The Kneser-Poulsen Conjecture for Uniform Contractions

Márton Naszódi /joint with Károly Bezdek/

Eötvös University
Budapest

Némafilm ..

Notation, terminology
$\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{E}^{d \times N}$: a configuration (ie. a set, or a sequence) of N points in Euclidean d-space \mathbb{E}^{d}.
$\mathbf{q} \in \mathbb{E}^{d \times N}$ is a contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$, if $\left|q_{i}-q_{j}\right| \leq\left|p_{i}-p_{j}\right|$ for all $1 \leq i<j \leq N$.
$\mathbf{B}[\mathbf{p}]=\bigcap_{i \in N} \mathbf{B}\left[p_{i}, 1\right]$.
Kneser-Poulsen Conjecture ~'54
If $\mathbf{q}=\left(q_{1}, \ldots, q_{N}\right)$ is a contraction of $\mathbf{p}=\left(p_{1}, \ldots, p_{N}\right)$ in \mathbb{E}^{d}, then

$$
\mathrm{V}_{d}(\mathbf{B}[\mathbf{p}]) \leq \mathrm{V}_{d}(\mathbf{B}[\mathbf{q}])
$$

Alexander's Conjecture '85
If \mathbf{q} is a contraction of \mathbf{p} in \mathbb{E}^{2}, then

$$
\operatorname{perim}(\mathbf{B}[\mathbf{p}]) \leq \operatorname{perim}(\mathbf{B}[\mathbf{q}]) .
$$

Hasicht and Kneser: for unions, the reversal (A) is FALSE.

Uniform contraction

$\mathbf{q} \in \mathbb{E}^{d \times N}$ is a uniform contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$ with separating value λ, if

$$
\begin{equation*}
\left|q_{i}-q_{j}\right| \leq \lambda \leq\left|p_{i}-p_{j}\right| \text { for all } 1 \leq i<j \leq N . \tag{UC}
\end{equation*}
$$

Motivation

Peter Pivovarov's idea to disprove (KP): sample \mathbf{p} and \mathbf{q} randomly. Show that with $\neq 0$ probability, (KP) is false, while (UC) holds.
[Paouris-Pivovarov, Random ball-polyhedra ..., Monatshefte, 2016].

Main result

$k \in[d]$. Let $\mathbf{q} \in \mathbb{E}^{d \times N}$ be a uniform contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$ with any separating value $\lambda \in(0,2]$. If $N \geq(1+\sqrt{2})^{d}$ then

$$
\begin{equation*}
\mathrm{V}_{k}(\mathbf{B}[\mathbf{p}]) \leq \mathrm{V}_{k}(\mathbf{B}[\mathbf{q}]) . \tag{1}
\end{equation*}
$$

A bit stronger:

Theorem

$k \in[d]$. Let $\mathbf{q} \in \mathbb{E}^{d \times N}$ be a uniform contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$ with any separating value $\lambda \in(0,2]$. If
(a) $N \geq\left(1+\frac{2}{\lambda}\right)^{d}$,
(b) $\lambda \leq \sqrt{2}$ and $N \geq\left(1+\sqrt{\frac{2 d}{d+1}}\right)^{d}$,
then (1) holds.

Unions

Theorem

Let $\mathbf{q} \in \mathbb{E}^{d \times N}$ be a uniform contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$ with some separating value $\lambda \in(0,2]$. If $N \geq\left(1+2 d^{3}\right)^{d}$ then

$$
\mathrm{V}_{d}\left(\bigcup_{i=1}^{N} \mathrm{~B}\left[p_{i}\right]\right) \geq \mathrm{V}_{d}\left(\bigcup_{i=1}^{N} \mathrm{~B}\left[q_{i}\right]\right) .
$$

Proof

Heavy lifting done by Rogers and Bezdek-Lángi on soft ball packings.

Proof of the Main Result - Trivial estimates

$f_{k}(d, N, \lambda):=\min \left\{\mathrm{V}_{k}(\mathbf{B}[\mathbf{q}]): \mathbf{q} \in \mathbb{E}^{d \times N},\left|q_{i}-q_{j}\right| \leq \lambda \forall i, j \in[N], i \neq j\right\}$,
$g_{k}(d, N, \lambda):=\max \left\{\mathrm{V}_{k}(\mathbf{B}[\mathbf{p}]): \mathbf{p} \in \mathbb{E}^{d \times N},\left|p_{i}-p_{j}\right| \geq \lambda \forall i, j \in[N], i \neq j\right\}$
Goal: $f_{k} \geq g_{k}$.
Junc's Bound on f_{k}
Let $d, N \in \mathbb{Z}^{+}, k \in[d]$ and $\lambda \in(0, \sqrt{2}]$. Then

$$
f_{k}(d, N, \lambda) \geq\left(1-\sqrt{\frac{2 d}{d+1}} \frac{\lambda}{2}\right)^{k} \mathrm{~V}_{k}(\mathbf{B}[o]) .
$$

Proof: \mathbf{q} is contained in a ball of radius $\sqrt{\frac{2 d}{d+1}} \frac{\lambda}{2}$. Thus, $\mathbf{B}[\mathbf{q}]$ contains a ball of radius ...

