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Why Clones?



Clone is a set of operations closed under composition and
containing all projections.

Examples of clones
▶ The clone of monotone operations.
▶ The clone of linear operations
▶ The clone of unary operations
▶ The clone of self-dual operations
▶ Slupetsky maximal clone

Clones ordered by inclusion form a lattice.
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The Lattice of Clones containing x + 1 on {0,1,2}



The Lattice of Clones containing 2x + 2y on {0,1,2}



The lattice of all clones on two elements(for |A| = 2)

Emil Post (1921, 1941)



Can we describe all clones?



For |A| > 2

OA

JA

There exists a continuum of clones for
|A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)

Continuum
of

Clones
Maximal Clones

All maximal clones for |A| = 3
were found (S. V. Jablonskij, 1955)

All maximal clones were found
(I. Rosenberg, 1970)

All 158 submaximal clones for |A| = 3 were
found (D. Lau, H. Machida, J. Demetrovics,
L. Hannak, S. S. Marchenkov, J. Bagyinszki)

Submaximal Clones
Minimal Clones

I. Rosenberg classified all minimal clones
All minimal clones for |A| = 3 were found
(B. Csákány, 1983)
All minimal clones for |A| = 4 were found
(Karsten Schölzer, 2012)
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Can we describe all subclones of
a maximal clone?

?

For the maximal clone of linear operations
the lattice of subclones is finite and known
(|A| is a prime number) (A. A. Salomaa, 1964)

L

Finite

For the maximal clone of quasi-linear
operations the lattice of subclones is
countable but not known
(if |A| is a power of a prime number)

L

Countable

For all other maximal clones the lattice of
subclones is uncountable (J. Demetrovics,
L. Hannak, S. S. Marchenkov, 1983)
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Can we describe continuum?



A = {0,1,2}

Clone of Self-Dual Operations

C3 = Pol
(

0 1 2
1 2 0

)

▶ C3 is a maximal clone

▶ There exist continuum clones of self-dual operations (S.S.
Marchenkov, 1983).

(D. Zhuk, 2010)
A complete description of clones of self-dual operations on
three elements



A = {0,1,2}

Clone of Self-Dual Operations

C3 = Pol
(

0 1 2
1 2 0

)

▶ C3 is a maximal clone

▶ There exist continuum clones of self-dual operations (S.S.
Marchenkov, 1983).

(D. Zhuk, 2010)
A complete description of clones of self-dual operations on
three elements



A = {0,1,2}

Clone of Self-Dual Operations

C3 = Pol
(

0 1 2
1 2 0

)

▶ C3 is a maximal clone

▶ There exist continuum clones of self-dual operations (S.S.
Marchenkov, 1983).

(D. Zhuk, 2010)
A complete description of clones of self-dual operations on
three elements



A = {0,1,2}

Clone of Self-Dual Operations

C3 = Pol
(

0 1 2
1 2 0

)

▶ C3 is a maximal clone

▶ There exist continuum clones of self-dual operations (S.S.
Marchenkov, 1983).

(D. Zhuk, 2010)
A complete description of clones of self-dual operations on
three elements





Can we describe everything now?



Clones with a majority operation on 3 elements

OA



Clones with a majority operation on 3 elements

OA



Clones with a majority operation on 3 elements

OA



Clones with a majority operation on 3 elements

OA



OA

There are exactly
1 918 040

clones on three elements
containing a majority operation!

Computer Calculations [Moiseev, Zhuk 2017]

▶ There are exactly 1 918 040 clones on 3 elements
containing majority.

▶ There are exactly 2 079 040 clones on 3 elements
definable by binary relations.

Binary relations characterize main properties of clones

We will never understand that many clones...
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if we cannot describe everything, let us hope that computer
can....

Computer should be able to solve the following problems.

Decision Problems
1. Given a set of operations F and a relation R. Decide

whether Clo(F ) = Pol(R).
2. Given a relation R decide whether the clone Pol(R) is

finitely generated.
3. Given a set of operations F decide whether there exists a

relation R s.t. Clo(F ) = Pol(R).

Theorem [Matthew Moore, 2019]
Problem 3 is undecidable.
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A New Hope!



Are all the clones really different?

What is the difference between Clo2(x ∧ y) and Clo3(max)?

