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Recent developments in the reduction approach to
action-angle dualities of integrable many-body systems

• Integrable systems of Toda and Calogero (Sutherland, Moser,

Olshanetsky-Perelomov, Ruijsenaars-Schneider) type describe point

“particles” moving on the line or on the circle.

• These important systems enjoy intriguing “duality relations”.

• By definition, two integrable many-body systems are dual to each

other if the action variables of system (i) are the particle positions

of system (ii), and vice versa.

• A special case of duality is self-duality, where the leading Hamil-

tonians of the two systems have the same form.
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Elaboration of the definition of duality

Consider “Liouville integrable” Hamiltonian systems (M,ω,H) and

(M̃, ω̃, H̃). These systems are said to be in action-angle duality if

there exist Darboux coordinates qi, pi on (dense open subset of) M

and Darboux coordinates p̂k, q̂k on (dense open subset of) M̃ and a

global symplectomorphism R : M → M̃ such that

H ◦ R−1 depends only on p̂ (action variables for H) and

H̃ ◦ R depends only on q (action variables for H̃).

“This is non-trivial if the two systems are of interest.”

It is a particularly interesting relation if both are many-body systems

(interacting points) in such a way that

the qi describe particle positions for H(q, p) and

the p̂i describe particle positions for H̃(p̂, q̂).
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• Equivalent definition of self-duality: an integrable many-body

Hamiltonian system is called self-dual if it admits a global sym-

plectomorphism that “exchanges” its particle position and action

variables. (The “self-duality map” usually has order 4.)

• First example is the self-duality of the rational Calogero system.

Interpreted in terms of symplectic reduction by Kazhdan, Kostant

and Sternberg (1978).

• Duality was discovered and explored by Ruijsenaars (1988-95) in

his direct construction of action-angle variables for Calogero and

Toda type systems and their relativistic deformations.

• The duality map is the same as the “action-angle” map, thus

one may use the term “action-angle duality” (also fitting to call it

“Ruijsenaars duality”).

• This duality is classical analogue of (quantum . . . ) bispectrality.
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Well-known examples

Rational Calogero system is self-dual

HCal(q, p) =
1

2

n∑
k=1

p2k +
1

2

∑
j ̸=k

x2

(qk − qj)2

Hyperbolic Sutherland system

Hhyp−Suth(q, p) =
1

2

n∑
k=1

p2k +
1

2

∑
j ̸=k

x2

sinh2(qj − qk)

is in duality with rational Ruijsenaars-Schneider system

Hrat−RS(p̂, q̂) =
n∑

k=1

cosh(q̂k)
∏
j ̸=k

[
1+

x2

(p̂k − p̂j)2

]1
2

Treated via Hamiltonian reduction in arXiv:0901.1983 with Klimcik.
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Duality from Hamiltonian reduction: the basic idea

Start with ‘big phase space’, of group theoretic origin, equipped
with two commuting families of ‘canonical free Hamiltonians’.

Apply suitable reduction to the big phase space and construct two
‘natural’ models of the single reduced phase space.

The two families of ‘free’ Hamiltonians turn into commuting many-
body Hamiltonians (or ‘actions’) and particle positions in terms
of both models. Their rôle is interchanged in the two models.
In practice (roughly), big phase space consists of pairs of matrices (A,B) and the

two ‘models’ are two ‘gauge slices’ defined by ‘diagonalizing’ A or B. Particle

positions and actions descend from eigenvalues (or other invariants) of A and B.

The natural symplectomorphism between the two models of the
reduced phase space yields the ‘duality symplectomorphism’.

• My purpose (work of last 6 years) is to derive all known dualities by reductions
of suitable (finite-dimensional, real) phase spaces and to find new dual pairs.

• Among others, we proved conjectures and “globalized” local results of Gorsky-
Nekrasov [95] and Fock-Gorsky-Nekrasov-Roubtsov [2000].
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Further examples of dual pairs

Trigonometric Sutherland system and its Ruijsenaars dual

Htrigo−Suth =
1

2

n∑
k=1

p2k +
x2

2

∑
j ̸=k

1

sin2(qk − qj)

H̃rat−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

x2

(p̂k − p̂j)2

]1

2

Described in terms of reduction of T ∗U(n) (Ayadi-Feher 2010).

