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1 Introduction

Let E¢ denote the d-dimensional Euclidean space. A d-dimensional convex body K is a compact
convex subset of E¢ with nonempty interior. Moreover, K is o-symmetric if K = —K. The Minkowski
sum or simply the vector sum of two convex bodies K, L C E is defined by

K+L={k+1l:keK,IleL}.

A homothetic copy, or simply a homothet, of K is a set of the form M = AK + x, where A is
a nonzero real number and x € E4. If A > 0, then M is said to be a positive homothet and if in
addition, A < 1, we have a smaller positive homothet of K. Let C? denote a d-dimensional cube, BY
a d-dimensional ball, A¢ a d-simplex and ¢ a line segment (or more precisely, an affine image of
any of these convex bodies). We use the symbol .# ¢ for the metric space of d-dimensional convex
bodies under the (multiplicative) Banach-Mazur distance dpy(+,-). That is, for any K,L € % &

dgy(K,L)=inf{6 > 1:a€K,beLL-bCT(K—a)C S(L—b)},

= 05\3’(1)161‘6 the infimum is taken over all invertible linear operators T : E? — E4 [29].



1.1 The Boltyanski-Hadwiger illumination
conjecture (1960)

The famous Hadwiger Covering Conjecture [13,14,20] — also called the Gohberg-Markus-
Hadwiger Covering Conjecture — states that any K € J#, can be covered by 2¢ of its smaller
positive homothetic copies with 2¢ homothets needed only if X is an affine d-cube. This conjecture
appears 1n several equivalent forms one of which we discuss here. Boltyanski [7] and Hadwiger
[15] introduced two notions of illumination of a convex body, the former being ‘illumination by
directions’ while the latter being ‘illumination by points’. The two notions are actually equivalent
[7] and K 1s said to be illuminated if all points on the boundary of K are illuminated (in either
sense). The illumination number 1(K) of K is the smallest n for which K can be illuminated by n
points/directions. Furthermore, Boltyanski [7,8] showed that /(K) = n if and only if the smallest
number of smaller positive homothets of K that can cover K is n. Thus the Hadwiger Covering
Conjecture can be reformulated as the Boltyanski-Hadwiger Illumination Conjecture, which states
that for any d-dimensional convex body K we have I(K) < 2%, and I(K) = 2¢ only if K is an affine

d-cube. ;



1.2 The illumination parameter

For instance, it can be seen that in the definition of illumination number /(K), the light sources can
be taken arbitrarily far from K. However, it seems natural to start with a relatively small number
of light sources and quantify how far they need to be from K in order to illuminate it. This 1s the
idea behind the illumination parameter ill(K) of an o-symmetric convex body K defined by the first
named author [3] as follows.

ill(K) = inf{Zp,-K :{pi} illuminates K, p; € Ed} :

where [[x]|,, = inf{A > 0:x € AK} is the norm of x € E¢ generated by the symmetric convex
body K. Clearly, I(K) <ill(K), for o-symmetric convex bodies. Several authors have investigated

the 1llumination parameter of o-symmetric convex bodies [3,6,16,22] and related ideas such as the
vertex index [4], determining exact values in several cases.
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1.3 The covering parameter

Inspired by the above quantiﬁcation ideas, Swanepoel [30] introduced the covering parameter of
a d-dimensional convex body to quantify its covering properties. This is given by

l

C(K) = inf{Z(l —/l,')_l K C U()LiK+ti),0 < /l,‘ <1, € Ed} :

Thus large homothets are penalized in the same way as far away light sources are penalized in
the definition of illumination parameter. Note here K is not assumed to have any symmetry as the
definition of covering parameter does not make use of the norm |- || .. In the same paper, Swanepoel
obtained the following Rogers-type upper bounds on C(K) when d > 2.

0(2¢d*Ind),  if K is o-symmetric,
C(K)= e (1)
0(4%d**Ind), otherwise.
He further showed that if K is o-symmetric, then
15-05.90 ill(K) <2C(K). (2) =
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2 The covering index
2.1 Definition

Given a positive integer m, Lassak [17] introduced the m-covering number of a convex body K
as the minimal positive homothety ratio needed to cover K by m homothets. That is,

@

Y (K) _inf{/'t >0:KC| JAK+1),, €E8i= 1,...,m}.

1

1

Definition 1 Let K be a d-dimensional convex body. We define the covering index of K as

coin(K) :inf{ L y(K) < 1/2,m € N}.

