Változatok a Minkowski problémára

ifj Böröczky Károly

Szeged, 2017. szeptember 15.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = o. \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = o. \tag{1}$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa : S^{n-1} \to \mathbb{R}_+$ satisfying (1), find C^2_+ hypersurface $X \subset \mathbb{R}^n$ such that $\kappa(u_x)$ is the Gauss curvature at $x \in X$.

Reconstruction of smooth closed convex surfaces from Gauss curvature

- X is a compact C^2_+ hypersurface in \mathbb{R}^n
- u_x is exterior unit normal at $x \in X$
- $\kappa_X(u_x) > 0$ is the Gauss curvature

Observation (Minkowski)

$$\int_{S^{n-1}} u \cdot \kappa_X(u)^{-1} \, du = o. \tag{1}$$

Minkowski problem (E.g. Inverse problem of short wave diffraction) For continuous $\kappa : S^{n-1} \to \mathbb{R}_+$ satisfying (1), find C_+^2 hypersurface $X \subset \mathbb{R}^n$ such that $\kappa(u_x)$ is the Gauss curvature at $x \in X$. Monge-Ampere type differential equation on S^{n-1} :

$$\det(\nabla^2 h + h I) = \kappa^{-1}$$

where $h(u) = \max\{\langle u, x \rangle : x \in X\}$ is the support function.

Notation

- K, C convex bodies in ℝⁿ (convex compact with non-empty interior)
- V(K) volume (Lebesgue measure)
- \mathcal{H}^{n-1} (n-1)-Hausdorff measure
- ▶ h_K support function of K $h_K(u) = \max\{\langle u, x \rangle : x \in K\}$ for $u \in \mathbb{R}^n$

- L linear subspace, $L \neq \{o\}, \mathbb{R}^n$
- μ non-trivial Borel measure on S^{n-1}

Surface area measure

 S_K - surface area measure of K on S^{n-1}

► $\nu_{\mathcal{K}}(x) = \{u \in S^{n-1} : h_{\mathcal{K}}(u) = \langle x, u \rangle\}$ for $x \in \partial \mathcal{K}$ (all possible exterior unit normals at x)

• For $\Xi \subset \partial K$, $S_{\mathcal{K}}(\nu_{\mathcal{K}}(\Xi)) = \mathcal{H}^{n-1}(\Xi)$

Surface area measure

 S_K - surface area measure of K on S^{n-1}

- ► $\nu_{\mathcal{K}}(x) = \{u \in S^{n-1} : h_{\mathcal{K}}(u) = \langle x, u \rangle\}$ for $x \in \partial \mathcal{K}$ (all possible exterior unit normals at x)
- For $\Xi \subset \partial K$, $S_{\mathcal{K}}(\nu_{\mathcal{K}}(\Xi)) = \mathcal{H}^{n-1}(\Xi)$
- ▶ ∂K is C^2_+ and $\kappa(u_x)$ Gauss curvature at $x \in \partial K$, $u_x = \nu_K(x)$,

$$\mathcal{S}_{\mathcal{K}}(\omega) = \int_{\omega} \kappa^{-1}(u) \, du \quad ext{ for } \omega \subset \mathcal{S}^{n-1}.$$

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$S_{\mathcal{K}}(\{u_i\})=\mathcal{H}^{n-1}(F_i).$$

Surface area measure

 S_K - surface area measure of K on S^{n-1}

- ► $\nu_{\mathcal{K}}(x) = \{u \in S^{n-1} : h_{\mathcal{K}}(u) = \langle x, u \rangle\}$ for $x \in \partial \mathcal{K}$ (all possible exterior unit normals at x)
- For $\Xi \subset \partial K$, $S_{\mathcal{K}}(\nu_{\mathcal{K}}(\Xi)) = \mathcal{H}^{n-1}(\Xi)$
- ▶ ∂K is C^2_+ and $\kappa(u_x)$ Gauss curvature at $x \in \partial K$, $u_x = \nu_K(x)$,

$$\mathcal{S}_{\mathcal{K}}(\omega) = \int_{\omega} \kappa^{-1}(u) \, du \quad ext{ for } \omega \subset \mathcal{S}^{n-1}.$$

