Embedding of Incidence Structures into Projective Planes

Korchmáros Gábor
Università degli Studi della Basilicata, Olaszország
Kerékjártó Béla szeminárium
2017 február 23
Bolyai Intézet Szeged

Incidence Structures

An incidence structure is a pair $(\mathcal{P}, \mathcal{L})$ where

- \mathcal{P} is a finite non empty pointset;
- \mathcal{L} is a family of subsets of \mathcal{P}, members of \mathcal{L} are called lines;
- a point-line pair (P, ℓ) is called incident when $P \in \ell$;
- the number of lines incident with a point is constant,
- the number of points incident with a line is constant.
$P G(2, \mathbb{K}):=$ projective plane over a field \mathbb{K}.
Embedding of $(\mathcal{P}, \mathcal{L})$ into $P G(2, \mathbb{K}):=$ incidence preserving injective map $(\mathcal{P}, \mathcal{L}) \mapsto P G(2, \mathbb{K})$, i.e.
- three points of $(\mathcal{P}, \mathcal{L})$ are collinear if and only if they are mapped to three collinear points in $P G(2, \mathbb{K})$.
Trivial necessary embeddability condition:
If $(\mathcal{P}, \mathcal{L})$ can be embedded in $P G(2, \mathbb{K})$ then
- two distinct points of $(\mathcal{P}, \mathcal{L})$ are incident with at most one line;
- two distinct lines of $(\mathcal{P}, \mathcal{L})$ are incident with at most one point.

Line spaces

A line space is an incidence structure $(\mathcal{P}, \mathcal{L})$ where

- two distinct points of $(\mathcal{P}, \mathcal{L})$ are incident with exactly one line.

A dual line space is an incidence structure $(\mathcal{P}, \mathcal{L})$ where

- two distinct lines of $(\mathcal{P}, \mathcal{L})$ are incident with exactly one point;

Remark

Important incidence structures other than line spaces and their duals are configurations, such as Desargues, Pascal, and k-nets.

Remark

Certain line spaces and their duals are well known from classical Finite geometry.

- Finite projective planes;
- Finite affine planes;
- Abstract unitals (more generally 2-block designs);
- Abstract ovals.

Embedding of projective and affine planes into $P G(2, \mathbb{K})$

$(\mathcal{P}, \mathcal{L}):=$ line space embeddable in $P G(2, \mathbb{K})$.

- If $(\mathcal{P}, \mathcal{L})$ is a projective plane then $(\mathcal{P}, \mathcal{L}) \cong P G(2, \mathbb{F})$ with \mathbb{F} subfield of \mathbb{K}.
- If $(\mathcal{P}, \mathcal{L})$ is an affine plane then either $(\mathcal{P}, \mathcal{L}) \cong A G(2, \mathbb{F})$ with \mathbb{F} subfield of \mathbb{K}, or it has order 3 and $\operatorname{char}(\mathbb{K}) \neq 3$.

Remark

In the exceptional case $(\mathcal{P}, \mathcal{L}) \cong A G(3,2)$, the 9 points are mapped to the inflections of a nonsingular cubic of $P G(2, \mathbb{K})$.

Remark

In the exceptional case $(\mathcal{P}, \mathcal{L}) \cong A G(3,2)$, embedding in $P G(2, q)$ is only possible for $q \equiv 1(\bmod 3)$.

For the proofs, see G.K. Journal of Geometry 15 (1981), 170-174.

Unitals naturally embedded in $P G(2, \mathbb{K})$

A line space $(\mathcal{P}, \mathcal{L})$ is an abstract unital of order n if $|\mathcal{P}|=n^{3}+1,|\mathcal{L}|=n^{2}\left(n^{2}-n+1\right)$, while
any point is incident with n^{2} lines and any line is incident with $n+1$ points.
Abstract unital of order q embedded in $P G\left(2, q^{2}\right):=$ unital in $P G\left(2, q^{2}\right)$

Definition

Set \mathcal{H} of all isotropic points of unitary polarity of $P G\left(2, q^{2}\right)$ is a unital of order q, called the classical unital.

Remark

Equivalent definitions:
$\mathcal{H}:=\left\{P=\left(a_{1}, a_{2}, a_{3}\right) \in P G\left(2, q^{2}\right) \mid a_{1}^{n+1}+a_{2}^{q+1}+a_{3}^{q+1}=0\right\}$. $\mathcal{H}:=$ set of all points in $P G\left(2, q^{2}\right)$ of the Hermitian curve with equation $X_{1}^{n+1}+X_{2}^{q+1}+X_{3}^{q+1}=0$.

