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Incidence Structures

An incidence structure is a pair (P,L) where

P is a finite non empty pointset;
L is a family of subsets of P, members of L are called lines;
a point-line pair (P, `) is called incident when P ∈ `;
the number of lines incident with a point is constant,
the number of points incident with a line is constant.

PG (2,K):= projective plane over a field K.
Embedding of (P,L) into PG (2,K):= incidence preserving
injective map (P,L) 7→ PG (2,K), i.e.

three points of (P,L) are collinear if and only if they are
mapped to three collinear points in PG (2,K).

Trivial necessary embeddability condition:
If (P,L) can be embedded in PG (2,K) then

two distinct points of (P,L) are incident with at most one
line;
two distinct lines of (P,L) are incident with at most one
point.
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Line spaces

A line space is an incidence structure (P,L) where

two distinct points of (P,L) are incident with exactly one line.

A dual line space is an incidence structure (P,L) where

two distinct lines of (P,L) are incident with exactly one point;

Remark

Important incidence structures other than line spaces and their
duals are configurations, such as Desargues, Pascal, and k-nets.

Remark

Certain line spaces and their duals are well known from classical
Finite geometry.

Finite projective planes;

Finite affine planes;

Abstract unitals (more generally 2-block designs);

Abstract ovals.
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Embedding of projective and affine planes into PG (2,K)

(P,L):=line space embeddable in PG (2,K).

If (P,L) is a projective plane then (P,L) ∼= PG (2,F) with F
subfield of K.

If (P,L) is an affine plane then either (P,L) ∼= AG (2,F) with
F subfield of K, or it has order 3 and char(K) 6= 3.

Remark

In the exceptional case (P,L) ∼= AG (3, 2), the 9 points are
mapped to the inflections of a nonsingular cubic of PG (2,K).

Remark

In the exceptional case (P,L) ∼= AG (3, 2), embedding in PG (2, q)
is only possible for q ≡ 1 (mod 3).

For the proofs, see G.K. Journal of Geometry 15 (1981), 170-174.
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Unitals naturally embedded in PG (2,K)

A line space (P,L) is an abstract unital of order n if
|P| = n3 + 1, |L| = n2(n2 − n + 1), while
any point is incident with n2 lines and any line is incident with
n + 1 points.
Abstract unital of order q embedded in PG (2, q2):=unital in
PG (2, q2)

Definition

Set H of all isotropic points of unitary polarity of PG (2, q2) is a
unital of order q, called the classical unital.

Remark

Equivalent definitions:
H := {P = (a1, a2, a3) ∈ PG (2, q2)|an+1

1 + aq+1
2 + aq+1

3 = 0}.
H:=set of all points in PG (2, q2) of the Hermitian curve with
equation X n+1

1 + X q+1
2 + X q+1

3 = 0.
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Unitals naturally embedded in PG (2, q2), cont.

Definition

BM-unitals in PG (2, q2):=Unitals in PG (2, q2) which were
constructed by Buekenhout (1974) using the four-dimensional
Bruck-Barlotti representation of AG (2, q2).

Remark

Equations of BM-unitals (Ebert (1998)) are complicated.

BM-unital is of Hirschfeld-Szőnyi type if it is union of q
(pairwise hyperosculating) conics through a point of the
unital.

Every non Hirschfeld-Szőnyi type BM-unital is the image of
the classical unital by a quadratic transformation of
PG (2, q2). (Aguglia, G.K., Giuzzi 2003).

Open question: Are there abstract unitals of order q (other than
classical and BM-unitals) which can be embedded in PG (2, q2)?
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Unitals not naturally embedded in PG (2, q2)

Problem: Is the natural one the unique embedding of the known
unitals of order q in PG (2, q2)?

Definition

Two embeddings of an abstract unital U of order q into PG (2, q2),
say Φ and Ψ, are considered equivalent when Φ(U) can be
transformed in Ψ(U) by a collineation of PG (2, q2).

Theorem

(G.K., Siciliano, Szőnyi 2017) For the classical unital, the answer
to the above Problem is yes.
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Full points of the classical unital

In PG (2, q2), let H be the classical unital.

Definition

Let `1 and `2 be two distinct lines (chords) of H. A point P ∈ H
w.r.t. (`1, `2) is called full, if the projection from P of `1 on `2 is
surjective. f (`1, `2):= number of full points w.r.t. (`1, `2).

