Változatok a Minkowski problémára

ifj Böröczky Károly

Szeged, 2017. szeptember 15.

Reconstruction of smooth closed convex surfaces from

 Gauss curvature- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=0 \tag{1}
\end{equation*}
$$

Reconstruction of smooth closed convex surfaces from

Gauss curvature

- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=o \tag{1}
\end{equation*}
$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa: S^{n-1} \rightarrow \mathbb{R}_{+}$satisfying (1), find C_{+}^{2} hypersurface $X \subset \mathbb{R}^{n}$ such that $\kappa\left(u_{x}\right)$ is the Gauss curvature at $x \in X$.

Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C_{+}^{2} hypersurface in \mathbb{R}^{n}
- u_{x} is exterior unit normal at $x \in X$
- $\kappa_{X}\left(u_{x}\right)>0$ is the Gauss curvature

Observation (Minkowski)

$$
\begin{equation*}
\int_{S^{n-1}} u \cdot \kappa_{X}(u)^{-1} d u=0 \tag{1}
\end{equation*}
$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa: S^{n-1} \rightarrow \mathbb{R}_{+}$satisfying (1), find C_{+}^{2} hypersurface $X \subset \mathbb{R}^{n}$ such that $\kappa\left(u_{x}\right)$ is the Gauss curvature at $x \in X$. Monge-Ampere type differential equation on S^{n-1} :

$$
\operatorname{det}\left(\nabla^{2} h+h l\right)=\kappa^{-1}
$$

where $h(u)=\max \{\langle u, x\rangle: x \in X\}$ is the support function.

Notation

- K, C - convex bodies in \mathbb{R}^{n}
(convex compact with non-empty interior)
- $V(K)$ - volume (Lebesgue measure)
- $\mathcal{H}^{n-1}-(n-1)$-Hausdorff measure
- h_{K} - support function of K
$h_{K}(u)=\max \{\langle u, x\rangle: x \in K\}$ for $u \in \mathbb{R}^{n}$
- L - linear subspace, $L \neq\{o\}, \mathbb{R}^{n}$
- μ - non-trivial Borel measure on S^{n-1}

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$
- ∂K is C_{+}^{2} and $\kappa\left(u_{x}\right)$ Gauss curvature at $x \in \partial K, u_{x}=\nu_{K}(x)$,

$$
S_{K}(\omega)=\int_{\omega} \kappa^{-1}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
S_{K}\left(\left\{u_{i}\right\}\right)=\mathcal{H}^{n-1}\left(F_{i}\right)
$$

Surface area measure

S_{K} - surface area measure of K on S^{n-1}

- $\nu_{K}(x)=\left\{u \in S^{n-1}: h_{K}(u)=\langle x, u\rangle\right\}$ for $x \in \partial K$ (all possible exterior unit normals at x)
- For $\equiv \subset \partial K, S_{K}\left(\nu_{K}(\equiv)\right)=\mathcal{H}^{n-1}(\equiv)$
- ∂K is C_{+}^{2} and $\kappa\left(u_{x}\right)$ Gauss curvature at $x \in \partial K, u_{x}=\nu_{K}(x)$,

$$
S_{K}(\omega)=\int_{\omega} \kappa^{-1}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
S_{K}\left(\left\{u_{i}\right\}\right)=\mathcal{H}^{n-1}\left(F_{i}\right)
$$

Properties

- $S_{K}\left(S^{n-1}\right)=$ surface area of K
- $V(K)=\frac{1}{n} \int_{S^{n-1}} h_{K} d S_{K}$

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg) $\mu=S_{K}$ for some unique convex body K (up to translation) iff

1. $\mu\left(L \cap S^{n-1}\right)<\mu\left(S^{n-1}\right)$ for any L with $\operatorname{dim} L=n-1$
2. $\int_{S^{n-1}} u d \mu(u)=0$

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg) $\mu=S_{K}$ for some unique convex body K (up to translation) iff

1. $\mu\left(L \cap S^{n-1}\right)<\mu\left(S^{n-1}\right)$ for any L with $\operatorname{dim} L=n-1$
2. $\int_{S^{n-1}} u d \mu(u)=0$

If μ is even, then the first condition is enough

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg)
$\mu=S_{K}$ for some unique convex body K (up to translation) iff

