
Effective bases of finite closure systems

K. Adaricheva

Yeshiva University, New York

June 23, 2012
Universal Algebra and Lattice Theory

Szeged

K.Adaricheva (Yeshiva University) Efficient bases Szeged-2012 1 / 53



Large lattices

Recent work on very large lattices:

Lattices of quasi-equational theories as the lattices of
congruences of semilattices with the operators
joint work with J.B.Nation
Parts I and II, in arxiv
to appear in International Journal of Algebra and Computation

On scattered convex geometries
joint work with M. Pouzet
short version in Proceedings of TACL-2011
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Horn belief revision

Horn belief contraction: remainders, envelopes and complexity
joint work with G. Turán, R. Sloan and B. Szörényi
Proceedings of Knowledge Representation-2012, Rome
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This talk based on:

(1) "Ordered direct implicational basis of a finite closure system"
joint work with J.B.Nation and R.Rand (ANR,2011)
to appear in Discrete Applied Mathematics

(2) "On the implicational bases of closure systems
with the unique criticals"
joint work with J.B.Nation(AN,2012)
in arXiv

(3) " Optimum bases of convex geometries"
(A,2012)
in arXiv
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Outline

1 Closure spaces, lattices and implications

2 D-basis

3 Canonical basis of Duquenne-Guigues

4 K -basis

5 UC-closure systems

6 Systems without D-cycles

7 Optimum bases in convex geometries
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What is a finite lattice?
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What is a finite lattice?
1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1
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What is the most concise form of storing the information about a finite
lattice?
Possible answers:
(1) tables for ∨ and ∧;
(2) table for ∧;
(3) family of subsets of some set X stable under intersection and

containing X ;
(4) table of Galois correspondence between join irreducible elements

(rows) and meet irreducible elements (columns);
(5) OD-graph
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Closure spaces, lattices and implications

OD graph

OD-graph of a finite lattice: J.B.Nation, An approach to to lattice
varieties of finite height, Alg. Univ. 1990

(I) partially ordered set of join irreducibles 〈Ji(L),≤〉;
(II) minimal join covers a ≤

∨
B, a ∈ Ji(L),B ⊆ Ji(L):

If b ∈ B, then a 6≤
∨
{b′ ∈ Ji(L) : b′ < b} ∨

∨
B \ b.

Note for the future use: D-relation on Ji(L) can be defined as
aDb iff b ∈ B, for some minimal join cover a ≤

∨
B.
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Closure spaces, lattices and implications

OD-graph

Every element x ∈ L can be thought as set
Ji(x) = {a ∈ Ji(L) : a ≤ x} ∈ 2Ji(L).
Consider information stored in OD-graph:
(1) if a ≤ b in 〈Ji(L),≤〉, and b ∈ Ji(x), then a ∈ Ji(x).

We say that Ji(x) respects implication b → a
(2) if a ≤

∨
B is a minimal cover, and B ⊆ Ji(x), then a ∈ Ji(x).

We say that Ji(x) respects implication B → a.
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Closure spaces, lattices and implications

Implications

An implication on set X is an ordered pair (Y ,Z ), written as Y → Z ,
where Y ,Z ⊆ X and Z 6= ∅.
Subset A ⊆ X respects implication Y → Z , if whenever Y ⊆ A, then
also Z ⊆ A.
Sets Ji(x) respect all implications obtained from OD-graph.
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Closure spaces, lattices and implications

Lattice defined by implications

Vice versa, every subset A ⊆ Ji(L) that respects all implications
obtained from the OD-graph coincides with Ji(x), for one of x ∈ L.