Theorem

(G.K., Siciliano, Szőnyi, Sonnino, 2016)
If `1 ∩ `2 ∈ H then f (`1, `2) = 0.

If q is even then f (`1, `2) = 1 for any line `2 with `1 ∩ `2 6∈ H.

If q is odd then f (`1, `2) ∈ {0, 2}. For any `1 the number of
lines `2 with f (`1, `2) = 2 is ≈ half of the lines of H missing
`1 (≈ 1

2(q4 − 2q3))
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Projectivity group of a line, for q odd

Let q be odd.

For two lines `1, `2 of H with a full points P1 and P2,
the product of the projection from P1 of `1 to `2 with the
projection from P2 of `2 to `1 is called a projectivity of `1.

If `2 ranges over the set of lines with f (`1, `2) then the arising
projectivities generate a group, the projectivity group of `1.

Lemma

For any line `1 of H, the projectivity group of ` is a cyclic group of
order q + 1 acting transitively on `1.
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Projectivity group of a line, for q even

Let q be even.

Let `1, `2, `3 be three lines of H which are pairwise missing.
Let P1,P2,P3 be the full points of `1, `2, `2, `3 and `3, `1,
respectively.
The product of the projection from P1 of `1 to `2 with the
projection from P2 of `2 to `1, and with the projection `3 to `1 is
called a projectivity of `1.

If `2, `3 range over the set of lines then the arising projectivities
generate a group, the projectivity group of `1.

Lemma

For any line `1 of H, the projectivity group of ` is a cyclic group of
order q + 1 acting transitively on `1.
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Projectivity groups of unitals embedded in PG (2, q2)

Let U be a unital of order q which is embedded in PG (2, q2).

Lemma

If the projectivity group of a line `1 of U is a cyclic group acting
transitively on `1 then `1 is a Baer subline of PG (2, q2).

Remark

The proof of Lemma depends on the classification of subgroups of
PGL(2, q2).

Corollary

If U is isomorphic to H, as abstract unitals, and U is embedded in
PG (2, q2) then U is the classical unital of PG (2, q2).
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Abstract oval from a projective oval

Π:=Projective plane of order n;
Ω:=Oval in Π, i.e.

no three points of Ω is collinear,

at each point P ∈ Ω there exists a unique line which meets Ω
on in P, (called the tangent to Ω at P).

Ambient of Ω:=(P,L) where P is the pointset of Π, and L is the
set of all tangents of and secants of Ω.
The ambient of Ω is a dual line space.

Remark

From every point P ∈ Π \ Ω, one can project Ω onto itself. This
projection is called an involution of Ω.
The set of all involutions is a quasi 2-transitive set F of involutory
permutations on Ω (i.e. for any two point pairs (P1,P2) and
(Q1,Q2) on Ω such that Pi 6= Qj with 1 ≤ i , j ≤ 2 there exists a
unique f ∈ F such that f (P1) = P2, f (Q1) = Q2).
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Abstract ovals

Let (Ω,F) be a quasi 2-transitive set of involutory permutations
on a set Ω of length n + 1.

secant of (Ω,F):=two distinct points A,B ∈ Ω together with
all involutions f ∈ F s.t. f (A) = B.

tangent of (Ω,F):=a point P ∈ Ω together with all
involutions f ∈ F s.t. f (P) = P.

(P,L):=dual line space where
P := Ω ∪ F and L:=T ∪ S with
T and S are the set of all tangents and secants, respectively.

Definition

The dual line space (P,L) is called and an abstract oval of order n.

There exist abstract ovals of order 8 which are not projective, but
do not for n < 8, n = 9, 10.
Open problem: Are there abstract ovals of order n > 10 which are
not projective?
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Embedding of abstract ovals in PG (2, q)

Let (P,L) be an abstract oval of order n which can be embedded
in PG (2, q).

Remark

n ≤ q and if equality holds then (P,L) is projective.

Theorem

(G.K., Faina 1981) If q is odd then q = nr and (P,L) is mapped to
a subplane PG (2, n) of PG (2, q). In particular, (P,L) is projective.

Theorem

(L.M. Abatangelo, G. Raguso 1981) If q is even and Ω is mapped
into a conic then q = nr and (P,L) is mapped to a subplane
PG (2, n) of PG (2, q). In particular, (P,L) is projective.

Proofs depend on Segre’s lemma. Open problem: Can be dropped
the extra hypothesis for q even?
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