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Wonderful 80 !

Congratulations on your 80th birthday, Béla !!



Dedicated to
B. Csakany

Wonderful 807

Centralize

Centralizing Monoids

Witness

Wonderful 80 !

Congratulations on your , Béla !l

In 1983, Béla Csakany determined all minimal clones on
a three-element set. (There are 84 minimal clones.)
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Wonderful 807

Congratulations on your , Béla !l

In 1983, Béla Csakany determined all minimal clones on
a three-element set. (There are 84 minimal clones.)

The number of minimal clones on {0, 1,2} is the same as
the age of Béla Csakany.



In fact,
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# of the minimal clones on {0,1,2} = the age of Béla,
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In fact,
# of the minimal clones on {0,1,2} = the age of

| mean,

if you add Tax (VAT) to the age, which is currently 5 %
in Japan.

)
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In fact,
# of the minimal clones on {0,1,2} = the age of

| mean,

if you add Tax (VAT) to the age, which is currently 5 %
in Japan.

84 = 80+80x0.05

)
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In 1983, Béla Csakany determined all minimal clones
on the three element set { 0,1,2 }.

B. Cséakany, All minimal clones on the three element set,
Acta Cybernet., 6, 1983, 227-238.
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Definition
A function f (€ Ok) is called a

if

e f generates a minimal clone C.
e f has the minimum arity among functions generating C.
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Definition
A function f (€ Ok) is called a
if
e f generates a minimal clone C.
e f has the minimum arity among functions generating C.

In order to describe minimal functions, B. Csakany used the
following numbering.
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A unary function u, (x) is numbered in the following way:

Witness

ro= u(0)x3+u(1)x3" +u(2)x3°
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A binary idempotent function bs(x, y) is numbered as

follows:

bS(va) =

N = O
® O O|lo
—— = Q| =

NDQ TN

ax3Prbx3*+ex3B+dx3rex3 +fx3°
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= CEhny A binary idempotent function bs(x, y) is numbered as

follows:
Minima xX\y | 0 1 2
s 0 10 a b
bs(x,y) = 1 c 1 d
2 e f 2
s = ax3+bx3+cxF+dx3F+ex3'+1x3°

In other word,
s = b(0,1) x 3%+ b(0,2) x 3*

+ b(1,0) x 3% + b(1,2) x 32
+ b(2,0) x 3" +b(2,1) x 3°
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PSS Similarly, ternary majority function my (x, y, z) is numbered
as follows:
PA.F.‘T|
Miima Xy [012 0712 072
i@, 12 0 000 0|/01b 0] 0a2
m:(x,y,z) = 1 01d 11111 1|1 c12
2 0f2 2l el12 21222
o Z = 0 Z = 1 Z = 2

t = ax3+bx3*+cx3+dx3FP+ex3 +1x3°



Dedicated to
B. Csakany

PART |
Minimal
Clones on
{0,1,2}

Similarly, ternary majority function m¢(x, y, z) is numbered
as follows:

x\y | 012 012 012
0 000 0|01b 0|0a2
m:(x,y,z) = 1 01d 11111 1| c12
2 0f2 2l el12 21222

z=0 z=1 zZ=2

t = ax3+bx3*+cx3%+dx3FP+ex3 +fx3°

In other word,
t = m(0,1,2) x3°+m(0,2,1) x 3*
+ m(1,0,2) x 3% + m(1,2,0) x 32
+m(2,0,1) x 3" + m(2,1,0) x 3°
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A ternary function p(x1, X2, X3) is called a semiprojection

if there exists j (€ {1,2,3}) such that p(x1, X2, X3) = X;
whenever [{xq, X2, x3}| < 3.
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A ternary function p(x1, X2, X3) is called a semiprojection
if there exists j (€ {1,2,3}) such that p(x1, X2, X3) = X;
whenever [{xq, X2, X3}| < 3.