This allows to say that L is defined by the set of implications
Σ = {b → a : a ≤ b} ∪ {B → a : for minimal cover a ≤

∨
B}.
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Closure spaces, lattices and implications

Closure space

Another way to look at Σ as the means to define a closure space.
Consider base set X = Ji(L), and define a closure operator φ:
φ(Y ) = the minimal subset of X that contains Y and respects all
implications in Σ.
Then Ji(x), x ∈ L, are exactly the family of closed subsets of this
operator.
Moreover, lattice L is isomorphic to the lattice of closed sets of closure
space (X , φ).
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Closure spaces, lattices and implications

Summarizing

This is just a reminder of well-known connection between:
finite lattices
finite closure spaces
sets of implications
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D-basis

D-basis

In Ordered direct implicational basis of a finite closure system
K.A.,J.B.Nation and R.Rand (ANR, 2011)

we defined the set of implications ΣD made out of OD-graph as a
D-basis of a finite closure system.
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D-basis

Canonical direct basis

K. Bertet, B. Monjardet, The multiple facets of the canonical direct
implicational basis, Theor. Comp. Science, 2010:

compare 5 implicational systems for general closure system
introduced independently in the literature
prove that they are the same, now called a canonical direct basis
ΣCD

the main feature: φ(Y ) = Y ∪ {a : (B → a) ∈ ΣCD and B ⊆ Y}
ΣCD is contained in any other basis with this property
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D-basis

Canonical direct and the D-basis

Essentially, ΣCD contains:
implications b → a, for join irreducibles a ≤ b
non-redundant covers: B → a, where a ≤

∨
B, but a 6≤ B \ b.

The minimal covers in OD-graph are non-redundant. Hence:

ΣD ⊆ ΣCD.
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D-basis

Ordered direct basis

The D-basis has a new feature: it is ordered direct. φ(Y ) can be
computed by applying implications in particular order, in a single
iteration of the basis.
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D-basis

Example

Canonical direct basis ΣCD for 〈J(A12), φ〉 has 13 implications.
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.

D-basis has 9 implications.
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

K.Adaricheva (Yeshiva University) Efficient bases Szeged-2012 19 / 53



D-basis

Example

Canonical direct basis ΣCD for 〈J(A12), φ〉 has 13 implications.
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.

D-basis has 9 implications.
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

K.Adaricheva (Yeshiva University) Efficient bases Szeged-2012 19 / 53



D-basis

Is the D-basis redunadant?
Answer: yes, more often than otherwise ...
D-basis:
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.
Aggregated D-basis:
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 56.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1
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D-basis

More questions

What other types of "efficient" bases one can obtain for a closure
system/finite lattice?
How effectively this can be done? What are the complexity of the
algorithms?

KA and J.B.Nation, On the implicational bases of closure systems with
the unique criticals, arXiv (AN, 2012)
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D-basis

We are not the first to ask these questions

The search for the short representation of implicational system is
important:

in Logic Programming, where implications appear in the form of
definite Horn formulae of propositional logic
in theory of Horn Boolean functions, in the form of the the shortest
CNF-representation
in relational data bases in the form of functional dependencies of
the attributes
in the theory of directed hypergraphs, in various optimization
problems.

These are the instances of a mathematical problem, often with the
promise to accelerate or optimize the associated application process.
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D-basis

“Efficient" bases

A basis Σ′ is non-redundant, if none of its implications can be
removed to get another basis.
A basis Σ′ is minimum, if it has the minimal number of implications
among all the set of implications for the same closure system.
A basis Σ′ = {Xi → Yi : i ≤ n} is called optimum, if number
s(Σ′) = |X1|+ · · ·+ |Xn|+ |Y1|+ · · ·+ |Yn| is smallest among all
sets of implications for the same closure system.
A basis is called right-side (left-side) optimum basis, if the number
|Y1|+ · · ·+ |Yn| (|X1|+ · · ·+ |Xn|) is smallest among all sets of
implications for the same closure system.
The right-side optimum basis is connected to the problem of the
shortest (i.e. with the minimal number of clauses)
CNF-representation of a (definite) Horn function, also, minimal
representations of the directed hypergraphs.
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D-basis

Relation between bases

Theorem ([D.Maier, 1983])
Optimum =⇒ minimum and left-side optimum =⇒ non-redundant.

A basis Σ′ is minimum, if it has the minimal number of implications
among all the set of implications for the same closure system.
A basis Σ′ = {Xi → Yi : i ≤ n} is called optimum, if number
s(Σ′) = |X1|+ · · ·+ |Xn|+ |Y1|+ · · ·+ |Yn| is smallest among all
sets of implications for the same closure system.
A basis is called left-side optimum basis, if the number
|X1|+ · · ·+ |Xn| is smallest among all sets of implications for the
same closure system.

