherwise, p|p is irreflexive, so

A. Szendrei (CU Boulder/U Szeged) Clones w finitely many R-classes Szeged 2012 11/13



The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4
(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fu for S = py, pa, or A(p)
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Special case: p binary and |A| > 4
(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
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(3) p|p = 0 is impossible

A. Szendrei (CU Boulder/U Szeged) Clones w finitely many R-classes Szeged 2012



The Main Results Theorem 1: Sketch of Proof

To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4
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Special case: p binary and |A| > 4
(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fa for S = py, pa, or A(p)
(2)plp £ D forB:=A\{c} = A(p) =A,ie. pisreflexive

e otherwise, p|p is irreflexive, so

{(px 008} = {pls}" N {ocls}™ = {plp}* N Stupeckiz ¢ T
thus £ C {p x o.}* ¢ T follows from Lemma below

e Lemma. [L-Sz’11] For any relation T on A and any subset B C A,
{rls}" ¢ Sp = {7}" ¢ Sa.
(3) p|p = 0 is impossible
eplp=0 = pCxc:=({c} xA)U(A x {c})

(1) = @) p=xcor (i) p=xc\ {(c,c)}.
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To show: € = Q.(c) N {p}* € Qc(c) (pintecomposabier, € € Fa = p reflexive
Special case: p binary and |A| > 4
(1) pi :==pr;(p)is{c}orA(i=1,2); hencep; =pr=A
A(p):={a€A:(a,a) € p}is {c}, orA
e otherwise, £ C Q. N {S}+ ¢ Fa for S = py, pa, or A(p)
(2)plp £ D forB:=A\{c} = A(p) =A,ie. pisreflexive

e otherwise, p|p is irreflexive, so

{(px 008} = {pls}" N {ocls}™ = {plp}* N Stupeckiz ¢ T
thus £ C {p x o.}* ¢ T follows from Lemma below

e Lemma. [L-Sz’11] For any relation T on A and any subset B C A,
{rls}" ¢ Sp = {7}" ¢ Sa.
(3) p|p = 0 is impossible
eplp=0 = pCxc:=({c} xA)U(A x {c})

(1) = @) p=xcor (i) p=xc\ {(c,c)}.
Case (ii): 0 ;== pop~ ' €EQ, 508 C Q. N{O}* ¢ Ta

e Case (i): can be proved that {x., 0. }* ¢ a
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The Main Results Theorem 2

The subclones of Q. in . (¢ € A, |A| =k > 3):

Qc = {O-c}l

Qc(c) = {oe, {c}}+

U = {DESA:DQ Qm DZ QC(C)}
[ €= {£€:EC Q)
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U = {DESA:DQ Qm DZ QC(C)}
[ €= {£€:EC Q)

Theorem 2. If D € AL, then
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The subclones of Q. in . (¢ € A, |A| =k > 3):

Qc = {O-C}l

Qc(c) = {oe. {c}}+

U = {D €Fa:DC Qm D Z QL(C)}
S = {EC€Fa:E£C Q)

slup
¢

Theorem 2. If D € 4., then D contains the clone

slup |
c -

= Q. N Shupecki := {f € Q. : f ess unary or nonsurj}.
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The subclones of Q. in . (¢ € A, |A| =k > 3):

Qc = {O-C}l

Qc(c) = {oe. {c}}+

U = {D €Fa:DC Qm D Z QL(C)}
S = {EC€Fa:E£C Q)

slup
¢

Theorem 2. If D € 4., then D contains the clone

slup |
c -

= Q. N Shupecki := {f € Q. : f ess unary or nonsurj}.
Note: f € Q. nonsurj = f(A) # A\ {c}.
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The Main Results About the Interval [Q3" Q]

A={1,2,....k}, k>3
Qc::{o-c}L

= Q. N Stupecki

(ot
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e Krokhin’99: Construction yields
H slup QCH — 2o

e Note: Since Q. is fin generated,
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¢ only finitely many maximal M C Q.
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o Law’82: [Q3"P, Q] contains a unique
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A={1,2,....k}, k>3
Qc::{o-c}L

e Krokhin’99: Construction yields
H slup QCH — 2o

e Note: Since Q. is fin generated,
oD C Q.= D C M foramaximal M C Q.
¢ only finitely many maximal M C Q.
= Q. N Stupecki

Case |[A| =3

o Lauw’82: [O"", Q.| contains a unique
maximal clone: M
(oM Lehtonen-Sz’10: M ¢ §,
hence U, U £, = {Q,, Qc(c)}
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