Semiprojection p;(x, y, z) is numbered in the same way:
t = ax3+bx3* +cx3P¥+dx3+ex3 +1x3°
In other word,

t = p(0,1,2) x3%+p(0,2,1) x 3*
+p(1,0,2) x 3%+ p(1,2,0) x 32
+p(2,0,1) x 3" +p(2,1,0) x 3°
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Generators of all minimal clones on {0, 1,2}
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Generators of all minimal clones on {0, 1,2}

(I) Unary functions (13)

Uo U43 Uze
where
0 = 0x94+0x3+0x1
13 = 1x9+1x3+1x1

26 = 2x9+2x3+2x1

and
uz Uqa Usg us Uy
uz U1 U1

Uis

Uz3
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S OEEY (1) Binary idempotent functions (48)

PART | 000 011 022
l\ClllinimaI bO = 010 b364 = 111 b728 = 212
s 002 112 222
000 011 000
bg=|010 bigs = | 111 bgp=|212
222 222 222

000 000 0
bsg=| 111 by =] 111 bgoz = | 111
002 112 22

etc. etc.
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(1) Ternary majority functions (7)

i 000 010 002
e my=[010 111 012
002 012 222

- 000 011 012

M3eq = 011 111 112

012 112 222

000 012 022

Myog = 012 111 212

022 212 222




Dedicated to
B. Csakany

000 011 02

Miygg= 010 111 112

PART | 012 012 22
'C\Dﬂllgéneqslon
{0,1,2}

000 012 012

i My73 =011 111 2412

sl 022 112 222

000 010 022

Mmsio= 1012 111 012

002 212 222

000 012 012

Meoa = | 012 111 012

012 012 222
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(IV) Semiprojections (16)

Po P3sa P728
Ps P3ss  Pso P3s Pao Pe92
P26 Pasg P37

and
P76 Pesa P332
Pe624

where

76 = 0x3%4+0x3*+2x33+r2x32+1x3"+1x3°
684 = 2x354+2x3*+1x3%3+1x3%2+0x3"+0x3°
332 = 1x3P+1x3*+0x33+0x3%+2x3" +2x3°

624 = 2x354+1x3*+2x33+0x3%+1x3" +0x3°



Dedicated to
B. Csakany

PART |
Minimal
Clones on
{0,1,2}

Centralizer

Centralizing Monoids

Witness

Number of minimal clones on {0, 1,2}

Unary functions
Binary idempotent functions
Ternary majority functions

Ternary semiprojections

Total

13 (4)
48 (12)
7 (3
16 (5)

84 (24)
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Notation

Ex = {0,1,....k—1} for k> 1

0" (= E{F¥)") : The set of n-variable functions on Ex

Ok _ U O/(<n)
n=1
Jk : The set of all projections e (1 < i < n)on Eg

where €7(X1,...,Xi,...,Xn) = X;
forV xq,...,xn € Ex
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Definition

For fe o™ and ge O\"”
fand g commute (expressedas f L g)
if the following holds for every m x n matrix A = (x;) over Ex

f(g(x117"'7X1n)7"°7g(xm17"'7xmﬂ))
= g(f(X11,...,Xm1),...,f(X1n,...,an))

X11 X12 Xin g(..., X1j, ...

X21 Xo2 e Xon g(..., Xz, ...)

Xm1 Xme Xmn g Xm, ...)
(oo Xity ) FloyXigy) - f(ey Xiny-..) | (9,...) = 9(f, ...
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Example
e fc 0™ : constant function
PART Il (n) Lo .
Centralizing e gc O, idempotent function

Monoids

Vionoids e

fand g commute, ie., flg

(Here, g is idempotent if
gla,...,a)=a for Vac E.)
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The case where 1 is a unary function :
PART I (n)
Centralizi
G For and g € O

Centralize

e fand g commute (f L g)
if the following holds for all (b, ..., by) € (Ex)"

F(g(by,....bn)) = g(f(bs),....f(bn))
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PART Ill F*
Maximal

Centralizing

define F* by

Centralizer

gLfforal feF}

e F* is called the centralizer of F.
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Definition

Centlizr For F C Ok define F* by

Centralizing Monoids

Witness

F* = {ge€eOk | gLfforal feF}

F* is called the centralizer of F.