Cleaning N1

Theorem ([AN, 2012])
Optimum =⇒ right-side optimum.
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D-basis

Optimum and right-side optimum bases

Theorem ([D.Maier, 1983])
The problem of finding an optimum basis of a finite closure system is
NP-complete.

Theorem ([G. Ausiello, A. D’Atri and D. Saccá, 1986])
The problem of finding a right-side optimum basis of a finite closure
system is NP-complete.

Follow up on Cleaning N1

Corollary ([AN, 2012])
Theorem 1 follows from Theorem 2.
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D-basis

What can be done?

Introduce new types of bases that are near-optimum but can be
found quickly.
Recognize subclasses of closure systems where the optimum
basis can be found quickly.
Combine both directions above.

Examples of the second direction:

P. Hammer and A. Kogan, Quasi-acyclic propositional Horn
knowledge bases: optimal compression, IEEE Transactions on
knowledge and data engineering, 1995
E. Boros, O. Čepek, A. Kogan and P. Kucěra, A subclass of Horn
CNFs optimally compressible in polynomial time, RUTCOR
Research report, 2009
M. Wild, Optimal implicational bases for finite modular lattices,
Quaestiones Mathematicae, 2000
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Canonical basis of Duquenne-Guigues

This slide is intentionally left blank to
celebrate the midpoint of the presentation ...
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Canonical basis of Duquenne-Guigues

Canonical basis

J.L. Guigues, V. Duquenne, Familles minimales d’implications
informatives résultant d’une tables de données binares, Math. Sci.
Hum. 95 (1986), 5–18.

Defined quasi-closed and critical subsets of X for any given
closure system 〈X , φ〉.
Canonical basis ΣC is {A→ B : A is critical, B = φ(A) \ A}.
ΣC is a minimum basis among all the bases generating 〈X , φ〉.
Defined saturation closure operator σ associated with φ.
Every other basis relates to ΣC , via saturation operator σ.
Every optimum basis has the form ...
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Canonical basis of Duquenne-Guigues

Canonical and optimum

Theorem of Duquenne-Guigues continued ...
Every other basis relates to ΣC , via saturation operator σ.
Every optimum basis has the form ...

Canonical ΣC

A1 → B1 A2 → B2 . . . Ak−1 → Bk−1 Ak → Bk

Any optimum ΣO

A′1 → B′1 A′2 → B′2 . . . A′k−1 → B′k−1 A′k → B′k

Relation: σ(A′i) = Ai , B′i ⊆ Bi .
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Canonical basis of Duquenne-Guigues

Proposition ([D.Maier, 1983])
If A1 → B1 and A2 → B2 are implications of two optimum bases
corresponding to the same implication A→ B of the canonical basis,
then |A1| = |A2|.

Cleaning N2

Proposition ([AN, 2012])
If a→ B1 and a→ B2 are two implications of the optimum basis
corresponding to the same implication a→ B of the canonical basis,
then |B1| = |B2|.
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K -basis

K -basis

K -basis is inspired by minimal join representations of lattice
elements.
K -basis has the same number of implications as the canonical,
i.e. it is a minimum basis.
The size of K -basis is normally smaller than the size of the
canonical.
K -basis can be effectively obtained from the canonical.
K -basis establishes the connection between the canonical basis
and the D-relation on the set of join irreducibles of a lattice.
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K -basis

K -basis

Essential idea: given A→ B in ΣC produce A∗ → B∗ in the K -basis,
where A∗ ⊆ A gives a minimal join representation of element x =

∨
A,

and B∗ = max(B) ⊆ B.

x =
∨

A∗ is a minimal join representation of x , if for every a ∈ A∗,
x >

∨
{a′ : a′ < a} ∨

∨
A∗ \ a.
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K -basis

Comparison
1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12

Canonical basis ΣC :
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5
s(ΣC) = 27
K -basis:
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5
s(ΣK ) = 20
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K -basis

Algorithmic aspect

Theorem ([A. Day, 1992])

Given any basis Σ′ of a finite closure system, it requires time O(s(Σ′)2)
to obtain the canonical basis of Duquenne-Guigues.