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$S_{\mathcal{K}}(\{u_i\})=\mathcal{H}^{n-1}(F_i).$$

Properties

• $S_K(S^{n-1})$ =surface area of K

$$\blacktriangleright V(K) = \frac{1}{n} \int_{S^{n-1}} h_K \, dS_K$$

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg) $\mu = S_K$ for some unique convex body K (up to translation) iff 1. $\mu(L \cap S^{n-1}) < \mu(S^{n-1})$ for any L with dim L = n - 12. $\int_{S^{n-1}} u \, d\mu(u) = o$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg) $\mu = S_K$ for some unique convex body K (up to translation) iff 1. $\mu(L \cap S^{n-1}) < \mu(S^{n-1})$ for any L with dim L = n - 12. $\int_{S^{n-1}} u \, d\mu(u) = o$ If μ is even, then the first condition is enough

Minkowski problem

"Minkowski problem" (Minkowski, Alexandrov, Nirenberg) $\mu = S_K$ for some unique convex body K (up to translation) iff 1. $\mu(L \cap S^{n-1}) < \mu(S^{n-1})$ for any L with dim L = n - 12. $\int_{S^{n-1}} u \, d\mu(u) = o$ If μ is even, then the first condition is enough

To solve the Minkowski problem,

- Minimize $\int_{S^{n-1}} h_C d\mu$ under the condition V(C) = 1
- Uniqueness comes from uniqueness in the Minkowski inequality

$$\begin{aligned} \alpha \mathcal{K} + \beta \mathcal{C} &= \{ \alpha x + \beta y : x \in \mathcal{K}, \ y \in \mathcal{C} \} \\ &= \{ x \in \mathbb{R}^n : \langle u, x \rangle \le \alpha h_{\mathcal{K}}(u) + \beta h_{\mathcal{C}}(u) \ \forall u \in S^{n-1} \} \end{aligned}$$

$$\begin{aligned} \alpha \mathcal{K} + \beta \mathcal{C} &= \{ \alpha x + \beta y : x \in \mathcal{K}, \ y \in \mathcal{C} \} \\ &= \{ x \in \mathbb{R}^n : \langle u, x \rangle \leq \alpha h_{\mathcal{K}}(u) + \beta h_{\mathcal{C}}(u) \ \forall u \in S^{n-1} \} \end{aligned}$$

Brunn-Minkowski inequality $\alpha, \beta > 0$

$$V(\alpha K + \beta C)^{\frac{1}{n}} \ge \alpha V(K)^{\frac{1}{n}} + \beta V(C)^{\frac{1}{n}}$$

with equality iff K and C are homothetic.

Remark Yields the isoperimetric inequality if C is the unit ball

$$\begin{aligned} \alpha \mathcal{K} + \beta \mathcal{C} &= \{ \alpha x + \beta y : x \in \mathcal{K}, \ y \in \mathcal{C} \} \\ &= \{ x \in \mathbb{R}^n : \langle u, x \rangle \leq \alpha h_{\mathcal{K}}(u) + \beta h_{\mathcal{C}}(u) \ \forall u \in S^{n-1} \} \end{aligned}$$

Brunn-Minkowski inequality $\alpha, \beta > 0$

$$V(\alpha K + \beta C)^{\frac{1}{n}} \ge \alpha V(K)^{\frac{1}{n}} + \beta V(C)^{\frac{1}{n}}$$

with equality iff K and C are homothetic. Remark Yields the isoperimetric inequality if C is the unit ball

Minkowski inequality If V(K) = V(C), then

$$\int_{S^{n-1}} h_C \, dS_K \geq \int_{S^{n-1}} h_K \, dS_K,$$

with equality iff K and C are translates.