Note: A centralizer is always a clone.
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Centralizing Monoids

A “centralizing monoid” can be characterized

in several different ways.
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Lemma
For M C O,((”, the following conditions are equivalent.
1 M= mM=nol
@ 3FCOk, M= Fnol
EmEApE (M is the unary part of some centralizer)

Witness

(83) JA=(Ex; F):algebra, M = End(A)



Dedicated to
B. Csakany

Centralize
Centralizing Monoids

Witness

Lemma

For M C O,((”, the following conditions are equivalent.

1 M= mM=nol
@ 3FCOk, M= Fnol
(M is the unary part of some centralizer)
(83) JA=(Ex; F):algebra, M = End(A)
Definition

For M C (9,((1), M is a centralizing monoid if M satisfies
the above conditions.
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Lemma ( Witness Lemma )

For a monoid M € ©(") of unary functions
and a subset S C O,

e . suppose the following conditions (i) and (ii) hold:
() For vfeM and YueS flu
(i) For Yyge OMW\M and 3weS g/tw

Then Mis a
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Witness

Lemma ( Witness Lemma )

For a monoid M € ©(") of unary functions
and a subset S C O,

suppose the following conditions (i) and (ii) hold:

(i) For VfeM and Yue S fLu
(i) For Yyge OMW\M and 3weS g/tw

Witness

Then Mis a

Definition
We say that
S in the lemma is a witness for a centralizing monoid M.
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Notation and Property of Withesses

Notation
Denote by M(S) the
as its witness. (i.e., M(S) = S* n (9,((1))

M which has S



Lemma
Every centralizing monoid M has a witness.
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Every centralizing monoid M has a

Proof M* is a witness for M.
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Centralizing Monoids

Witness
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Witness

Theorem

For every centralizing monoid M there exists a finite subset
of Ok which is a witness of M,

that is,

every centralizing monoid M has a withess.

Proof. Let S(C O) be a witness for M.

For each f € (’),((1) \ M there exists u € Ssuch that f / u.
We pick one such u (= uy) for each f and let

T={u | feo"\Mm}.

Then, T is clearly a witness for M.
Furthermore, T is finite because (’),((1) is finite. O
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Now we turn to maximal centralizing monoids,

which are related to minimal clones !l
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Definition
A centralizing monoid M is maximal if (9,((1) is the only
centralizing monoid properly containing M.
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Definition
A centralizing monoid M is maximal if (9,((1) is the only
centralizing monoid properly containing M.

Theorem

Witness

For any maximal centralizing monoid M, there exists
u (€ Ok) such that
M = M(u),
that is,
every maximal centralizing monoid has a witness.
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Definition
A centralizing monoid M is maximal if (9,((1) is the only
centralizing monoid properly containing M.

Theorem

For any maximal centralizing monoid M, there exists
u (€ Ok) such that
M = M(u),

that is,
every maximal centralizing monoid has a witness.

(Proof M(S1) N M(S2) = M(S1 U S»))
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Theorem

For any maximal centralizing monoid M, there exists a
function f(e O) such that

lizing Monoids

\;Vimess M = M(f) 5

that is,

every maximal centralizing monoid has a witness which
is a function.
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Proof

e Since a maximal centralizing monoid has a singleton
witness, there exists g € O suchthat M = M(g).

e Every non-trivial clone C (i.e., C # Ji) contains a
minimal clone. Hence, there exists f € O, which
satisfies the following.

Centralize

Centralizing Monoid

Winess (i) (f)is a minimal clone.
(i) ()c(g) (& fe(g))

e In general, forany u, v, w € Ok,
ue(v)yand v.iw = ulw.