1. $\mu\left(L \cap S^{n-1}\right)<\mu\left(S^{n-1}\right)$ for any L with $\operatorname{dim} L=n-1$
2. $\int_{S^{n-1}} u d \mu(u)=0$

If μ is even, then the first condition is enough
To solve the Minkowski problem,

- Minimize $\int_{S^{n-1}} h_{C} d \mu$ under the condition $V(C)=1$
- Uniqueness comes from uniqueness in the Minkowski inequality

Brunn-Minkowski inequality

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Brunn-Minkowski inequality

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Brunn-Minkowski inequality $\alpha, \beta>0$

$$
V(\alpha K+\beta C)^{\frac{1}{n}} \geq \alpha V(K)^{\frac{1}{n}}+\beta V(C)^{\frac{1}{n}}
$$

with equality iff K and C are homothetic.
Remark Yields the isoperimetric inequality if C is the unit ball

Brunn-Minkowski inequality

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Brunn-Minkowski inequality $\alpha, \beta>0$

$$
V(\alpha K+\beta C)^{\frac{1}{n}} \geq \alpha V(K)^{\frac{1}{n}}+\beta V(C)^{\frac{1}{n}}
$$

with equality iff K and C are homothetic.
Remark Yields the isoperimetric inequality if C is the unit ball
Minkowski inequality If $V(K)=V(C)$, then

$$
\int_{S^{n-1}} h_{C} d S_{K} \geq \int_{S^{n-1}} h_{K} d S_{K}
$$

with equality iff K and C are translates.

Brunn-Minkowski inequality

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Brunn-Minkowski inequality $\alpha, \beta>0$

$$
V(\alpha K+\beta C)^{\frac{1}{n}} \geq \alpha V(K)^{\frac{1}{n}}+\beta V(C)^{\frac{1}{n}}
$$

with equality iff K and C are homothetic.
Remark Yields the isoperimetric inequality if C is the unit ball
Minkowski inequality If $V(K)=V(C)$, then

$$
\int_{S^{n-1}} h_{C} d S_{K} \geq \int_{S^{n-1}} h_{K} d S_{K}
$$

with equality iff K and C are translates.

Logarithmic Minkowski problem - Cone volume measure

$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in \operatorname{int} K$ (Gromov, Milman, 1986)

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

Logarithmic Minkowski problem - Cone volume measure

$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in \operatorname{int} K$ (Gromov, Milman, 1986)

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

- $\omega \subset S^{n-1}$

$$
V_{K}(\omega)=\int_{\omega} \frac{h_{K}(u)}{n} d S_{K}(u) .
$$

Logarithmic Minkowski problem - Cone volume measure

$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in \operatorname{int} K$ (Gromov, Milman, 1986)

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

- $\omega \subset S^{n-1}$

$$
V_{K}(\omega)=\int_{\omega} \frac{h_{K}(u)}{n} d S_{K}(u) .
$$

- $V_{K}\left(S^{n-1}\right)=V(K)$.

Logarithmic Minkowski problem - Cone volume measure

$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in \operatorname{int} K$ (Gromov, Milman, 1986)

- K polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

- $\omega \subset S^{n-1}$

$$
V_{K}(\omega)=\int_{\omega} \frac{h_{K}(u)}{n} d S_{K}(u) .
$$

- $V_{K}\left(S^{n-1}\right)=V(K)$.

Monge-Ampere type differential equation on S^{n-1} for $h=h_{K}$ if μ has a density function f :

$$
h \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang)
Let μ be an even Borel measure on S^{n-1}. $\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang)
Let μ be an even Borel measure on S^{n-1}.
$\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang)
Let μ be an even Borel measure on S^{n-1}.
$\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong Idea for sufficiency: Minimize $\int_{S^{n-1}} \log h_{C} d \mu$ assuming $V(C)=1$

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang)
Let μ be an even Borel measure on S^{n-1}.
$\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong Idea for sufficiency: Minimize $\int_{S^{n-1}} \log h_{C} d \mu$ assuming $V(C)=1$
Conjecture (Uniqueness)
$V_{K}=V_{C}$ for o-symmetric convex bodies K and C with
$V(K)=V(C)$ iff K and C have dilated direct summands; namely, $K=K_{1} \oplus \ldots \oplus K_{m}$ and $C=C_{1} \oplus \ldots \oplus C_{m}$ with $K_{i}=\lambda_{i} C_{i}$ for $\lambda_{1}, \ldots, \lambda_{m}>0$.