I'— 9.(K)

Intuitively, coin(K) measures how K can be covered by a relatively small number of positive
homothets all corresponding to the same relatively small homothety ratio. We note that coin(K) is
an affine invariant quantity assigned to K, i.e., if A : E4 — E? is an invertible linear map then
coin(A(K)) = coin(K). The reader may be a bit surprised to see the restriction %,(K) < 1/2. One
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However, there are other far more compelling reasons for choosing 1 /2 as the threshold. To
understand these better, we define

fn(K) = 1_%"([{)7

+-o0, if = < p(K) < 1.

Thus coin(K) = inf{f,,(K) : m € N}. Later in Theorem 1, we show that for any K, L € .#“ and
m € N such that %, (K) < 1/2 and %,(L) < 1/2,

fn(K) <dpu(K,L)fin(L), 3)
and ®.D)
dpy (K, L

InlK) 2 g ), @

establishing a strong connection with the Banach-Mazur distance of convex bodies. The proofs
of relations (3) and (4) make extensive use of homothety ratios to be less than or equal to half.
This shows that the ‘half constraint’ in the definition of covering index results in a quantity with
potentially nicer properties. In particular, relation (3) 1s important as for each m, it implies Lipschitz
continuity of f,, on the subspace

A= {Ke%d:ym(K) < 1/2}. (5)



2.2 Relationship with other problems

Proposition 2 For any o-symmetric d-dimensional convex body K,
vein(K) <ill(K) <2C(K) < 2coin(K),

and in general for K € ¢,
I[(K) < C(K) < coin(K).

Proposition 2 follows immediately from the definition of coin, the relation (2) and the observa-
tion

m

coin(K) = inf{ =

Y (K) < 1/2,mEN}

:inf{ UM(H, 0</l<1/2r,eEdmeN}
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2.3 Upper bounds

Proposition 3 (Rogers-type bounds) Given K € %%, d > 2, we have

221 d(Ind +Inlnd +5) = 0(4*dInd), if K is o-symmetric,

coin(K) < 2d
(K) 2d+1< d)d(lnd+lnlnd+5):O(delnd), otherwise.

Proof Consider the covering of K by homothets %K +1;, for some t; € B4, i =1,...,m. By (6), we

have
Rl 2l =
> vol <K1 2K) ; <1K> E vol (K1 2K) 8(K) < 2dvol(K K) 8(K).
vol (3K) 2 vol (5K) vol(K)
vol(K—K)

By the Rogers-Shephard inequality [26] = (2;1). Note also that if K is o-symmetric,

> vol(K)
then Vovlff(l_{f ses T Finally, recall the Rogers’ upper bound [25], 8(K) < d(Ind +Inlnd +5), for

d > 2. The upper bounds of Proposition 3 follow. O
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3 Properties of the covering index
3.1 Monotonicity

Lemma 1 (Monotonicity) Let [ < m be positive integers. Then for any d-dimensional convex body
K the inequality fi(K) > fu(K) implies m < f(K).
On the other hand ( j>m completing the

Proof By assumption, fy(K) > fu(K) = - ym( - e
proof, U

This shows that for a fixed convex body K, f,,(K) satisfies a special type of monotonicity with
respect to m and as a result the covering index of any convex body can be obtained by calculating
a finite minimum, rather than the infimum of an infinite set. In particular, if f;(K) < o for some I,

then coin(K) = min{f,,(K) : m < fi(K)}.
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3.2 Continuity

Theorem 1 (Continuity) Let d be any positive integer.

(i) For any K,L € c%/nf, the relations (3) and (4) hold. Moreover, equality holds in (3) if and only
if dpy(K,L) =1, i.e., L is an affine image of K and equality in (4) holds if and only if either
dpm(K,L) =1 or dpy(K,L) > 1 with

b 1
= s i)

(ii) The functional f,, : #,¢ — R is Lipschitz continuous with | f,,(K) — fin(L)| < dpp (K, L), for all
K,L € 2. On the other hand, f,, : # ¢ — RU{+co0} is lower semicontinuous, for all d and m.
(iii) Define Iy = {i: (K) < 1/2} = {i: K € 4}, for any d-dimensional convex body K. If I, C I,
for some K,L € #¢, then

Dy (K, L) — 1

coin(K) <
( )_ dBM(KaL)

coin(L) < dpy(K,L)coin(L). (7)

(iv) The functional coin : # ¢ — R is lower semicontinuous for all d.
(v) Define

A = {Ke A p(K) £ 1/2,m e N}.

15-05-20 Then the functional coin : # 4* — R is continuous for all d.