As a corollary,
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Proof (cont.)
e Hence, for f and g given above,
g cf
vono o |t follows that
M) =g o) c ol = M

e Since M(g) is a maximal centralizing monoid, by
assumption, it holds either
M(g) = M(f) (= M = M(f))
or
Mm(f) = o,



Dedicated to
B. Csakany

Proof (cont. cont.)
e However, we know that

(Sk U Const)* = Ji.

e Therefore, M(f) = (9,((1) cannot happen for a minimal
function f, and so

Centralizing Mon

Witness M — M( f)
must hold.

This completes the proof.
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Minimal Clones and

Maximal Centralizing Monoids
on E5 = {0,1,2}

From here, we shall concentrate on the ternary case,

that is, the case where the base set is

Es = {0,1,2}.
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Centralizing Monoids on
{0,1,2}
First,
we have determined all maximal centralizing monoids on Ez
S ... using the result on minimal clones due to
PAR} I The number of the maximal centralizing monoids is 10.
Maximal
C::tlgﬁzing
Monoids on
U8 s Then

we have enumerated all centralizing monoids on Es.

The number of the centralizing monoids is 192.
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e The number of centralizing monoids on Ezis 192.
e They are divided into 48 conjugate classes.
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Question (concerning all centralizing monoids)

e The number of centralizing monoids on Ezis 192.
e They are divided into 48 conjugate classes.

Both numbers are beautiful numbers !!

PART Il 192 = 25x3 and 48 = 2% x3

Maximal

Centralizing

Monoids on

{0,1,2}
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Question (concerning all centralizing monoids)

e The number of centralizing monoids on Ezis 192.
e They are divided into 48 conjugate classes.

Both numbers are beautiful numbers !

PART Il 192 = 25x3 and 48 = 2% x 3
Maximal
Centralizing
Monoids on
{0,1,2}
Is this phenomenon just for k =3 ?

Or, could this be generalized to any k (> 3) ??



By the way, what is the number 48 ?




Dedicated to
B. Csakany

Wonderful 807

PART |
Minimal
Clones on
{0,1,2}

PART Il
Centralizing
Monoids
Centralizer
Centralizing Monoids
Witness

PART IlI
Maximal
Centralizing
Monoids on
{0,1,2}

By the way, what is the number 48 ?

© Itis the number of conjugate classes of centralizing
monoids on Es.
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By the way, what is the number 48 ?

© Itis the number of conjugate classes of centralizing
monoids on Es.

® It is the number of minimal clones generated by
binary idempotent functions on Eg.
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By the way, what is the number 48 ?

© Itis the number of conjugate classes of centralizing
monoids on Es.

® It is the number of minimal clones generated by
binary idempotent functions on Es.

@ ltis also the age of the Chairperson of this Session !?
(Addition of 20 % Tax needed ?77)
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Maximal

For each fe Og”, let {f} be a witness
and determine a centralizing monoid M(f).

Then,
some of such centralizing monoids are maximal, while some
are not maximal.
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Maximal

For each fe (’)g”, let {f} be a witness
and determine a centralizing monoid M(f).

Then,

some of such centralizing monoids are maximal, while some
are not maximal.

IMPORTANT: All maximal centralizing monoids can be
obtained in this way.
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Proposition
Over a three-element set, there are 10 maximal centralizing
monoids.

More precisely:
» there are 3 maximal centralizing monoids, each of
i which has a unary constant function as its witness.

PART Il

Maximal\ll . L .

e e there are 7 maximal centralizing monoids, each of
161,23 which has a ternary majority function which generates

a minimal clone as its witness.
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The following is the list of minimal functions which, as
witnesses, correspond to maximal centralizing monoids:
Constant functions