Proof of the Main Result - Trivial estimates

$$
g_{k}(d, N, \lambda):=\max \left\{\mathrm{V}_{k}(\mathbf{B}[\mathbf{p}]): \mathbf{p} \in \mathbb{E}^{d \times N},\left|p_{i}-p_{j}\right| \geq \lambda \forall i, j \in[N], i \neq j\right\} .
$$

Packing Bound on g_{k}
Let $d, N \in \mathbb{Z}^{+}, k \in[d]$ and $\lambda>0$.

$$
\text { If } N\left(\frac{\lambda}{2}\right)^{d} \geq\left(1+\frac{\lambda}{2}\right)^{d}, \text { then } g_{k}(d, N, \lambda)=0
$$

Proof: $\left\{\mathbf{B}\left[p_{i}, \lambda / 2\right]\right\}$ is a packing. Thus, taking volume yields that the circumradius of the set $\left\{p_{i}\right\}$ is at least one. Hence, $\mathbf{B}[\mathbf{p}]$ is a singleton or empty.

An additive Blaschke-Santalo inequality

$X \subset \mathbb{E}^{d}, \operatorname{cr}(X) \leq \rho$. The ρ-spindle convex hull of X is $\operatorname{conv}_{\rho}(X):=\mathbf{B}[\mathbf{B}[X, \rho], \rho]$. Easily, $\mathbf{B}[X, \rho]=\mathbf{B}\left[\operatorname{conv}_{\rho}(X), \rho\right]$.

Fodor, Kurusa, Vígh: A Blaschke-Santalo-type inequality for the volume of spindle convex sets, [FKV, Inequalities ..., Adv. Geom, '16].

A variation: an additive Blaschke-Santalo-type inequality for spindle-convex sets for intrinsic volumes.

Additive Blaschke-Santalo inequality

$Y \subset \mathbb{E}^{d}$ a ρ-spindle convex set, $k \in[d]$. Then

$$
\mathrm{V}_{k}(Y)^{1 / k}+\mathrm{V}_{k}(\mathbf{B}[Y, \rho])^{1 / k} \leq \rho \mathrm{V}_{k}(\mathbf{B}[\rho])^{1 / k} .
$$

An additive Blaschke-Santalo inequality

$Y \subset \mathbb{E}^{d}$ a ρ-spindle convex set, $k \in[d]$. Then

$$
\mathrm{V}_{k}(Y)^{1 / k}+\mathrm{V}_{k}(\mathbf{B}[Y, \rho])^{1 / k} \leq \rho \mathrm{V}_{k}(\mathbf{B}[\rho])^{1 / k} .
$$

Proof:
Proposition [folklore (?)]
$Y \subset \mathbb{E}^{d}$ a ρ-spindle convex set. Then

$$
Y-\mathbf{B}[Y, \rho]=\mathbf{B}[o, \rho] .
$$

Combine with the Brunn-Minkowski theorem for intrinsic volumes.

Proof of the Proposition

$Y \subset \mathbb{E}^{d}$ a ρ-spindle convex set. Then

$$
Y-\mathbf{B}[Y, \rho]=\mathbf{B}[o, \rho] .
$$

Y spindle-convex, thus, Y slides freely in $\mathbf{B}[o, \rho]$.
Thus, Y is a summand of $\mathbf{B}[o, \rho]$ and so,

$$
Y+(\mathbf{B}[o, \rho] \sim Y)=\mathbf{B}[o, \rho]
$$

where \sim is the Minkowski difference: $\mathbf{B}[o, \rho] \sim Y:=\cap_{y \in Y}(\mathbf{B}[o, \rho]-y)$. On the other hand, $\cap_{y \in Y}(\mathbf{B}[o, \rho]-y)=-\mathbf{B}[Y, \rho]$.

