Embedding of Incidence Structures into Projective Planes

Korchmáros Gábor

Università degli Studi della Basilicata, Olaszország

Kerékjártó Béla szeminárium

2017 február 23 Bolyai Intézet Szeged An incidence structure is a pair $(\mathcal{P},\mathcal{L})$ where

- $\bullet \ \mathcal{P}$ is a finite non empty pointset;
- $\bullet \ \mathcal{L}$ is a family of subsets of $\mathcal{P}\text{,}$ members of \mathcal{L} are called lines;
- a point-line pair (P, ℓ) is called incident when $P \in \ell$;
- the number of lines incident with a point is constant,

• the number of points incident with a line is constant. $PG(2, \mathbb{K}):=$ projective plane over a field \mathbb{K} . Embedding of $(\mathcal{P}, \mathcal{L})$ into $PG(2, \mathbb{K}):=$ incidence preserving injective map $(\mathcal{P}, \mathcal{L}) \mapsto PG(2, \mathbb{K})$, i.e.

 three points of (P, L) are collinear if and only if they are mapped to three collinear points in PG(2, K).

Trivial necessary embeddability condition:

- If $(\mathcal{P},\mathcal{L})$ can be embedded in $\mathit{PG}(2,\mathbb{K})$ then
 - two distinct points of $(\mathcal{P}, \mathcal{L})$ are incident with at most one line;
 - two distinct lines of $(\mathcal{P}, \mathcal{L})$ are incident with at most one point.

Line spaces

A line space is an incidence structure $(\mathcal{P},\mathcal{L})$ where

- two distinct points of $(\mathcal{P}, \mathcal{L})$ are incident with exactly one line.
- A dual line space is an incidence structure $(\mathcal{P}, \mathcal{L})$ where
 - two distinct lines of $(\mathcal{P}, \mathcal{L})$ are incident with exactly one point;

Remark

Important incidence structures other than line spaces and their duals are configurations, such as Desargues, Pascal, and k-nets.

Remark

Certain line spaces and their duals are well known from classical Finite geometry.

- Finite projective planes;
- Finite affine planes;
- Abstract unitals (more generally 2-block designs);
- Abstract ovals.

Embedding of projective and affine planes into $PG(2, \mathbb{K})$

 $(\mathcal{P}, \mathcal{L})$:=line space embeddable in $PG(2, \mathbb{K})$.

- If $(\mathcal{P}, \mathcal{L})$ is a projective plane then $(\mathcal{P}, \mathcal{L}) \cong PG(2, \mathbb{F})$ with \mathbb{F} subfield of \mathbb{K} .
- If $(\mathcal{P}, \mathcal{L})$ is an affine plane then either $(\mathcal{P}, \mathcal{L}) \cong AG(2, \mathbb{F})$ with \mathbb{F} subfield of \mathbb{K} , or it has order 3 and $char(\mathbb{K}) \neq 3$.

Remark

In the exceptional case $(\mathcal{P}, \mathcal{L}) \cong AG(3, 2)$, the 9 points are mapped to the inflections of a nonsingular cubic of $PG(2, \mathbb{K})$.

Remark

In the exceptional case $(\mathcal{P}, \mathcal{L}) \cong AG(3, 2)$, embedding in PG(2, q) is only possible for $q \equiv 1 \pmod{3}$.

For the proofs, see G.K. Journal of Geometry 15 (1981), 170-174.

Unitals naturally embedded in $PG(2, \mathbb{K})$

A line space $(\mathcal{P}, \mathcal{L})$ is an *abstract unital* of order *n* if $|\mathcal{P}| = n^3 + 1$, $|\mathcal{L}| = n^2(n^2 - n + 1)$, while any point is incident with n^2 lines and any line is incident with n + 1 points.

Abstract unital of order q embedded in $PG(2, q^2)$:=unital in $PG(2, q^2)$

Definition

Set \mathcal{H} of all isotropic points of unitary polarity of $PG(2, q^2)$ is a unital of order q, called the classical unital.