$$\begin{aligned} \alpha \mathcal{K} + \beta \mathcal{C} &= \{ \alpha x + \beta y : x \in \mathcal{K}, \ y \in \mathcal{C} \} \\ &= \{ x \in \mathbb{R}^n : \langle u, x \rangle \leq \alpha h_{\mathcal{K}}(u) + \beta h_{\mathcal{C}}(u) \ \forall u \in S^{n-1} \} \end{aligned}$$

Brunn-Minkowski inequality $\alpha, \beta > 0$

$$V(\alpha K + \beta C)^{\frac{1}{n}} \ge \alpha V(K)^{\frac{1}{n}} + \beta V(C)^{\frac{1}{n}}$$

with equality iff K and C are homothetic. Remark Yields the isoperimetric inequality if C is the unit ball

Minkowski inequality If V(K) = V(C), then

$$\int_{S^{n-1}} h_C \, dS_K \geq \int_{S^{n-1}} h_K \, dS_K,$$

with equality iff K and C are translates.

 $dV_K = \frac{1}{n} h_K dS_K$ - cone volume measure on S^{n-1} if $o \in intK$ (Gromov, Milman, 1986)

▶ K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$V_{\mathcal{K}}(\{u_i\}) = \frac{h_{\mathcal{K}}(u_i)\mathcal{H}^{n-1}(F_i)}{n} = V(\operatorname{conv}\{o, F_i\}).$$

・ロト・日本・モート モー うへぐ

 $dV_K = \frac{1}{n} h_K dS_K$ - cone volume measure on S^{n-1} if $o \in intK$ (Gromov, Milman, 1986)

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$V_{\mathcal{K}}(\{u_i\}) = \frac{h_{\mathcal{K}}(u_i)\mathcal{H}^{n-1}(F_i)}{n} = V(\operatorname{conv}\{o, F_i\}).$$

・ロト・日本・モート モー うへぐ

•
$$\omega \subset S^{n-1}$$

 $V_{\mathcal{K}}(\omega) = \int_{\omega} \frac{h_{\mathcal{K}}(u)}{n} \, dS_{\mathcal{K}}(u).$

 $dV_K = \frac{1}{n} h_K dS_K$ - cone volume measure on S^{n-1} if $o \in intK$ (Gromov, Milman, 1986)

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$V_{\mathcal{K}}(\{u_i\}) = \frac{h_{\mathcal{K}}(u_i)\mathcal{H}^{n-1}(F_i)}{n} = V(\operatorname{conv}\{o, F_i\}).$$

•
$$\omega \subset S^{n-1}$$

 $V_{\mathcal{K}}(\omega) = \int_{\omega} \frac{h_{\mathcal{K}}(u)}{n} \, dS_{\mathcal{K}}(u).$

 $\blacktriangleright V_{\mathcal{K}}(S^{n-1}) = V(\mathcal{K}).$

 $dV_K = \frac{1}{n} h_K dS_K$ - cone volume measure on S^{n-1} if $o \in int K$ (Gromov, Milman, 1986)

• K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$V_{\mathcal{K}}(\{u_i\}) = \frac{h_{\mathcal{K}}(u_i)\mathcal{H}^{n-1}(F_i)}{n} = V(\operatorname{conv}\{o, F_i\}).$$

•
$$\omega \subset S^{n-1}$$

 $V_{\mathcal{K}}(\omega) = \int_{\omega} \frac{h_{\mathcal{K}}(u)}{n} \, dS_{\mathcal{K}}(u).$

 $\blacktriangleright V_{K}(S^{n-1}) = V(K).$

Monge-Ampere type differential equation on S^{n-1} for $h = h_K$ if μ has a density function f:

$$h\det(\nabla^2 h + hI) = f$$

Theorem (B, Lutwak, Yang, Zhang) Let μ be an even Borel measure on S^{n-1} . $\mu = V_K$ for some o-symmetric convex body K iff (i) $\mu(L \cap S^{n-1}) \leq \frac{\dim L}{n} \mu(S^{n-1})$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then supp $\mu \subset L \cup L'$ for some complementary L'