A non-trivial Bound on g

$$
g_{k}(d, N, \lambda):=\max \left\{\mathrm{V}_{k}(\mathbf{B}[\mathbf{p}]): \mathbf{p} \in \mathbb{E}^{d \times N},\left|p_{i}-p_{j}\right| \geq \lambda \forall i, j \in[N], i \neq j\right\} .
$$

$$
g_{k}(d, N, \lambda) \leq \max \left\{0,\left(1-\left(N^{1 / d}-1\right) \frac{\lambda}{2}\right)^{k} \mathrm{~V}_{k}(\mathrm{~B}[o])\right\} .
$$

Proof

A simple fact: $\mathbf{B}[\mathbf{p}] \subseteq \mathbf{B}\left[\bigcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \mu\right], 1+\mu\right]$.

$$
\begin{gathered}
\mathrm{V}_{k}(\mathbf{B}[\mathbf{p}]) \leq \mathrm{V}_{k}\left(\mathbf{B}\left[\bigsqcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \frac{\lambda}{2}\right], 1+\frac{\lambda}{2}\right]\right)= \\
\mathrm{V}_{k}\left(\mathbf{B}\left[\operatorname{conv}_{1+\lambda / 2}\left(\bigsqcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \frac{\lambda}{2}\right]\right), 1+\frac{\lambda}{2}\right]\right) \leq \text { by }\left(\mathrm{BI} . \neq \mathrm{Sa}^{2} .\right) \\
{\left[\left(1+\frac{\lambda}{2}\right) \mathrm{V}_{k}(\mathbf{B}[o])^{1 / k}-\mathrm{V}_{k}\left(\operatorname{conv}_{1+\lambda / 2}\left(\bigsqcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \frac{\lambda}{2}\right]\right)\right)^{1 / k}\right]^{k} \leq}
\end{gathered}
$$

Goal: $g_{k}(d, N, \lambda) \leq\left(1-\left(N^{1 / d}-1\right) \frac{\lambda}{2}\right)^{k} V_{k}(\mathrm{~B}[o])$.

$$
\mathrm{V}_{k}(\mathrm{~B}[\mathrm{p}]) \leq \ldots \leq
$$

$$
\begin{array}{r}
{\left[\left(1+\frac{\lambda}{2}\right) \mathrm{V}_{k}(\mathbf{B}[o])^{1 / k}-\mathrm{V}_{k}\left(\operatorname{conv}_{1+\lambda / 2}\left(\bigsqcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \frac{\lambda}{2}\right]\right)\right)^{1 / k}\right]^{k} \leq} \\
{\left[\left(1+\frac{\lambda}{2}\right) \mathrm{V}_{k}(\mathbf{B}[o])^{1 / k}-\frac{\lambda}{2} N^{1 / d} \mathrm{~V}_{k}(\mathbf{B}[o])^{1 / k}\right]^{k} .}
\end{array}
$$

In the last step, we used:

$$
\begin{equation*}
\mathrm{V}_{d}\left(\operatorname{conv}_{1+\lambda / 2}\left(\bigsqcup_{i=1}^{N} \mathbf{B}\left[p_{i}, \frac{\lambda}{2}\right]\right)\right) \geq \mathrm{V}_{d}\left(\left(N^{1 / d} \lambda / 2\right) \mathbf{B}[o]\right), \tag{VOL}
\end{equation*}
$$

and a general isoperimetric inequality: among all convex bodies of a given volume, the ball has the smallest V_{k}.
Thus, we can replace V_{d} by V_{k} in (VOL).

Completing the proof of the Main Result

Combine the bounds on f_{k} and g_{k}.

Strong contractions

Unconditional BOdy: symmetric about each of the d coordinate hyperplanes.

Strong contraction: contraction in each coordinate.

Theorem

K_{1}, \ldots, K_{N} unconditional convex bodies in $\mathbb{E}^{d} . \mathbf{q} \in \mathbb{E}^{d \times N}$ a strong contraction of $\mathbf{p} \in \mathbb{E}^{d \times N}$. Then

$$
\mathrm{V}_{d}\left(\bigcup_{i=1}^{N}\left(p_{i}+K_{i}\right)\right) \geq \mathrm{V}_{d}\left(\bigcup_{i=1}^{N}\left(q_{i}+K_{i}\right)\right)
$$

and

$$
\mathrm{V}_{d}\left(\bigcap_{i=1}^{N}\left(p_{i}+K_{i}\right)\right) \leq \mathrm{V}_{d}\left(\bigcap_{i=1}^{N}\left(q_{i}+K_{i}\right)\right) .
$$

Picture time!

(c)(i)()(5) 2018 Hanna Naszódi

Do we need unconditionality? Yes.

Figure :
1st family: A, B, C_{1};
2nd family: A, B, C_{2}.
Translation vectors: $b=-a, c_{2}=-c_{1}$.

Both configurations of the three translation vectors are a strong contraction of the other configuration.

Does it work for the perimeter? No.

Figure :
1st family: The two green rectangles, the diamond, and the two blue rectangles. 2nd family: The two green rectangles, the diamond, and ONE blue rectangle (counted twice).

Thank you!