Remark

Equivalent definitions: $\mathcal{H} := \{P = (a_1, a_2, a_3) \in PG(2, q^2) | a_1^{n+1} + a_2^{q+1} + a_3^{q+1} = 0\}.$ $\mathcal{H} :=$ set of all points in $PG(2, q^2)$ of the Hermitian curve with equation $X_1^{n+1} + X_2^{q+1} + X_3^{q+1} = 0.$

Unitals naturally embedded in $PG(2, q^2)$, cont.

Definition

BM-unitals in $PG(2, q^2)$:=Unitals in $PG(2, q^2)$ which were constructed by Buekenhout (1974) using the four-dimensional Bruck-Barlotti representation of $AG(2, q^2)$.

Remark

- Equations of BM-unitals (Ebert (1998)) are complicated.
- BM-unital is of Hirschfeld-Szőnyi type if it is union of q (pairwise hyperosculating) conics through a point of the unital.
- Every non Hirschfeld-Szőnyi type BM-unital is the image of the classical unital by a quadratic transformation of PG(2, q²). (Aguglia, G.K., Giuzzi 2003).

Open question: Are there abstract unitals of order q (other than classical and BM-unitals) which can be embedded in $PG(2, q^2)$?

Problem: Is the natural one the unique embedding of the known unitals of order q in $PG(2, q^2)$?

Definition

Two embeddings of an abstract unital \mathcal{U} of order q into $PG(2, q^2)$, say Φ and Ψ , are considered equivalent when $\Phi(\mathcal{U})$ can be transformed in $\Psi(\mathcal{U})$ by a collineation of $PG(2, q^2)$.

Theorem

(G.K., Siciliano, Szőnyi 2017) For the classical unital, the answer to the above Problem is yes.

Full points of the classical unital

In $PG(2, q^2)$, let \mathcal{H} be the classical unital.

Definition

Let ℓ_1 and ℓ_2 be two distinct lines (chords) of \mathcal{H} . A point $P \in \mathcal{H}$ w.r.t. (ℓ_1, ℓ_2) is called full, if the projection from P of ℓ_1 on ℓ_2 is surjective. $f(\ell_1, \ell_2)$:= number of full points w.r.t. (ℓ_1, ℓ_2) .

Theorem

(G.K., Siciliano, Szőnyi, Sonnino, 2016) If $\ell_1 \cap \ell_2 \in \mathcal{H}$ then $f(\ell_1, \ell_2) = 0$.

- If q is even then $f(\ell_1, \ell_2) = 1$ for any line ℓ_2 with $\ell_1 \cap \ell_2 \notin \mathcal{H}$.
- If q is odd then f(l₁, l₂) ∈ {0,2}. For any l₁ the number of lines l₂ with f(l₁, l₂) = 2 is ≈ half of the lines of H missing l₁ (≈ 1/2(q⁴ 2q³))

Let q be odd.

For two lines ℓ_1, ℓ_2 of \mathcal{H} with a full points P_1 and P_2 , the product of the projection from P_1 of ℓ_1 to ℓ_2 with the projection from P_2 of ℓ_2 to ℓ_1 is called a *projectivity* of ℓ_1 .

If ℓ_2 ranges over the set of lines with $f(\ell_1, \ell_2)$ then the arising projectivities generate a group, the *projectivity group* of ℓ_1 .

Lemma

For any line ℓ_1 of \mathcal{H} , the projectivity group of ℓ is a cyclic group of order q + 1 acting transitively on ℓ_1 .

Projectivity group of a line, for q even

Let q be even.

Let ℓ_1, ℓ_2, ℓ_3 be three lines of \mathcal{H} which are pairwise missing. Let P_1, P_2, P_3 be the full points of $\ell_1, \ell_2, \ell_2, \ell_3$ and ℓ_3, ℓ_1 , respectively.

The product of the projection from P_1 of ℓ_1 to ℓ_2 with the projection from P_2 of ℓ_2 to ℓ_1 , and with the projection ℓ_3 to ℓ_1 is called a *projectivity* of ℓ_1 .