Cone volume measure for certain non-centrally symmetric bodies

Theorem (B, Henk, Linke)
If the centroid of K is the origin, then
(i) $V_{K}\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \cdot V(K)$ for any $L \neq\{0\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $K=M+M^{\prime}$ where $M \subset L^{\perp}, \operatorname{dim} M=\operatorname{dim} L^{\perp}, \operatorname{dim} M^{\prime}=\operatorname{dim} L$

Remark (i) and (ii) does not charactherize V_{K} if the centroid of K is the origin

Cone volume measure for certain non-centrally symmetric bodies

Theorem (B, Henk, Linke)
If the centroid of K is the origin, then
(i) $V_{K}\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \cdot V(K)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $K=M+M^{\prime}$ where $M \subset L^{\perp}, \operatorname{dim} M=\operatorname{dim} L^{\perp}, \operatorname{dim} M^{\prime}=\operatorname{dim} L$

Remark (i) and (ii) does not charactherize V_{K} if the centroid of K is the origin

Theorem (Zhu)

If μ is a discrete Borel measure on S^{n-1} such that any different $u_{1}, \ldots, u_{n} \in \operatorname{supp} \mu$ are independent, then $\mu=V_{K}$ for some polytope K

Isotropic position of a measure on S^{n-1}

Theorem (BLYZ)
Let μ be a Borel probability measure on S^{n-1}. There exists $A \in \mathrm{GL}(n)$ such that

$$
\int_{S^{n-1}} \frac{A u}{\|A u\|} \otimes \frac{A u}{\|A u\|} d \mu(u)=\frac{1}{n} \operatorname{Id}_{n}
$$

iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n}$ for any $L \neq\{0\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Isotropic position of a measure on S^{n-1}

Theorem (BLYZ)
Let μ be a Borel probability measure on S^{n-1}. There exists
$A \in \mathrm{GL}(n)$ such that

$$
\int_{S^{n-1}} \frac{A u}{\|A u\|} \otimes \frac{A u}{\|A u\|} d \mu(u)=\frac{1}{n} \operatorname{Id}_{n}
$$

iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n}$ for any $L \neq\{0\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

- Sufficiency if $\mu\left(L \cap S^{n-1}\right)<\frac{\operatorname{dim} L}{n}$ is due to Klartag (supergaussian marginals of probability measures on \mathbb{R}^{n})
- Discrete case is due to Carlen-Lieb-Loss (extremals for the Brascamp-Lieb inequality). See also
Benneth\&Carbery\&Christ\&Tao, Carlen\&Cordero-Erausquin

Logarithmic Brunn-Minkowski inequality

 $\alpha \in[0,1], o \in \operatorname{int} K, \operatorname{int} C$$$
\begin{aligned}
& \alpha K+0(1-\alpha) C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{\alpha} h_{C}(u)^{1-\alpha} \forall u \in S^{n-1}\right\} \\
& \alpha K+0(1-\alpha) C \subset \alpha K+(1-\alpha) C
\end{aligned}
$$

Logarithmic Brunn-Minkowski inequality

 $\alpha \in[0,1], o \in \operatorname{int} K, \operatorname{int} C$$\alpha K+0(1-\alpha) C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{\alpha} h_{C}(u)^{1-\alpha} \forall u \in S^{n-1}\right\}$
$\alpha K+0(1-\alpha) C \subset \alpha K+(1-\alpha) C$
Conjecture (Logarithmic Brunn-Minkowski conjecture)
$\alpha \in(0,1), K, C$ are o-symmetric

$$
V(\alpha K+0(1-\alpha) C) \geq V(K)^{\alpha} V(C)^{1-\alpha}
$$

with equality iff K and C have dilated direct summands.

Logarithmic Brunn-Minkowski inequality

 $\alpha \in[0,1], o \in \operatorname{int} K, \operatorname{int} C$$\alpha K+0(1-\alpha) C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{\alpha} h_{C}(u)^{1-\alpha} \forall u \in S^{n-1}\right\}$
$\alpha K+o(1-\alpha) C \subset \alpha K+(1-\alpha) C$
Conjecture (Logarithmic Brunn-Minkowski conjecture)
$\alpha \in(0,1), K, C$ are o-symmetric

$$
V(\alpha K+o(1-\alpha) C) \geq V(K)^{\alpha} V(C)^{1-\alpha}
$$

with equality iff K and C have dilated direct summands.
Conjecture (Logarithmic Minkowski conjecture)
For o-symmetric K, C, if $V(K)=V(C)$, then

$$
\int_{S^{n-1}} \log h_{C} d V_{K} \geq \int_{S^{n-1}} \log h_{K} d V_{K},
$$

with equality iff K and C have dilated direct summands.