Theorem ( [AN, 2012])
A K -basis can be obtained from canonical basis ΣC of
Duquenne-Guigues in time O(s(ΣC)2).
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K -basis

K -basis

In general, the closure space may have more than one K -basis.

Definition
A closure system is called join semidistributive, if its closure lattice
Cl(X , φ) satisfies the property:
(SD∨) x ∨ y = x ∨ z → x ∨ y = x ∨ (y ∧ z).

Theorem ( [Jónsson and Kiefer, 1962])
Every element of a finite lattice has a unique minimal representation iff
the lattice is join semidistributive.

Corollary
Every semidistributive closure system has a unique K -basis.
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K -basis

Closure systems with the unique critical sets

Problem
Does there exist an effective algorithm to recognize that the closure
systems is join semidistributive, given its canonical basis?

Some larger class of closure systems is easy to recognize from the
canonical basis.

Definition
Closure system 〈X , φ〉 has unique criticals, or it is UC-system, if
φ(C1) = φ(C2), for some critical sets C1,C2, implies C1 = C2.
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K -basis

SD∨ is UC

Proposition
Every join semidistributive closure system is a UC-system.

Proof.
Suppose there are two implications C1 → B1 and C2 → B2 in ΣC with
φ(C1) = φ(C2). This means that in the closure lattice x =

∨
C1 =

∨
C2.

One can find minimal representations B1 ⊆ C1 and B2 ⊆ C2 for x , i.e.
x =

∨
B1 =

∨
B2. But B1 = B2, since x has a unique minimal

representation. Hence, σ(B1) = C1 = σ(B2) = C2, which is
needed.
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K -basis

Lattice description of UC

There exists a UC closure system whose closure lattice is not join
semidistributive.

Problem
Describe closure lattices of closure systems with the unique criticals.
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UC-closure systems

Join semidsitributive systems

Important subclasses of join semidsitributive closure systems:

In lattice theory: lower bounded lattices (closure systems without
D-cycles) (R.Freese, J.Jezek, J.B.Nation).

In combinatorics: convex geometries and anti-matroids
(P.Edelman and R. Jamison)

In theory of Boolean functions: quasi-acyclic systems (P.Hammer
and A.Kogan). This is a proper subclass of both: convex
geometries and systems without D-cycles.
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UC-closure systems

Systems without D-cycles

Lower bounded lattices, or lattices without D-cycles: can be defined
via D-relation on the set of join-irreducible elements (A.Day, 1979):
aDb iff a ≤

∨
B is a minimal cover and b ∈ B.

Note that this corresponds to implication B → a in the D-basis.

Theorem (AN12)
Let D∗ be a binary relation defined for any K -basis of the closure
system:
aD∗b iff B → A is in the K -basis, |B| > 1, a ∈ A and b ∈ B. Then

D∗ ⊆ D.
D ⊆ tr(D∗).
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UC-closure systems

Systems without D-cycles

Corollary
Given the canonical basis ΣC of the closure system, there exists a
polynomial time algorithm in s(ΣC) that recognizes whether the system
is without D-cycles.
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Systems without D-cycles

Bases in systems without D-cycles

This basis was introduced for the systems without D-cycles in:
K.Adaricheva, J.B.Nation and R.Rand, Ordered direct basis of a finite
closure system,

E-basis:

_______ Canonical basis K − basis E − basis
|A| > 1 A→ B A∗ → B∗ A∗ → B∗∗

|A| = 1 a→ B a→ B∗ a→ B∗

B∗∗ ⊆ B∗

Proposition ([AN, 2012])
E-basis can be obtained from K -basis via polynomial time algorithm: if
b ∈ B∗1,B

∗
2, for two implications A∗1 → B1, A∗2 → B∗2 in the K -basis, and

φ(A∗1) ⊂ φ(A∗2), then b can be removed from B∗2.
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Systems without D-cycles

E-basis

Theorem ([AN, 2012])

The total right size |B1|+ · · ·+ |Bk | of all non-binary implications
Ai → Bi in E-basis attains the minimum among all possible bases for
the closure system.