‘Relativistic’ deformation of above dual pair:

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sin2(qk − qj)

]1
2

and the physically very different dual system

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

sinh2x

sinh2(p̂k − p̂j)

]1
2

Derived by reduction of Heisenberg double of P-L U(n) (Feher-Klimcik 2009).
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Plan of what follows

First, flash new cases of duality associated with BCn root system.

(Detailed treatment in recent joint paper with T.F. Gorbe, arXiv:1407.2057)

Second, (following Feher-Kluck: arXiv:1312.0400) report new compact

self-dual systems, locally given by Ruijsenaars’ “IIIb Hamiltonian”

Hcompact−RS =
n∑

k=1

(cos pk)
∏
j ̸=k

∣∣∣∣∣1− sin2x

sin2(qk − qj)

∣∣∣∣∣
1
2

for generic 0 < x < π

Earlier with Klimcik, arXiv:1101.1759, studied the “standard case” 0 < x < π/n.

Third, describe novel group-theoretic interpretation of old results

about action-angle map and duality for open Toda

HToda(q, p) =
1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1 (based on arXiv:1312.0404)

The third topic is related to works by Ruijsenaars (1990), Babelon (2003),

Sklyanin (2013), Kozlowski (2013), and others.
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New dual pairs associated with BCn root system

Trigonometric BCn Sutherland system

H(q, p) =
1

2

n∑
j=1

p2j+
∑

1≤j<k≤n

(
γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

)
+

n∑
j=1

γ1

sin2(qj)
+

n∑
j=1

γ2

sin2(2qj)

is dual to (completion of) rational Ruijsenaars-Schneider-van Diejen system

H̃(λ, ϑ) =
n∑

j=1

cos(ϑj)

[
1−

ν2

λ2
j

]1
2
[
1−

κ2

λ2
j

]1
2

n∏
k=1
(k ̸=j)

[
1−

4µ2

(λj − λk)2

]1
2
[
1−

4µ2

(λj + λk)2

]1
2

−
νκ

4µ2

n∏
j=1

[
1−

4µ2

λ2
j

]
+

νκ

4µ2
. Coupling constants are subject to

γ > 0, γ2 > 0, 4γ1+γ2 > 0 and µ > 0, ν > |κ| ≥ 0. Duality holds under the relation

γ = µ2, γ1 = νκ
2
, γ2 = (ν−κ)2

2
.

Sutherland positions q satisfy π
2
> q1 > · · · > qn > 0 and Sutherland actions λ

(dual poisitions) fill closure of domain

D = {λ ∈ Rn | λa − λa+1 > 2µ (a = 1, . . . , n− 1), λn > ν}.
Liouville tori collapse at boundary of D, and above description of the dual system
is valid on dense open submanifold D × Tn of the phase space.

This generalizes earlier result for hyperbolic BCn Sutherland system obtained by
Pusztai, arXiv:1109.0446, using reduction of T ∗U(n, n). See arXiv:1407.2057
with T.F. Gorbe, treating suitable Hamiltonian reduction of T ∗U(2n).
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On new compact forms of the trigonometric RS systems

Consider G := SU(n) and equip the double G×G = {(A,B)} with the 2-form
ωλ := λ

(
⟨A−1dA ∧, dBB−1⟩+ ⟨dAA−1 ∧, B−1dB⟩ − ⟨(AB)−1d(AB) ∧, (BA)−1d(BA)⟩

)
.

The 2-form, the moment map µ : (A,B) 7→ ABA−1B−1, and the action of G by
componentwise conjugation makes G × G a quasi-Hamiltonian space (Alekseev-
Malkin-Meinrenken, 1998).

The reduced phase space P (µ0) := µ−1(µ0)/Gµ0 is symplectic.

The class functions of G, applied to either components A or B in the pair
(A,B) ∈ G×G, descend to two Abelian Poisson algebras on P (µ0).