14
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Proof of (i) - Step 1:

Proof (i) We first show
Proposition 4 For any K,L € ¢,

Yin(K) < dpm(K,L)¥m(L) (8)

holds and so %y, is Lipschitz continuous on K¢ with | ¥ (K) — Ym(L)| < dpp (K, L), for all K,L €
S

Proof Let 6 > 1 be such that dgy(K,L) < 8. Now leta € K, b € L and the invertible linear operator
T:EY — E? satisfy L—b C T(K —a) C §(L—b). Moreover, let {AL+x;:x; €E%i=1,...,m}
be a homothetic cover of L, having m homothets with homothety ratio A > 0. Then

B (= e <L"J(,1L+x,-—b)> =5 <6<A(L—b)+x,-+(/1 2z 1)b)>
i=1 i=1
co <6(1T(K—a>+xi+(/l— 1)19)) = (6(5/1T(K—a)+6x,-+5(/1— 1)b)) :

i=1 i=1

which implies that there is a homothetic cover of 7 (K — a) having m homothets with homothety ratio

0. Hence there is a homothetic cover of K having m homothets with homothety ratio SA. This im-

plies that %, (K) < 0%n(L). Therefore, by taking inf 6 = dppy (K, L), we get ¥, (K) < dpy (K, L)Y (L).
On the other hand, %;,(K) < 1, %,(L) < 1, and (8) imply in a straightforward way that

1) = ()] = el 1) (1 )<dBM<K,L>,

 dpu(K,L)

whenever, dpy(K,L) > 1, finishing the proof of Proposition 4. O
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A consequence of the continuity
of the m-covering number

The continuity of the m-covering number has some interesting consequences. For instance, it can
be used to prove the following statement that settles Problem 6, posed by Brass, Moser and Pach,
in Section 3.2 of [10]. We note that this statement was first proved in [24] via showing the upper
semicontinuity of Yy, : A ¢ 3 R. Since we use the continuity of },, our proof is simpler.

Proposition 1 (Problem 6, Section 3.2 [10]) Let H; denote the smallest number h for which every
d-dimensional convex body can be covered by h smaller positive homothetic copies of itself. Let H;
be the smallest h for which there exists a positive Ay < 1 such that every d-dimensional convex body
can be covered by at most h of its homothetic copies with homothety ratio at most A;. Then H; = Hy
for every d.

Proof Clearly, H; < Hy. On the other hand, as the space .# ¢ is compact under the Banach-Mazur
metric [21,32], therefore Y, (#4) C (0,1) is compact as well. Thus, there is a constant ¢ < 1 such
that g, (K) <c, forany K € ¢ 4 As a result, we get that H; < H,, finishing the proof of H; = H,.
[
15-05-20 13
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Proof of (1) - Step 2:

We now return to the main proof. To prove (3) let K,L € 4. If %,(K) < ¥ (L), then f,,(K) <
fm(L) < dpm(K,L)fm(L), with equality if and only if dpy(K,L) = 1. Therefore, we can assume
without loss of generality that ¥, (K) > %,(L). Note that this together with 7;,(K) < 1/2 and %,(L) <
1/2 implies

ym(K) s (Ym(K))z = ?/m(L) o (Ym(L))2~ )
Thus by using (8),
fm(K) o Ji Ym(L) 7m<K)
fm(L) S Ym(K) Ym(L)
which gives (3). In addition, equality never holds in this case. Thus equality in (3) holds if and only
if dpy(K,L) = 1.
Now to prove (4), we again use (8).

<dpu(K,L),

m m

Ty
_deu(K,L) (1 —yu(L)) m  dpu(K,L)(1 — (L))
= = Jm(L),
dBM (K,L) =V (L) o= Yin (L) dBM(KaL) — Y (L)
with equality if and only if %,(K) = dBZ"((,?L) .
Since ¥, (L) < 1/2,
I Y (L) > 1

dBM(K,L) = ’)/m(L) = 2dBM(K,L) e

with equality if and only if either dpy(K,L) = 1 or dpy(K,L) > 1 with %,(L) = 1/2. Thus (4) is
satisfied and equality holds if and only if either dpy(K,L) = 1 or dpy(K,L) > 1 with ¥, (K) =

Ym(L) 1
dpy(K,L) — 2dgy(K,L)"

14



3.3 Covering numbers

For a d-dimensional convex body K, we denote by N, (K) the minimum number of homothetic
copies of K of homothety ratio 0 < A < 1 needed to cover K. It follows that N, (K) = N(K,AK),
where N (K, L) is the classical covering number defined as the number of translates of a convex body
L € # % needed to cover a convex body K € % 4 As seen in Section 1, if K = B?, we write Ny

instead of N, (B%). Clearly, N; (K) = 1,

Ny, k) (K) <m (11)
and
Yo, a0 (K) < A (12)

Moreover, either inequality can be strict. To see that (11) can be strict, consider the example of
an affine regular convex hexagon H. Lassak [18] proved that 75 (K) = 1/2 holds for any o-symmetric
planar convex body K. Thus 95 (H) = 1/2. On the other hand, from Figure 1 and the monotonicity
of %n(K) in m [32] it follows that 1/2 = 5 (H) < %(H) < 1/2. Thus ¥%(H) = 1/2 and Ny (1) =
Nyij2(H) <6.