Unitals naturally embedded in $P G\left(2, q^{2}\right)$, cont.

Definition

BM-unitals in $P G\left(2, q^{2}\right):=$ Unitals in $P G\left(2, q^{2}\right)$ which were constructed by Buekenhout (1974) using the four-dimensional Bruck-Barlotti representation of $A G\left(2, q^{2}\right)$.

Remark

- Equations of BM-unitals (Ebert (1998)) are complicated.
- BM-unital is of Hirschfeld-Szőnyi type if it is union of q (pairwise hyperosculating) conics through a point of the unital.
- Every non Hirschfeld-Szőnyi type BM-unital is the image of the classical unital by a quadratic transformation of $P G\left(2, q^{2}\right)$. (Aguglia, G.K., Giuzzi 2003).

Open question: Are there abstract unitals of order q (other than classical and BM-unitals) which can be embedded in $P G\left(2, q^{2}\right)$?

Unitals not naturally embedded in $P G\left(2, q^{2}\right)$

Problem: Is the natural one the unique embedding of the known unitals of order q in $P G\left(2, q^{2}\right)$?

Definition

Two embeddings of an abstract unital \mathcal{U} of order q into $P G\left(2, q^{2}\right)$, say Φ and Ψ, are considered equivalent when $\Phi(\mathcal{U})$ can be transformed in $\Psi(\mathcal{U})$ by a collineation of $P G\left(2, q^{2}\right)$.

Theorem

(G.K., Siciliano, Szőnyi 2017) For the classical unital, the answer to the above Problem is yes.

Full points of the classical unital

In $P G\left(2, q^{2}\right)$, let \mathcal{H} be the classical unital.

Definition

Let ℓ_{1} and ℓ_{2} be two distinct lines (chords) of \mathcal{H}. A point $P \in \mathcal{H}$ w.r.t. $\left(\ell_{1}, \ell_{2}\right)$ is called full, if the projection from P of ℓ_{1} on ℓ_{2} is surjective. $f\left(\ell_{1}, \ell_{2}\right):=$ number of full points w.r.t. $\left(\ell_{1}, \ell_{2}\right)$.

Theorem

(G.K., Siciliano, Szőnyi, Sonnino, 2016)

If $\ell_{1} \cap \ell_{2} \in \mathcal{H}$ then $f\left(\ell_{1}, \ell_{2}\right)=0$.

- If q is even then $f\left(\ell_{1}, \ell_{2}\right)=1$ for any line ℓ_{2} with $\ell_{1} \cap \ell_{2} \notin \mathcal{H}$.
- If q is odd then $f\left(\ell_{1}, \ell_{2}\right) \in\{0,2\}$. For any ℓ_{1} the number of lines ℓ_{2} with $f\left(\ell_{1}, \ell_{2}\right)=2$ is \approx half of the lines of \mathcal{H} missing $\ell_{1}\left(\approx \frac{1}{2}\left(q^{4}-2 q^{3}\right)\right)$

Projectivity group of a line, for q odd

Let q be odd.
For two lines ℓ_{1}, ℓ_{2} of \mathcal{H} with a full points P_{1} and P_{2}, the product of the projection from P_{1} of ℓ_{1} to ℓ_{2} with the projection from P_{2} of ℓ_{2} to ℓ_{1} is called a projectivity of ℓ_{1}.

If ℓ_{2} ranges over the set of lines with $f\left(\ell_{1}, \ell_{2}\right)$ then the arising projectivities generate a group, the projectivity group of ℓ_{1}.

Lemma

For any line ℓ_{1} of \mathcal{H}, the projectivity group of ℓ is a cyclic group of order $q+1$ acting transitively on ℓ_{1}.

Projectivity group of a line, for q even

Let q be even.
Let $\ell_{1}, \ell_{2}, \ell_{3}$ be three lines of \mathcal{H} which are pairwise missing.
Let P_{1}, P_{2}, P_{3} be the full points of $\ell_{1}, \ell_{2}, \ell_{2}, \ell_{3}$ and ℓ_{3}, ℓ_{1}, respectively.
The product of the projection from P_{1} of ℓ_{1} to ℓ_{2} with the projection from P_{2} of ℓ_{2} to ℓ_{1}, and with the projection ℓ_{3} to ℓ_{1} is called a projectivity of ℓ_{1}.

