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Historical context
1964 John Isbell: Which Lawvere theories have categorically equivalent

categories of models?
(in Subobjects, adequacy, completeness, and categories of algebras)

1996 Ralph McKenzie: An algebraic version of categorical equivalence
for varieties and more general algebraic theories

V ≡cat W ⇐⇒ ∃A, B∃e∃n ∈ N : B ∼=w e
(

A[n]
)
∧

V = Var(A),W = Var(B)
1997 László Zádori: Relational sets and categorical equivalence of

algebras (finite algebras)
A ≡cat B ⇐⇒ ∃

:
A,

:
B : same minimal resets up to isomorphism

1997 László Zádori: Categorical equivalence of finite groups
A ≡cat B ⇐⇒ A ∼=w B

2001 Keith Kearnes and Ágnes Szendrei: ideas for Relational Structure
Theory (RST)
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2007/8 Reinhard Pöschel presents fragments of this theory in a lecture on
clone theory

2008/9 MB Szeged to study this theory (meet Waldhauser & Zádori)

2009 MB: diploma thesis on details of RST

2009 AAA 78, Berne: talk on RST, example of groups, question about
monoids

2009 Tamás Waldhauser: solves the question for semigroups

2012 AAA 83, Novi Sad: Oleg Košik, semilattices

A ≡cat B ⇐⇒ A ∼=w B

2012 Szeged: finite semigroups

A ≡cat B ⇐⇒ A ∼=w B
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Categorical equivalence

Definition (Categorical equivalence of categories C and D)

C ≡cat D :⇐⇒ ∃C F−→ D∃D G−→ C : F ◦G ∼= idD ∧G ◦ F ∼= idC

Remark

C ≡cat D ⇐⇒ Skeleton (C) ∼= Skeleton (D)

Definition (Categorical equivalence of algebras A and B)

A ≡cat B :⇐⇒ Var(A) ≡cat Var(B) ∧ F(A) = B
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Weak isomorphism

Definition (Term equivalence of algebras A and B)

A ≡term B :⇐⇒ A = B ∧ Term (A) = Term (B)

Definition (Weak isomorphism between algebras A and B)

A ∼=w B :⇐⇒ ∃B′ ∃A ϕ−→ B′ iso : B′ ≡term B.

Definition (Reset for an algebra A)

Relational structure
::
A reset for A

:⇐⇒ Term (A) =
⋃

n∈NHom
(
::
An,

::
A
)
= Pol

::
A
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Basic facts

Lemma (Rel iso implies weak iso)

::
A reset for A,

:
B reset for B, same type, ϕ : A −→ B

::
A

ϕ−→
:
B iso =⇒ A

ϕ−→w B weak iso.

Lemma (Weak iso implies cat eq)

A ∼=w B
McKenzie ’96

=⇒ A ≡cat B

Converse implication? Holds e.g. for

finite groups (Zádori 1997)

semilattices? (Košik, AAA 83)

finite semigroups
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First step: read Zádori’s paper

Theorem (Thm. 2.3 in Zádori, cat. eq. of finite groups, 1997)

A, B two finite algebras.

A ≡cat B ⇐⇒ ∃
::
A for A ∃

:
B for B : type(

::
A) = type(

:
B)∧

“MinRelSets(
::
A)/∼=” = “MinRelSets(

:
B)/∼=”

Minimal resets correspond to certain irreducible
neighbourhoods ( = images of idempotent unary terms of A /
idempotent retracts of

::
A).
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Second step: characterise the irreducible
(minimal) neighbourhoods in finite semigroups

Definition (Two sorts of elements in a finite semigroup A)

x ∈ A group element :⇐⇒ ∃n ∈ N : 〈x〉A ∼= Zn group

Gr(A) set of all group elements.

A completely regular :⇐⇒ Gr(A) = A.

For x ∈ A, let ord(x) := | 〈x〉A |.
exp(Gr (A)) := lcm {ord (x) | x ∈ Gr(A)}

Proposition (Neighbourhoods of a finite semigroup A)

exp(Gr(A)) =
∏

i∈I qi with distinct prime powers qi .

A completely regular
=⇒ (Neigh A,⊆) ∼= (P ({qi | i ∈ I}) ,⊆)
A not completely regular
=⇒ (Neigh A,⊆) ∼= (P ({qi | i ∈ I}) ,⊆) +>
irreducible: atoms, ⊥
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Third step: read Zádori’s paper again. . .

. . . and generalise to completely regular semigroups

Proposition

2 ≤ |A| <∞ completely regular semigroup.
The product of its minimal resets

::
U1, . . . ,

::
Un has an

⊆-minimal idempotent retract
::
U (neighbourhood) w.r.t.

containing a certain set S.

S ⊆
::
U ⊆

n∏
i=1

::
Ui � ::

U
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Fourth step: solve the completely regular case

Proposition (2 ≤ |A|, |B| <∞ completely regular)

A ≡cat B

  

reset for A
::
A

:
B reset for B

minimal resets


::
U1
...

::
Un

∼=
...
∼=

::
V1
...

::
V

minimal resets

∏n
i=1 ::

Ui
∼=

∏n
i=1 ::

Vi

⊆ ⊆

S S′ (∃)⊆ ⊆

::
A ∼=

::
U

∼=

::
V ∼=

:
B ⊆-minimal retract⇒ ⇒

A ∼=w B
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Fifth step: do not again read Zádori’s paper. . .
. . . do something yourself

Proposition (A ≡cat B both non-completely regular)

A ≡cat B
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B reset for B
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Sixth step: solve the mixed case

Proposition

A not completely regular, B completely regular

::
A reset for A;

:
B reset for B.

=⇒ . . . =⇒ exp(Gr(B)) = 2n (n ≥ 1) and
::
A ∼=

:
B

=⇒ A ∼=w B.
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Done!

Theorem

For finite semigroups A and B we have

A ≡cat B ⇐⇒ A ∼=w B.
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Thank you for your attention.
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