What is the difference between Clo3(x) and Clo3(x + 1)?

No difference!
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C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Clone homomorphism ξ : C1 → C2:
1. ξ(πn

i ) = πn
i

2. ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn))

R1 pp-interpret R2 if if there exists d ∈ N and a partial
surjective map f : Ad

1 → A2 such that preimages of relations of
R2 are pp definable in R1.

A set of identities is satisfied in a clone C if every functional
symbol can be istantiated with an operation of a clone.

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a homomorphism ξ : C1 → C2

▶ R1 pp-interpret R2

▶ Any set of identities satisfied in C1 is also satisfied in C2.
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There are continuum clones of self-dual operations modulo
clone homomorphism.

We need a stronger tool to collapse!
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Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



C1 = Pol(R1) is a clone on A1, C2 = Pol(R2) is a clone on A2

Minor preserving map ξ : C1 → C2:

ξ(f (πm
i1 , . . . , π

m
in )) = ξ(f )(πm

i1 , . . . , π
m
in ).

R1 pp-construct R2 if there exists a pp-power of R1
homomorphically equivalent to R2, where pp-power is a
structure on domain Ad

1 pp-definable from R1.

Minor identity is an identity of the form
f (x1, . . . , xn) = g(xi1 , . . . , xis).

Theorem [Barto, Opršal, Pinsker, 2018]
C1 = Pol(R1), C2 = Pol(R2) TFAE:
▶ There exists a minor-preserving map ξ : C1 → C2

▶ R1 pp-construct R2

▶ Any finite set of minor identities satisfied in C1 is also
satisfied in C2.



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),

where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Example

M = Pol
(

0 0 1
0 1 1

)

B2 = Pol
(

0 1 1
1 0 1

)

M is minor equivalent to M∩B2

ξ : M → M∩B2

ξ(f )(x1, . . . , xn) = f (x1, . . . , xn) ∨ f ∗(x1, . . . , xn),
where f ∗(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)



Post Lattice

Figure: Post Lattice

[ p ]

[ q ]

[d  ,  q ]3

[d , q ]4

[d  , q ] 5[ d  ]4

[ d  ]5

[∧]

[d  , m ]3

[d  ,  p ]3

[ m ] [d  ]3

[m  ,  q ]

[ 0 ]

[∅]

⊕L Complete

N
L
 C

o
m

p
le

te

in L

P Complete

NP Complete

Figure: Post Lattice collapsed



Post Lattice

Figure: Post Lattice

[ p ]

[ q ]

[d  ,  q ]3

[d , q ]4

[d  , q ] 5[ d  ]4

[ d  ]5

[∧]

[d  , m ]3

[d  ,  p ]3

[ m ] [d  ]3

[m  ,  q ]

[ 0 ]

[∅]

⊕L Complete

N
L
 C

o
m

p
le

te

in L

P Complete

NP Complete

Figure: Post Lattice collapsed



Clones of self-dual operations

B2

B3

B4

B2
*

B5

B∞

B3
*

B3
*

B4
*

B M3
*

B N3
*

B3

B3

B3

*

*

*

*B4

*B5

∞B ∞

∞

∞

∞

 P∞

*

*

0

2

1

B M 4
*

B N4
*

B N 5
*

0B  4

B  5 0

0

*

*

*∞B 

B 5 ∞

B 4 ∞

B 3 ∞

3K

∞B ∞

∞B M

B M5

B M  4

B M  3

B M  2

B N  2

B N3

B N  4

B N  5

∞B N 

0B  3

B  3 1

2B3

B  4 0

0

0

B  5

P

PN

P1

P2

P3

P∞

Q

W
*W

*Q

S

S0

T

C

M

D
DM

SK
SL0

SL

B M 2
*

B N2
*

B  5
*

∞B N *

B M5
*

TL

TD

TM

TN

L

TL

L

DN

∞B *

P*

PN*

∞B M *

P*
1

P*
2

P*
3

∞B 

ω
2 ω

2

π

π

π

π
π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

≤

≤

Figure: The lattice of clones of
self-dual operations

TN

D

W

Q

SL

C

B2

B3

B4

B5

TL

K3

B∞

M∞

M2

M3

M4

M5

s(x,y
)=s(y,x

);

QNU(3)