C‘H‘ma\_‘\u Monoids (X) — 0

PART IiI (x) = 1

Maximal

C lizi _

onaeon (x) = 2

{0,1,2}



Feasy Majority functions

(showing the values only for [{x, y, z}| = 3)

mo(6y,2) = 0 if [{xy,z} =3
m364(X,y72) = 1 if |{X7yaz}| =3
mzog(X,y,2) = 2 if |{x,y,z}|=38
Centralizel o if X’ ’ Z
feym'i\”mur,mmus m109 (X,y,Z) = { 1 lf EX _‘}}j Z;
PART Il 1 if (x,y,2)
Maximal — 17
aiztg?cliiszigg My73 (X7y7 Z) - { 2 if (X7y7 Z)
{0,1,2} :
2 lf X7 7z
m510(Xayvz) = { 0 if EX }}j Z;
Meoa (X, ¥,2) = ¥ it |{x,y,z}[=3
where o0 =1{0,1,2),(1,2,0),(2,0,1)}
and T = {(0,271)3(170’2)7(271a0)}
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Number of Elements in
Maximal Centralizing Monoids on {0, 1,2}
M (co) 9
M (cy) 9
o M (c2) 9
M (mo) 17
e Mmses) | 17
Centralizing M (m723 ) 17
ey W (mos) |1
M (my73) 11
M (ms1o ) 11
(M (mes) | 9]
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Remark :
There exist other minimal functions which serve as
witnesses of maximal centralizing monoids.

They are:

PART Ill Blnary fU nCtIOﬂ b624

Maximal

Centralizing

M id

feecsen and

Semiprojections:  p7e, Pess, P332 and Peza
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However, the centralizing monoids having them as
witnesses all coincide with already known centralizing

monoids.

Centralizel
Centralizing Monoids

Witness
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{0,1,2}
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However, the centralizing monoids having them as
witnesses all coincide with already known centralizing
monoids.

More precisely,

Binary function:  M( bgos) = M(meoy)

PART Il

Maximal

Centralizing

Monoids on

{0,1,2}
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However, the centralizing monoids having them as
witnesses all coincide with already known centralizing
monoids.

More precisely,

Binary function: M(beos) = M(mgo4)

PART Il and

Maximal

e gl Semiprojections:  M(pze) = M(myz3)

(one M(pess) = M(ms1o)
M(p3z2) = M(miog)
M(pe2sa) = M(mezs)
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Just for curiosity,

Me24 =

beos =

Pe2a =

000 01 012
012 11 012
012 01 222
z=0 zZ= z=2
021

210

102

000 02 010
112 111 011
212 22 222
z=0 zZ= z=2
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Remark :
One can generalize the results on constant functions

forany k > 1.
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Remark :
One can generalize the results on constant functions
forany k > 1.

e Theorem

PART Il For any k > 1 and any constant function ¢ on Eg,

Monoids on
{0,1,2}

Centralizi H i izi i
e M(c) is a maximal centralizing monoid.
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Proof

We assume ¢ = ¢y, the constant function taking value O.

Lemma 1

M(co) = (Pol(0))™"
Lemma 2

(CONST)* = IDEMP
Lemma 3

For f € O, if f € (Pol(0)(V))* N IDEMP then
f is conservative.

Lemma 4
(Pol(0)(")* N IDEMP = J

(This lemma follows from several Claims.)
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Proof of Theorem For any u € 0{")\ M(c,) let M be a monoid
containing M(co) U {u}. Since M(cy) = Pol(0)()), u maps 0 to
some a # 0. Then M must necessarily contain all constant
functions. Hence we have

M > M(cy) U CONST.

It follows that
M* C M(cp)* NCONST*.

which implies, by Lemmas 1 and 2, that
M* C (Pol(0)(")* N IDEMP.

Since M* is a clone and contains J it follows by Lemma 4 that
M* = Ji. By applying  to both sides, we obtain

M = J& (= O).
Hence
m=nol = oM.
Therefore, if M is a centralizing monoid then, by definition,

M(=Mm=*noly = ol
This concludes that M(cp) is a maximal centralizing monoid. [
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Problem

Is it also possible to generalize the results on minimal
majority functions?

Namely, is it true that,

for every majority function f, if fis minimal
then M(f) is a maximal centralizing monoid ?

Still open.

Hopefully,
the answer will be reported at the Conference

celebrating the “84” of
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for your attention !
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Thank you

for your attention !

and

Thank you, Béla

for your great contribution and friendship
to Algebra community in the world !!
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