Theorem ([ANR,2011])
The E-basis of a closure system without D-cycles is ordered direct.
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Systems without D-cycles

4 parts of the optimum basis: systems without
D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable NP
________ ____________________ ____________________

a→ B A→ B
the right side NP tractable

Proposition ([AN, 2012])
Assume that the closure system is without D-cycles.
(1) Finding the optimum right-side in binary part of the basis is
NP-complete.
(2) Finding the optimum left-side in non-binary part of the basis is
NP-complete.
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Systems without D-cycles

This slide is intentionally left blank to
celebrate the approach to the end ...
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Optimum bases in convex geometries

Convex geometry

KA, Optimum basis of a finite convex geometry, arxiv (2012)
A closure system 〈X , φ〉 is called a convex geometry, if φ(∅) = ∅, and
anti-exchange property holds:

For every A = φ(A), x , y 6∈ A, if x ∈ φ(A ∪ y), then y 6∈ φ(A ∪ x).

x ∈ A is called extreme point of A, if x 6∈ φ(A \ x). Ex(A) is a set of
extreme points of A.

Theorem
[P. Edelman and R. Jamison, 1985] A closure system 〈X , φ〉 is a
convex geometry iff every closed set A = φ(Ex(A)).

In particular, every convex geometry is join semidistributive.
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Optimum bases in convex geometries

4 parts of the optimum basis: convex geometries

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable ??

Proposition
Assume that the closure system is a convex geometry.
(1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of
the basis is tractable. A = Ex(φ(A)).
(2) [A,2012] Finding the optimum right-side in binary part of the basis
is tractable. B = Ex(φ(a) \ a).
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Optimum bases in convex geometries

Optimum basis: convex geometries without D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable tractable

Corollary ([A,2012])
If a closure system is a convex geometry without D-cycles, then
optimum basis can be obtained in polynomial time.

This class properly includes the quasi-acyclic closure systems defined
in [P. Hammer and A. Kogan, 1995] , which are also G-geometries in
[M.Wild, 1994].
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Optimum bases in convex geometries

Convex geometries with n-Carousel rule

Class of convex geometries with n-Carousel rule includes affine
convex geometries Co(Rn,X ): X ⊆ Rn, φ(Y ) = convex hull(Y ) ∩ X .
2-Carousel Rule: If x , y ∈ φ(A),A ⊆ X , then
x ∈ φ({y ,ai ,aj}), for some ai ,aj ∈ A, when |A| ≥ 3;
x ∈ φ({y ,a}), for some a ∈ A, when |A| = 2.

a1 
 

a2 

ai 

an-1 

an 

y 

x 

Figure: 2-Carousel rule
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Optimum bases in convex geometries

Optimum basis: convex geometries with n-Carousel
rule

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ b
the right side tractable tractable

Theorem ([A,2012])
If a closure system is a convex geometry satisfying n-Carousel rule,
then optimum basis can be obtained in polynomial time.
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Optimum bases in convex geometries

Optimum basis: general case

Another tractable subclass: component-quadratic closure systems,
E. Boros, O. Čepek, A. Kogan and P. Kucěra, RUTCOR, 2009.

Question: Can the optimum basis be found effectively, for every convex
geometry?

Theorem ([A,2012])

Finding the optimum basis of convex geometry Co(P) of convex
subsets of partially ordered set P, is an NP-complete problem.
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Conclusions

K -basis might not be an optimum basis, but it is always the
minimum basis whose size is smaller than or equal the size of the
canonical basis.
In semidistributive closure systems K -basis is unique and is a
good approximation of optimum basis.
If the closure system is without D-cycles, further refinement of the
K -basis can be effectively obtained, giving right-side optimum in
its non-binary part.
If a closure system is a convex geometry, either without D-cycles
or with n-Carusel rule, the optimum basis is tractable. In general,
the problem is NP-complete.
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Last slide: J.B.Nation

Figure: Hiking in Catskill mountains, New York State
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