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume
- $n=2$ for volume (BLYZ)

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume
- $n=2$ for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás\&Leader and Cordero-Erausquin\&Fradelizi\&Maurey on coordinatewise product)

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume
- $n=2$ for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás\&Leader and Cordero-Erausquin\&Fradelizi\&Maurey on coordinatewise product)
- K and C are dilates for the Gaussian measure (Cordero-Erausquin\&Fradelizi\&Maurey on B-conjecture)

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume
- $n=2$ for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás\&Leader and Cordero-Erausquin\&Fradelizi\&Maurey on coordinatewise product)
- K and C are dilates for the Gaussian measure (Cordero-Erausquin\&Fradelizi\&Maurey on B-conjecture)
- Holds for the volume in $\mathbb{R}^{2 n}=\mathbb{C}^{n}$ if K and C are complex convex bodies (Rotem)

About the logarithmic Brunn-Minkowski conjecture

- Interesting for any log-concave measure (like Gaussian) instead of volume
- $n=2$ for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás\&Leader and Cordero-Erausquin\&Fradelizi\&Maurey on coordinatewise product)
- K and C are dilates for the Gaussian measure (Cordero-Erausquin\&Fradelizi\&Maurey on B-conjecture)
- Holds for the volume in $\mathbb{R}^{2 n}=\mathbb{C}^{n}$ if K and C are complex convex bodies (Rotem)
- If it holds for the volume, it does hold for any log-concave measure (Saroglou)

Alexandrov's problem

Alexandrov's Integral Curvature, 1940
For $o \in \operatorname{int} K$ and $\omega \subset S^{n-1}$,

$$
C_{K}(\omega)=\mathcal{H}^{n-1}\left(\nu_{K} \circ r_{K}(\omega)\right)
$$

where for $u \in S^{n-1}, r_{K}(u)=\varrho_{K}(u) u \in \partial K$ for $\varrho_{K}(u)>0$.
Theorem (Alexandrov)
For a finite Borel measure μ on $S^{n-1}, \mu=C_{K}$ if and only if

- $\mu\left(S^{n-1}\right)=\mathcal{H}^{n-1}\left(S^{n-1}\right)$,
- for any proper closed convex $\omega \subset S^{n-1}$, we have

$$
\mu\left(S^{n-1} \backslash \omega\right)>\mathcal{H}^{n-1}\left(\omega^{*}\right)
$$

Alexandrov's problem

Alexandrov's Integral Curvature, 1940
For $o \in \operatorname{int} K$ and $\omega \subset S^{n-1}$,

$$
C_{K}(\omega)=\mathcal{H}^{n-1}\left(\nu_{K} \circ r_{K}(\omega)\right)
$$

where for $u \in S^{n-1}, r_{K}(u)=\varrho_{K}(u) u \in \partial K$ for $\varrho_{K}(u)>0$.
Theorem (Alexandrov)
For a finite Borel measure μ on $S^{n-1}, \mu=C_{K}$ if and only if

- $\mu\left(S^{n-1}\right)=\mathcal{H}^{n-1}\left(S^{n-1}\right)$,
- for any proper closed convex $\omega \subset S^{n-1}$, we have

$$
\mu\left(S^{n-1} \backslash \omega\right)>\mathcal{H}^{n-1}\left(\omega^{*}\right)
$$

Theorem (B,Yiming, Zhang, 2016)
There is a proof where one minimizes

$$
\int_{S^{n-1}} \log h_{K}(u) d \mu(u)-\int_{S^{n-1}} \log \varrho_{K}(u) d u
$$

L_{p} surface area measures

L_{p} surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$
d S_{K, p}=h_{K}^{1-p} d S_{K}=n h_{K}^{-p} d V_{K}
$$

Examples

- $S_{K, 1}=S_{K}$
- $S_{K, 0}=n V_{K}$
- $S_{K,-n}$ related to the $\operatorname{SL}(n)$ invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))
If $p>1, p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu=S_{K, p}$.