To see that (12) can be strict, note that it is possible to have N, (K) = N;,(K), for some 4 < A;.
For instance, N} /»(C?) = Ny (C?) =24, for any 1/2 < A < 1. Therefore, }/N/I(Cd)(Cd) — e
159720 2, for any 1/2 < A < 1. We use these ideas in the remainder of this section.

15



3.4 The covering index of direct vector sums of

15-05-20

convex bodies

Definition 2 We say that a convex body K € .# ¢ is tightly covered if for any 0 < A < 1, K contains
N, (K) points no two of which belong to the same homothet of K with homothety ratio 1.

For instance, ¢ € 7! is tightly covered since for any 0 < A < 1, the line segment ¢ contains
Ny (¢) = PL_W points, no two of which can be covered by the same homothet of the form A/ +1,
t € E'. Later we will see that for any d > 2, the d-dimensional cube C¢ is also tightly covered.
Furthermore, not all convex bodies are tightly covered as will be seen through the example of the
circle B,

Theorem 2 Let B =1L, & --- @ L, be a decomposition of E? into the direct vector sum of its
linear subspaces LL; and let K; C IL; be convex bodies such that coin(K;) = fin,(K;), i=1,...,n, and
I' = max{ ¥, (K;) : 1 <i<n}. Ifsomen—1 ofthe K!s are tightly covered, then

max{coin(K;): 1 <i<n} <

NR e
COin(Kl @ x @Kn) = 1nf [L—l—/l(l)
A<t 1-4 13)
< H?:]NF([(,')
= s

n g n
< [y m < Hcoin(K,-),
e

where K| & - - - & K,, stands for the direct sum of the convex bodies K| C LLy,..., K, C IL,,. Moreover,
the first two upper bounds in (13) are tight.

16



The core part of the proof of Theorem 2

Proposition 5 If some n— 1 of the Ks are tightly covered, then for all 0 < A < 1,
n
Ny (K &+ @ K,) = [ V2 (K)). (14)
i=1

Hence, forany 0 < A < 1,

N (K@ 0K,) T Ni(K)

1-4 1-4

Thus,

m 1
Ko Gk =i e .
coin(K; @ -+ ®K,) nlzrelN{l—')/m(K1@“‘@Kn) Yn(K1©--- D n)_zu}

A e
s -2

completing the proof of the equality appearing in (13).
The upper bounds in (13) now follow from the definition of I" and m;, i = 1,...,n. Moreover,
the example of d-cubes, considered as direct vector sums of d 1-dimensional line segments, shows

15-05-20 that the first two upper bounds in (13) are tight (cf. Theorem 4). O
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Corollaries of (the proof of) Theorem 2

Corollary 1 LetE =1, &--- &L, be a decomposition of E into the direct vector sum of its linear
subspaces L; and let K; C1L;, i = 1,...,n, be tightly covered convex bodies. Then K & --- & K, is

tightly covered.

Corollary 2 Let B¢ =L@ --- @ L, be a decomposition of B into the direct vector sum of its
linear subspaces L; and let K; C L; be convex bodies such that coin(K;) = f,.(K;), i=1,...,n, and
I' = max{%,(K;) : 1 <i<n}. Then

max{coin(K;): 1 <i<n} <

"Ny (K
coin(K; @---9K,) < infl Hl_ll—a()
A<t = (15)
[T Nr(Ki) TTeymi .
< ll—F < T <igcom(1(,-).

Moreover, the first three upper bounds in (15) are tight.

Corollary 3 For any 1-codimensional (d + 1)-dimensional cylinder K & (, the first two upper
bounds in (13) become equalities and

15-05-20 coin(K & £) = 4N »(K).

18



3.5 The covering index of vector sums of convex

15-05-20

bodies

Theorem 3 Let the convex body K be the vector sum of the convex bodies K1 ..., K, in B¢, ie., let
K=K +:--+K, such that coin(K;) = f, (Ki), i=1,...,n, and I' = max{ %, (K;) : 1 <i <n}. Then

. o Bl (K,) i1 Nr <Ki) [Tom .
K) < inf = < < = K;). 16
coin( )_;ngé e T T <gcom( ) (16)

Moreover, equality in (16) does not hold in general.