Theorem (B, Lutwak, Yang, Zhang) Let μ be an even Borel measure on S^{n-1} . $\mu = V_K$ for some o-symmetric convex body K iff (i) $\mu(L \cap S^{n-1}) \leq \frac{\dim L}{n} \mu(S^{n-1})$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then supp $\mu \subset L \cup L'$ for some complementary L'

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong

Theorem (B, Lutwak, Yang, Zhang) Let μ be an even Borel measure on S^{n-1} . $\mu = V_K$ for some o-symmetric convex body K iff (i) $\mu(L \cap S^{n-1}) \leq \frac{\dim L}{n} \mu(S^{n-1})$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L'$ for some complementary L'

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong Idea for sufficiency: Minimize $\int_{S^{n-1}} \log h_C d\mu$ assuming V(C) = 1

Theorem (B, Lutwak, Yang, Zhang) Let μ be an even Borel measure on S^{n-1} . $\mu = V_K$ for some o-symmetric convex body K iff (i) $\mu(L \cap S^{n-1}) \leq \frac{\dim L}{n} \mu(S^{n-1})$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L'$ for some complementary L'

Necessity for polytopes: Henk-Schuermann-Wills, He-Leng, Xiong Idea for sufficiency: Minimize $\int_{S^{n-1}} \log h_C d\mu$ assuming V(C) = 1

Conjecture (Uniqueness)

 $V_K = V_C$ for o-symmetric convex bodies K and C with V(K) = V(C) iff K and C have dilated direct summands; namely, $K = K_1 \oplus \ldots \oplus K_m$ and $C = C_1 \oplus \ldots \oplus C_m$ with $K_i = \lambda_i C_i$ for $\lambda_1, \ldots, \lambda_m > 0$.

Cone volume measure for certain non-centrally symmetric bodies

Theorem (B, Henk, Linke) If the centroid of K is the origin, then (i) $V_K(L \cap S^{n-1}) \leq \frac{\dim L}{n} \cdot V(K)$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then K = M + M' where $M \subset L^{\perp}$, dim $M = \dim L^{\perp}$, dim $M' = \dim L$

Remark (i) and (ii) does not charactherize V_K if the centroid of K is the origin

Cone volume measure for certain non-centrally symmetric bodies

Theorem (B, Henk, Linke) If the centroid of K is the origin, then (i) $V_K(L \cap S^{n-1}) \leq \frac{\dim L}{n} \cdot V(K)$ for any $L \neq \{o\}, \mathbb{R}^n$ (ii) If equality holds for some L, then K = M + M' where $M \subset L^{\perp}, \dim M = \dim L^{\perp}, \dim M' = \dim L$

Remark (i) and (ii) does not charactherize V_K if the centroid of K is the origin

Theorem (Zhu)

If μ is a discrete Borel measure on S^{n-1} such that any different $u_1, \ldots, u_n \in \operatorname{supp} \mu$ are independent, then $\mu = V_K$ for some polytope K

Isotropic position of a measure on S^{n-1}

Theorem (BLYZ)

Let μ be a Borel probability measure on S^{n-1} . There exists $A \in GL(n)$ such that

$$\int_{S^{n-1}} \frac{Au}{\|Au\|} \otimes \frac{Au}{\|Au\|} \, d\mu(u) = \frac{1}{n} \operatorname{Id}_n$$

iff

Isotropic position of a measure on S^{n-1}

Theorem (BLYZ)