Earlier with Klimcik, analyzed this quasi-Hamiltonian reduction taking

µ0 := µ0(x) := diag
(
e2ix, . . . , e2ix, e−2i(n−1)x

)
with 0 < x < π/n. Now with Timo Kluck, studied the case of generic 0 < x < π.

First result: this construction always gives a self-dual integrable system on the
compact, connected, smooth reduced phase space P (µ0(x)) of dimension 2(n−1).

Second result: On a dense open submanifold of P (µ0(x)) the “main Hamiltonian”
coming from ℜ (tr (A)) takes the RS form of IIIb type:

Hcompact−RS =
n∑

k=1

(cos pk)
∏
j ̸=k

∣∣∣∣1−
sin2x

sin2(qk − qj)

∣∣∣∣1

2

This describes n “particles” moving on the circle. Domain of “position variables”
is the same as domain of “action variables” and depends on value of x.
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Two types of compact RS systems

The analysis requires finding the spectra of B for all (A,B) in the constraint
surface µ−1(µ0(x)), where ABA−1B−1 = µ0(x). /e2ixm ̸= 1 for all m = 1,2, . . . , n/

In principle, two qualitatively different types of cases can occur:

• Type (i): the constraint surface satisfies µ−1(µ0(x)) ⊂ Greg ×Greg.

• Type (ii): the relation µ−1(µ0(x)) ⊂ Greg ×Greg does not hold.

The reduced phase space P (µ0(x)) is naturally a Hamiltonian toric manifold if
and only if µ−1(µ0(x)) ⊂ Greg × Greg, i.e., in the type (i) cases. In other words,
one obtains (n− 1) globally smooth, independent action variables generating an
effective torus action.

Indeed, in the type (i) cases certain “spectral functions”on G that are smooth on
Greg but only continuous at Gsing descend to smooth action variables and position
variables when applied to A and B with (A,B) ∈ µ−1(µ0(x)).

In the type (ii) cases the particles can collide and the action variables become
non-differentiable at singular points, where the (n−1) commuting smooth Hamil-
tonians loose their independence.

Our main result: We found the complete classification of the parameter 0 < x < π
according to type (i) and type (ii) cases.
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Classification of the coupling parameter

Main Theorem: The type (i) cases are precisely those for which the coupling
parameter 0 < x < π (subject to e2ixm ̸= 1 for all m = 1,2, . . . , n) belongs to an
open interval of the form

π

(
c

n
−

1

nd
,
c

n
+

1

(n− d)n

)
with integers c, d satisfying 1 ≤ c, d ≤ (n − 1), gcd(n, c) = 1 and cd = 1 mod n.
In these cases the reduced phase space P (µ0(x)) is symplectomorphic to CP n−1

endowed with a multiple of the Fubini-Study symplectic structure.

• The result was obtained by determining the possible spectra of the matrix
B satisfying ABA−1B−1 = µ0(x).

• In the type (i) cases we found that the “Delzant polytope” is a simplex.

• The existence of type (ii) cases is completely new.

• The only previously studied type (i) cases are those for which c = 1 and x
belongs to the “half-interval” (0, π/n).

• The detailed description of our new integrable systems is still largely open.
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Turning to our third topic, recall that Ruijsenaars (1990) found explicit

action-angle map for open Toda and introduced dual integrable system.

M := Rn×Rn = {(q, p)}, ω =
n∑

i=1

dpi∧dqi, H =
1

2

n∑
i=1

p2i +
n−1∑
i=1

eqi−qi+1

Phase space of action-angle variables: (M̂, ω̂)

M̂ := {(p̂, q̂) ∈ Rn × Rn | p̂1 > p̂2 > · · · > p̂n}, ω̂ =
n∑

i=1

dq̂i ∧ dp̂i

Formula of action-angle map R : M̂ → M

qj = ln(σn+1−j/σn−j), pj = σ̇n+1−j/σn+1−j − σ̇n−j/σn−j,

σk :=
∑

|I|=k

e
∑

l∈I q̂l
∏

i∈I,j /∈I
|p̂i − p̂j|−1 (∀k = 1, . . . , n, σ0 := 1)

I ⊂ {1,2, . . . , n} subset of cardinality |I| = k, σ̇k := {σk, 12
∑n

i=1 p̂
2
i }M̂

Action-angle map R converts H into free form: H ◦R = 1
2
∑n

i=1 p̂
2
i .