Corollary 4 If K is any d-dimensional convex body, such that coin(K) = f,,(K). Then

2 2
coin(K —K) < (1\11%1(,;;((1([())) < 1_'; < (coin(K))%. (17)

Moreover, equality in (17) does not hold in general.

Problem 2 Let K7, ...,K, be d-dimensional convex bodies, for some d > 2. Then prove (disprove)

that
max{coin(K;) :i=1,...,n} <coin(Kj + - +Kp). (18)
If this does not hold, one can try proving the following weaker lower bound.
min{coin(K;) :i=1,...,n} <coin(K; +---+K,). (19)

19
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4. Extremal bodies
4.1 Minimizer in d-space

Theorem 4 Let d be any positive integer and K € %, Then coin(C?) = 297! < coin(K) and thus
(affine) d-cubes minimize the covering index in all dimensions.

Proof Clearly, C? can be covered by 2¢ homothets of homothety ratio 1/2, and cannot be covered by
fewer homothets. Therefore, coin(C?) < f,4(C?) = 29%1. Let p be a positive integer. If there exists
a homothetic covering of C? by m = 2¢ + p homothets giving f,,(C?) < 291, then

==
d
¥n(CY) < 3T drT
Howeyver,
dy~d drd d d gy d d
mvol(Y,(C*)C*) = my, (C*)* vol(C*) < (2“ 4 p) i vol(C?) < vol(C?),

a contradiction, showing that coin(C?) = 2¢+1,

Now consider an arbitrary d-dimensional convex body K. By repeating the above calculations
for K we see that for m > 24, f,,(K) cannot be smaller than 2¢*!. A similar volumetric argument
shows that K cannot be covered by 2¢ homothets having homothety ratio less than 1 /2. Likewise,
it is impossible to cover K by fewer than 2¢ homothets if the homothety ratio does not exceed 1/2.
Thus coin(K) > 24+1, g

20
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4.2 Maximizer in the plane

The case of coin-maximizers is more involved. Indeed since we have not established the upper
semicontinuity of coin, it may be the case that for some d, sup {coin(K ):KeX d} is not achieved
by any d-dimensional convex body. However, this is not the case for d = 2.

Theorem 5 IfK is a planar convex body then coin(K) < coin(B?) = 14,

Proof First, we show that coin(B®) = 14. It is rather trivial that y;(B*) = 15(B*) = 1, 13(B?)
v/3/2=10.866..., and y(B?) = 1/v/2=0.707.... Hence, f(B?) = fo(B?) = f3(B) = f4(B?) =
++oo, Moreover, the first named author [2] showed that 75(B) = 0.609... and ¥%(B%) = 0.555...,
implying that f5(B%) = fs(B?) = +co. On the other hand, it is easy to see that 17(B*) = 1/2 and
therefore f7(B) = 14. Hence Lemma 1 implies that coin(B*) = min{ f,,(B*) : 7<m < 14}.

Next, recall G. Fejes Téth’s result [11] according to which %(B%) = 0.445... and J(B?) =
1/(1++72) =0414.... This implies fy(B?) = 14.420... > 14 and fo(B2) = 15.363... > 4.

We claim that fm(B2) > 14, for all 10 < m < 14. Suppose for some 10 <m < 14, fm(Bz) <14.In
this case, we must have ,(B*) < 2= and mvol(y;, (B*)B*) > vol(B?). This implies m (141—;’”)2 >l
But, routine calculations show that the latter inequality fails to hold for all 10 <m < 13. Thus
coin(B?) = 14,

Levi [19] showed that any planar convex body K can be covered by 7 homothets of homothety
ratio 1/2. Thus coin(K) < 14, proving that circle maximizes the covering index in the plane. O

211



The problem of maximizer in d-space for d>2

Problem 3 For any d-dimensional convex body K, prove or disprove that coin(K) < coin(B¢) holds.
An affirmative answer to Problem 3 would considerably improve the known general (Rogers-

type) upper bound on the illumination number. It is known (e.g., see [6]) that for any d-dimensional
convex body K, in general

2d
= <d>d(lnd—|-lnlnd—|-5) :0(4ddlnd), (20)
and if, in addition, K is o-symmetric, then
I(K) =2%d(Ind +Inlnd +5) = 0(2%dInd). (21)

If BY maximizes the covering index, then the general bound (20) would improve to /(K) =
0(de3/ ’Ind ) which is within a factor v/d of the bound (4) in the 0-symmetric case.
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