M
in
or
ity

M
al
'c
ev

QNU(3)

QNU(3)

QNU(4)

QNU(5)

Jónsson(4)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

s(x,y
)=s(y,x

)

QNU(3)

QNU(3)

QNU(4)

QNU(5)

WNU(3)

s(x
,y)=

s(y
,x)

Mal'c
ev;

M
al
'c
ev

f(x,x,x
,y) = f(x,x

,x,x) 

f(x,y,
z,w) = f(y,z

,x,w)

QNU(k)

QNU(k)

s(x,y
)=s(y,x

)

Figure: The lattice of clones of self-dual
operations collapsed



Clones of self-dual operations

B2

B3

B4

B2
*

B5

B∞

B3
*

B3
*

B4
*

B M3
*

B N3
*

B3

B3

B3

*

*

*

*B4

*B5

∞B ∞

∞

∞

∞

 P∞

*

*

0

2

1

B M 4
*

B N4
*

B N 5
*

0B  4

B  5 0

0

*

*

*∞B 

B 5 ∞

B 4 ∞

B 3 ∞

3K

∞B ∞

∞B M

B M5

B M  4

B M  3

B M  2

B N  2

B N3

B N  4

B N  5

∞B N 

0B  3

B  3 1

2B3

B  4 0

0

0

B  5

P

PN

P1

P2

P3

P∞

Q

W
*W

*Q

S

S0

T

C

M

D
DM

SK
SL0

SL

B M 2
*

B N2
*

B  5
*

∞B N *

B M5
*

TL

TD

TM

TN

L

TL

L

DN

∞B *

P*

PN*

∞B M *

P*
1

P*
2

P*
3

∞B 

ω
2 ω

2

π

π

π

π
π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

π

≤

≤

Figure: The lattice of clones of
self-dual operations

TN

D

W

Q

SL

C

B2

B3

B4

B5

TL

K3

B∞

M∞

M2

M3

M4

M5

s(x,y
)=s(y,x

);

QNU(3)

M
in
or
ity

M
al
'c
ev

QNU(3)

QNU(3)

QNU(4)

QNU(5)

Jónsson(4)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

H
-M

(3
)

s(x,y
)=s(y,x

)

QNU(3)

QNU(3)

QNU(4)

QNU(5)

WNU(3)

s(x
,y)=

s(y
,x)

Mal'c
ev;

M
al
'c
ev

f(x,x,x
,y) = f(x,x

,x,x) 

f(x,y,
z,w) = f(y,z

,x,w)

QNU(k)

QNU(k)

s(x,y
)=s(y,x

)

Figure: The lattice of clones of self-dual
operations collapsed



What is next?



What is next?



Characterize all clones on 3 elements
modulo minor preserving map.

Plan
1. Take all minimal Taylor clones and characterize them

modulo minor preserving map

✓
2. Take 1 656 226 clones and collapse them using a

computer.
3. Distinguish or collapse the obtained classes by hand
4. Obtain a noncomputer proof of this classification
5. Extend this classification to all clones on 3 elements.

Computer calculations [Moiseev, Zhuk, 2017]
▶ There are 2 079 040 clones definable by binary relations
▶ There are 1 656 226 idempotent clones definable by binary

relations
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Computer calculations [Moiseev, Zhuk, 2017]
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▶ There are 1 656 226 idempotent clones definable by binary

relations

Computer calculations [Zahálka, Barto, Zhuk, 2022]
▶ Using second pp-power for C0 ⊇ C1 1 656 226 were

collapsed to 1 297
▶ Using inner automorphisms 1 297 were collapsed to 308
▶ Using mutual inclusion of clones from different classes 308

were collapsed to 293.

Interesting fact

▶ The clone Pol
(

0 0 1
0 1 1

)
is minor equivalent to 1 329 769

clones.
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Let us dream...

What will a full description of all clones modular minors give us?

▶ Beautiful picture? Hopefully
▶ A handbook of clones and h1-identities on 3 elements

M. B.: Can we generate majority from 3-cyclic and Maltsev?
A. V.: Just check in the book.

▶ A lot of new examples of finite algebras
▶ A lot of cool problems:

1. For every set of h1-identities find the number of clones.
2. Describe all clones satisfying some h1-identities.
3. Generalize the results for large domains.
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