If ℓ_{2}, ℓ_{3} range over the set of lines then the arising projectivities generate a group, the projectivity group of ℓ_{1}.

Lemma

For any line ℓ_{1} of \mathcal{H}, the projectivity group of ℓ is a cyclic group of order $q+1$ acting transitively on ℓ_{1}.

Projectivity groups of unitals embedded in $P G\left(2, q^{2}\right)$

Let \mathcal{U} be a unital of order q which is embedded in $P G\left(2, q^{2}\right)$.

Lemma

If the projectivity group of a line ℓ_{1} of \mathcal{U} is a cyclic group acting transitively on ℓ_{1} then ℓ_{1} is a Baer subline of $P G\left(2, q^{2}\right)$.

Remark

The proof of Lemma depends on the classification of subgroups of $P G L\left(2, q^{2}\right)$.

Corollary

If \mathcal{U} is isomorphic to \mathcal{H}, as abstract unitals, and \mathcal{U} is embedded in $P G\left(2, q^{2}\right)$ then \mathcal{U} is the classical unital of $P G\left(2, q^{2}\right)$.

Abstract oval from a projective oval

Π :=Projective plane of order n;
$\Omega:=O v a l$ in Π, i.e.

- no three points of Ω is collinear,
- at each point $P \in \Omega$ there exists a unique line which meets Ω on in P, (called the tangent to Ω at P).
Ambient of $\Omega:=(\mathcal{P}, \mathcal{L})$ where \mathcal{P} is the pointset of Π, and \mathcal{L} is the set of all tangents of and secants of Ω.
The ambient of Ω is a dual line space.

Remark

From every point $P \in \Pi \backslash \Omega$, one can project Ω onto itself. This projection is called an involution of Ω.
The set of all involutions is a quasi 2-transitive set \mathcal{F} of involutory permutations on Ω (i.e. for any two point pairs $\left(P_{1}, P_{2}\right)$ and $\left(Q_{1}, Q_{2}\right)$ on Ω such that $P_{i} \neq Q_{j}$ with $1 \leq i, j \leq 2$ there exists a unique $f \in \mathcal{F}$ such that $\left.f\left(P_{1}\right)=P_{2}, f\left(Q_{1}\right)=Q_{2}\right)$.

Abstract ovals

Let (Ω, \mathcal{F}) be a quasi 2-transitive set of involutory permutations on a set Ω of length $n+1$.

- secant of $(\Omega, \mathcal{F}):=$ two distinct points $A, B \in \Omega$ together with all involutions $f \in \mathcal{F}$ s.t. $f(A)=B$.
- tangent of $(\Omega, \mathcal{F}):=$ a point $P \in \Omega$ together with all involutions $f \in \mathcal{F}$ s.t. $f(P)=P$.
$(\mathcal{P}, \mathcal{L}):=$ dual line space where
$\mathcal{P}:=\Omega \cup \mathcal{F}$ and $\mathcal{L}:=\mathcal{T} \cup \mathcal{S}$ with
\mathcal{T} and \mathcal{S} are the set of all tangents and secants, respectively.

Definition

The dual line space $(\mathcal{P}, \mathcal{L})$ is called and an abstract oval of order n.
There exist abstract ovals of order 8 which are not projective, but do not for $n<8, n=9,10$.
Open problem: Are there abstract ovals of order $n>10$ which are not projective?

Embedding of abstract ovals in $P G(2, q)$

Let $(\mathcal{P}, \mathcal{L})$ be an abstract oval of order n which can be embedded in $P G(2, q)$.

Remark

$n \leq q$ and if equality holds then $(\mathcal{P}, \mathcal{L})$ is projective.

Theorem

(G.K., Faina 1981) If q is odd then $q=n^{r}$ and $(\mathcal{P}, \mathcal{L})$ is mapped to a subplane $P G(2, n)$ of $P G(2, q)$. In particular, $(\mathcal{P}, \mathcal{L})$ is projective.

Theorem

(L.M. Abatangelo, G. Raguso 1981) If q is even and Ω is mapped into a conic then $q=n^{r}$ and $(\mathcal{P}, \mathcal{L})$ is mapped to a subplane $P G(2, n)$ of $P G(2, q)$. In particular, $(\mathcal{P}, \mathcal{L})$ is projective.

Proofs depend on Segre's lemma. Open problem: Can be dropped the extra hypothesis for q even?