Let μ be a Borel probability measure on S^{n-1} . There exists $A \in GL(n)$ such that

$$\int_{S^{n-1}} \frac{Au}{\|Au\|} \otimes \frac{Au}{\|Au\|} \, d\mu(u) = \frac{1}{n} \operatorname{Id}_n$$

iff

- Sufficiency if µ(L ∩ Sⁿ⁻¹) < dim L/n is due to Klartag (supergaussian marginals of probability measures on ℝⁿ)
- Discrete case is due to Carlen-Lieb-Loss (extremals for the Brascamp-Lieb inequality). See also Benneth&Carbery&Christ&Tao, Carlen&Cordero-Erausquin

Logarithmic Brunn-Minkowski inequality $\alpha \in [0, 1], o \in int K, int C$

 $\alpha K +_0 (1 - \alpha)C = \{x \in \mathbb{R}^n : \langle u, x \rangle \le h_K(u)^\alpha h_C(u)^{1 - \alpha} \ \forall u \in S^{n-1}\}$

 $\alpha K +_0 (1 - \alpha) C \subset \alpha K + (1 - \alpha) C$

Logarithmic Brunn-Minkowski inequality $\alpha \in [0, 1], o \in int K, int C$

 $\alpha \mathcal{K} +_0 (1-\alpha)\mathcal{C} = \{x \in \mathbb{R}^n : \langle u, x \rangle \leq h_{\mathcal{K}}(u)^{\alpha} h_{\mathcal{C}}(u)^{1-\alpha} \, \forall u \in S^{n-1}\}$

$$\alpha K +_0 (1-\alpha)C \subset \alpha K + (1-\alpha)C$$

Conjecture (Logarithmic Brunn-Minkowski conjecture) $\alpha \in (0, 1), K, C \text{ are o-symmetric}$

$$V(\alpha K +_0 (1 - \alpha)C) \ge V(K)^{\alpha}V(C)^{1-\alpha}$$

with equality iff K and C have dilated direct summands.

Logarithmic Brunn-Minkowski inequality $\alpha \in [0, 1], o \in int K, int C$

 $\alpha \mathcal{K} +_0 (1-\alpha)\mathcal{C} = \{x \in \mathbb{R}^n : \langle u, x \rangle \leq h_{\mathcal{K}}(u)^{\alpha} h_{\mathcal{C}}(u)^{1-\alpha} \, \forall u \in S^{n-1}\}$

$$\alpha K +_0 (1-\alpha)C \subset \alpha K + (1-\alpha)C$$

Conjecture (Logarithmic Brunn-Minkowski conjecture) $\alpha \in (0, 1), K, C$ are o-symmetric

$$V(\alpha K +_0 (1 - \alpha)C) \ge V(K)^{\alpha}V(C)^{1-\alpha}$$

with equality iff K and C have dilated direct summands.

Conjecture (Logarithmic Minkowski conjecture) For o-symmetric K, C, if V(K) = V(C), then

$$\int_{S^{n-1}} \log h_C \, dV_K \geq \int_{S^{n-1}} \log h_K \, dV_K,$$

with equality iff K and C have dilated direct summands.

 Interesting for any log-concave measure (like Gaussian) instead of volume

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Interesting for any log-concave measure (like Gaussian) instead of volume

• n = 2 for volume (BLYZ)

- Interesting for any log-concave measure (like Gaussian) instead of volume
- n = 2 for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás&Leader and Cordero-Erausquin&Fradelizi&Maurey on coordinatewise product)

- Interesting for any log-concave measure (like Gaussian) instead of volume
- n = 2 for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás&Leader and Cordero-Erausquin&Fradelizi&Maurey on coordinatewise product)

 K and C are dilates for the Gaussian measure (Cordero-Erausquin&Fradelizi&Maurey on B-conjecture)

- Interesting for any log-concave measure (like Gaussian) instead of volume
- n = 2 for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás&Leader and Cordero-Erausquin&Fradelizi&Maurey on coordinatewise product)
- K and C are dilates for the Gaussian measure (Cordero-Erausquin&Fradelizi&Maurey on B-conjecture)
- ► Holds for the volume in R²ⁿ = Cⁿ if K and C are complex convex bodies (Rotem)