Theorem (Zhu (2015))

If $p<1$, then any discrete measure μ on S^{n-1} not concentrated on any closed hemisphere whose support is in general position is of the form $\mu=S_{K, p}$.

Differential equation for L_{p} surface area measures

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Theorem (Chou-Wang (2005))
If $-n<p<1, f$ is bounded and its infimum is positive, then $f d \mathcal{H}^{n-1}=S_{K, p}$.
Remak There must be conditions on f if $p=-n$

Differential equation for L_{p} surface area measures

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Theorem (Chou-Wang (2005))
If $-n<p<1, f$ is bounded and its infimum is positive, then $f d \mathcal{H}^{n-1}=S_{K, p}$.
Remak There must be conditions on f if $p=-n$

Theorem (B-Trinh (2017))
If $n=2,0<p<1$, and f is bounded, then $f d \mathcal{H}^{n-1}=S_{K, p}$.

Differential equation for L_{p} surface area measures

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h l\right)=f
$$

Theorem (Chou-Wang (2005))
If $-n<p<1, f$ is bounded and its infimum is positive, then
$f d \mathcal{H}^{n-1}=S_{K, p}$.
Remak There must be conditions on f if $p=-n$

Theorem (B-Trinh (2017))
If $n=2,0<p<1$, and f is bounded, then $f d \mathcal{H}^{n-1}=S_{K, p}$.

General Ideas to solve L_{p}-Minkowski problem for given $p>1, \mu$

- Minimize $\int_{S^{n-1}} h_{K}^{p} d \mu$ under the condition $V(K)=1$
- Weak approximation by discrete measures (polytopes)

Dual curvature measures

Dual curvature measures
Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$
\widetilde{C}_{K, q}\left(\nu_{K} \circ r_{K}(\omega)\right)=\int_{\omega} \varrho^{q}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

Most interesting if $q \in[0, n]$
Examples

- $\widetilde{C}_{K, 0}=C_{K^{*}}$ (Alexandrov's Integral Curvature)
- $\widetilde{C}_{K, n}=n V_{K}$ (cone volume measure)

Dual curvature measures

Dual curvature measures
Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$
\widetilde{C}_{K, q}\left(\nu_{K} \circ r_{K}(\omega)\right)=\int_{\omega} \varrho^{q}(u) d u \quad \text { for } \omega \subset S^{n-1}
$$

Most interesting if $q \in[0, n]$
Examples

- $\widetilde{C}_{K, 0}=C_{K^{*}}$ (Alexandrov's Integral Curvature)
- $\widetilde{C}_{K, n}=n V_{K}$ (cone volume measure)

Theorem (Zhao (2016), B-Henk-Hassen (2016))
$0<q<n$, and μ is finite even non-trival Borel measure on S^{n-1}.
Then $\mu=\widetilde{C}_{K, q}$ for o-symmetric K iff for every non-trivial L,

$$
\mu\left(L \cap S^{n-1}\right)<\frac{\operatorname{dim} L}{q} \cdot \mu\left(S^{n-1}\right)
$$

L_{p} Dual curvature measures

Lutwak, Yang, Zhang, 2016 (manuscript), $p, q \in \mathbb{R}$

$$
d \widetilde{C}_{K, p, q}=h_{K}^{-p} d \widetilde{C}_{K, q}
$$

Examples

- $\widetilde{C}_{K, p, n}=S_{K, p}$
- $\widetilde{C}_{K, 0, q}=\widetilde{C}_{K, q}$

L_{p} Dual curvature measures

Lutwak, Yang, Zhang, 2016 (manuscript), $p, q \in \mathbb{R}$

$$
d \widetilde{C}_{K, p, q}=h_{K}^{-p} d \widetilde{C}_{K, q}
$$

Examples

- $\widetilde{C}_{K, p, n}=S_{K, p}$
- $\widetilde{C}_{K, 0, q}=\widetilde{C}_{K, q}$

Dual Intrinsic Volume $q>0$

$$
V_{q}(K)=\frac{1}{n} \int_{S^{n-1}} \varrho_{K}^{q} d \mathcal{H}^{n-1}
$$

An idea to solve L_{p}-dual Minkowski problem for $p, q>1, \mu$

- Minimize $\int_{S^{n-1}} h_{K}^{p} d \mu$ under the condition $V_{q}(K)=1$
- Weak approximation by discrete measures (polytopes)