If ℓ_2, ℓ_3 range over the set of lines then the arising projectivities generate a group, the *projectivity group* of ℓ_1 .

Lemma

For any line ℓ_1 of \mathcal{H} , the projectivity group of ℓ is a cyclic group of order q + 1 acting transitively on ℓ_1 .

Projectivity groups of unitals embedded in $PG(2, q^2)$

Let \mathcal{U} be a unital of order q which is embedded in $PG(2, q^2)$.

Lemma

If the projectivity group of a line ℓ_1 of \mathcal{U} is a cyclic group acting transitively on ℓ_1 then ℓ_1 is a Baer subline of $PG(2, q^2)$.

Remark

The proof of Lemma depends on the classification of subgroups of $PGL(2, q^2)$.

Corollary

If \mathcal{U} is isomorphic to \mathcal{H} , as abstract unitals, and \mathcal{U} is embedded in $PG(2, q^2)$ then \mathcal{U} is the classical unital of $PG(2, q^2)$.

Abstract oval from a projective oval

 $\Pi:=\text{Projective plane of order } n;$

 Ω :=Oval in Π , i.e.

- no three points of Ω is collinear,
- at each point P ∈ Ω there exists a unique line which meets Ω on in P, (called the tangent to Ω at P).

Ambient of $\Omega:=(\mathcal{P},\mathcal{L})$ where \mathcal{P} is the pointset of Π , and \mathcal{L} is the set of all tangents of and secants of Ω .

The ambient of Ω is a dual line space.

Remark

From every point $P \in \Pi \setminus \Omega$, one can project Ω onto itself. This projection is called an involution of Ω . The set of all involutions is a quasi 2-transitive set \mathcal{F} of involutory permutations on Ω (i.e. for any two point pairs (P_1, P_2) and (Q_1, Q_2) on Ω such that $P_i \neq Q_j$ with $1 \leq i, j \leq 2$ there exists a unique $f \in \mathcal{F}$ such that $f(P_1) = P_2, f(Q_1) = Q_2$).

Abstract ovals

Let (Ω, \mathcal{F}) be a quasi 2-transitive set of involutory permutations on a set Ω of length n + 1.

- secant of (Ω, \mathcal{F}) :=two distinct points $A, B \in \Omega$ together with all involutions $f \in \mathcal{F}$ s.t. f(A) = B.
- tangent of (Ω, F):=a point P ∈ Ω together with all involutions f ∈ F s.t. f(P) = P.
- $(\mathcal{P},\mathcal{L})$:=dual line space where
- $\mathcal{P}:=\Omega\cup\mathcal{F}$ and $\mathcal{L}{:=}\mathcal{T}\cup\mathcal{S}$ with
- ${\mathcal T}$ and ${\mathcal S}$ are the set of all tangents and secants, respectively.

Definition

The dual line space $(\mathcal{P}, \mathcal{L})$ is called and an *abstract oval* of order *n*.

There exist abstract ovals of order 8 which are not projective, but do not for n < 8, n = 9, 10.

Open problem: Are there abstract ovals of order n > 10 which are not projective?

Embedding of abstract ovals in PG(2, q)

Let $(\mathcal{P}, \mathcal{L})$ be an abstract oval of order *n* which can be embedded in PG(2, q).

Remark

 $n \leq q$ and if equality holds then $(\mathcal{P}, \mathcal{L})$ is projective.

Theorem

(G.K., Faina 1981) If q is odd then $q = n^r$ and $(\mathcal{P}, \mathcal{L})$ is mapped to a subplane PG(2, n) of PG(2, q). In particular, $(\mathcal{P}, \mathcal{L})$ is projective.

Theorem

(L.M. Abatangelo, G. Raguso 1981) If q is even and Ω is mapped into a conic then $q = n^r$ and $(\mathcal{P}, \mathcal{L})$ is mapped to a subplane PG(2, n) of PG(2, q). In particular, $(\mathcal{P}, \mathcal{L})$ is projective.

Proofs depend on Segre's lemma. Open problem: Can be dropped the extra hypothesis for q even?