- Interesting for any log-concave measure (like Gaussian) instead of volume
- n = 2 for volume (BLYZ)
- K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás&Leader and Cordero-Erausquin&Fradelizi&Maurey on coordinatewise product)
- K and C are dilates for the Gaussian measure (Cordero-Erausquin&Fradelizi&Maurey on B-conjecture)
- ► Holds for the volume in R²ⁿ = Cⁿ if K and C are complex convex bodies (Rotem)
- If it holds for the volume, it does hold for any log-concave measure (Saroglou)

Alexandrov's problem

Alexandrov's Integral Curvature, 1940

For $o \in \operatorname{int} K$ and $\omega \subset S^{n-1}$,

$$C_{\mathcal{K}}(\omega) = \mathcal{H}^{n-1}(\nu_{\mathcal{K}} \circ r_{\mathcal{K}}(\omega))$$

where for $u \in S^{n-1}$, $r_{\kappa}(u) = \varrho_{\kappa}(u)u \in \partial K$ for $\varrho_{\kappa}(u) > 0$. Theorem (Alexandrov)

For a finite Borel measure μ on S^{n-1} , $\mu = C_K$ if and only if

•
$$\mu(S^{n-1}) = \mathcal{H}^{n-1}(S^{n-1}),$$

• for any proper closed convex $\omega \subset S^{n-1}$, we have

$$\mu(S^{n-1}\setminus\omega)>\mathcal{H}^{n-1}(\omega^*).$$

Alexandrov's problem

Alexandrov's Integral Curvature, 1940

For $o \in \operatorname{int} K$ and $\omega \subset S^{n-1}$,

$$C_{\mathcal{K}}(\omega) = \mathcal{H}^{n-1}(\nu_{\mathcal{K}} \circ r_{\mathcal{K}}(\omega))$$

where for $u \in S^{n-1}$, $r_{\mathcal{K}}(u) = \varrho_{\mathcal{K}}(u)u \in \partial \mathcal{K}$ for $\varrho_{\mathcal{K}}(u) > 0$. Theorem (Alexandrov)

For a finite Borel measure μ on S^{n-1} , $\mu = C_K$ if and only if

•
$$\mu(S^{n-1}) = \mathcal{H}^{n-1}(S^{n-1}),$$

• for any proper closed convex $\omega \subset S^{n-1}$, we have

$$\mu(S^{n-1}\setminus\omega)>\mathcal{H}^{n-1}(\omega^*).$$

Theorem (B,Yiming, Zhang, 2016) There is a proof where one minimizes

$$\int_{S^{n-1}} \log h_{\mathcal{K}}(u) \, d\mu(u) - \int_{S^{n-1}} \log \varrho_{\mathcal{K}}(u) \, du.$$

L_p surface area measures

 L_p surface area measures (Firey, Lutwak 1990) $p \in \mathbb{R}$

$$dS_{K,p} = h_K^{1-p} \, dS_K = nh_K^{-p} \, dV_K$$

Examples

- $S_{K,1} = S_K$
- $S_{K,0} = nV_K$

• $S_{K,-n}$ related to the SL(n) invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Theorem (Chou-Wang (2005), Hug-LYZ (2006))

If p > 1, $p \neq n$, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$.

Theorem (Zhu (2015))

If p < 1, then any discrete measure μ on S^{n-1} not concentrated on any closed hemisphere whose support is in general position is of the form $\mu = S_{K,p}$. Differential equation for L_p surface area measures

$$h^{1-p}\det(\nabla^2 h + hI) = f$$

Theorem (Chou-Wang (2005)) If -n , f is bounded and its infimum is positive, then $f <math>d\mathcal{H}^{n-1} = S_{K,p}$.

Remak There must be conditions on f if p = -n

Differential equation for L_p surface area measures

$$h^{1-p}\det(\nabla^2 h + hI) = f$$

Theorem (Chou-Wang (2005)) If -n , f is bounded and its infimum is positive, then $f <math>d\mathcal{H}^{n-1} = S_{K,p}$.

Remak There must be conditions on f if p = -n

Theorem (B-Trinh (2017)) If n = 2, 0 , and <math>f is bounded, then $f d\mathcal{H}^{n-1} = S_{K,p}$.

Differential equation for L_p surface area measures

$$h^{1-p}\det(\nabla^2 h + hI) = f$$

Theorem (Chou-Wang (2005)) If -n , f is bounded and its infimum is positive, then $f <math>d\mathcal{H}^{n-1} = S_{K,p}$.

Remak There must be conditions on *f* if p = -n

Theorem (B-Trinh (2017)) If n = 2, 0 , and <math>f is bounded, then $f d\mathcal{H}^{n-1} = S_{K,p}$.

General Ideas to solve L_p -Minkowski problem for given p>1, μ

- Minimize $\int_{S^{n-1}} h_K^p d\mu$ under the condition V(K) = 1
- Weak approximation by discrete measures (polytopes)

Dual curvature measures

Dual curvature measures

Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$\widetilde{\mathcal{C}}_{\mathcal{K},q}(
u_{\mathcal{K}}\circ r_{\mathcal{K}}(\omega))=\int_{\omega}arrho^q(u)\,du\quad ext{ for }\omega\subset S^{n-1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Most interesting if $q \in [0, n]$ Examples

•
$$\widetilde{C}_{K,0} = C_{K^*}$$
 (Alexandrov's Integral Curvature)

•
$$\widetilde{C}_{K,n} = nV_K$$
 (cone volume measure)

Dual curvature measures

Dual curvature measures

Huang, Lutwak, Yang, Zhang, 2016 (Acta Mathematica)

$$\widetilde{C}_{K,q}(
u_K\circ r_K(\omega))=\int_\omega arrho^q(u)\,du\quad ext{ for }\omega\subset S^{n-1}$$

Most interesting if $q \in [0, n]$ Examples

- $\widetilde{C}_{K,0} = C_{K^*}$ (Alexandrov's Integral Curvature)
- $\widetilde{C}_{K,n} = nV_K$ (cone volume measure)

Theorem (Zhao (2016), B-Henk-Hassen (2016)) 0 < q < n, and μ is finite even non-trival Borel measure on S^{n-1} . Then $\mu = \widetilde{C}_{K,q}$ for o-symmetric K iff for every non-trivial L,

$$\mu(L\cap S^{n-1})<\frac{\dim L}{q}\cdot \mu(S^{n-1}).$$

L_p Dual curvature measures

Lutwak, Yang, Zhang, 2016 (manuscript), $p, q \in \mathbb{R}$

$$d\widetilde{C}_{K,p,q} = h_K^{-p} \, d\widetilde{C}_{K,q}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples

•
$$\widetilde{C}_{K,p,n} = S_{K,p}$$

• $\widetilde{C}_{K,0,q} = \widetilde{C}_{K,q}$

L_p Dual curvature measures

Lutwak, Yang, Zhang, 2016 (manuscript), $p,q \in \mathbb{R}$

$$d\widetilde{C}_{K,p,q} = h_K^{-p} \, d\widetilde{C}_{K,q}$$

Examples

$$\widetilde{C}_{K,p,n} = S_{K,p}$$

$$\widetilde{C}_{K,0,q} = \widetilde{C}_{K,q}$$

Dual Intrinsic Volume q > 0

$$V_q(K) = \frac{1}{n} \int_{S^{n-1}} \varrho_K^q \, d\mathcal{H}^{n-1}$$

An idea to solve L_p -dual Minkowski problem for $p,q>1,~\mu$

- Minimize $\int_{S^{n-1}} h_K^p d\mu$ under the condition $V_q(K) = 1$
- Weak approximation by discrete measures (polytopes)