Dual system: (M̂, ω̂, Ĥ) with Ĥ := σ1 = eqn◦R =
∑n

i=1 e
q̂i

∏
j ̸=i

1
|p̂i−p̂j|
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Toda action-angle map and duality from symplectic reduction

Unreduced phase space: T ∗GL(n,R) ≃ GL(n,R) × gl(n,R) = {(g,J )} equipped
with symplectic form Ω := 2dtr (J g−1dg).

Two sets of commuting “free Hamiltonians” {Hk} and {Ĥk}:

Hk(g,J ) :=
1

k
tr (J k), Ĥk(g,J ) := mk((gg

t)−1), k = 1, . . . , n,

Notation: mk(X) := det(Xk) is k-th leading principal minor of n× n matrix X.

Reduce by the symmetry group N+ × O(n,R). N+ is upper triangular nilpotent
subgroup and (η+, ηO) from symmetry group acts by the map Ψ(η+,ηO):

Ψ(η+,ηO)(g,J ) := (η+gη−1
O , ηOJ η−1

O ).

This Hamiltonian action is generated by the moment map Φ:

Φ(g,J ) = ((gJ g−1)lower−triangular part,−Janti−symmetric part).

Reduction relevant for Toda is defined by imposing the moment map constraint

Φ(g,J ) = µ0 := (I−,0), (Olshanetsky-Perelomov, Adler, Kostant, Symes, . . . )

where I− :=
∑n−1

i=1 Ei+1,i contains 1 in its entries just below the diagonal.

Reduced phase space Φ−1(µ0)/(N+×O(n,R)) inherits 2 Abelian Poisson algebras.
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First model of the reduced phase space: ‘Toda gauge’

By Iwasawa decomposition, any g ∈ GL(n,R) can be uniquely written as

g = g+gAgO, (g+, gA, gO) ∈ N+ ×A×O(n,R).
Associate to (q, p) ∈ M := Rn × Rn the diagonal matrices

Q(q) := −
n∑

i=1

qn+1−iEi,i, P (p) := −
n∑

i=1

pn+1−iEi,i

and define Jacobi matrix (alias Toda Lax matrix, since H(q, p) = 1
2
tr (L(q, p)2))

L(q, p) := P (p) + e−Q(q)/2I−e
Q(q)/2 + eQ(q)/2I+e−Q(q)/2.

The following manifold S is a global cross section of the orbits of the “gauge
group” N+ ×O(n,R) in the “constraint surface” Φ−1(µ0):

S := {(eQ(q)/2, L(q, p)) | (q, p) ∈ M}.
Reduced symplectic form is represented by pull-back ι∗S(Ω) =

∑n
i=1 dpi ∧ dqi ≡ ω.

The equalities ι∗S(Hk) =
1

k
tr (Lk), ι∗S(Ĥk) =

k∏
j=1

eqn+1−j show that

in terms of model (S, ι∗S(Ω)) ≃ (M,ω) of reduced phase space, the unreduced free
Hamiltonians {Hk} descend to commuting Toda Hamiltonians and {Ĥk} descend
to (functions of) Toda position variables.

All this is well-known. I call S ‘Toda gauge’: a model of Φ−1(µ0)/(N+×O(n,R)).
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Second model of the reduced phase space: ‘Moser gauge’

Rn
>: set of vectors p̂ satisfying p̂1 > p̂2 > · · · > p̂n. Rn

+: vectors w having positive
components. For (p̂, w) ∈ Rn

> × Rn
+ define n× n matrices Λ and Γ by

Λ(p̂) := diag(p̂1, p̂2, . . . , p̂n), Γ(p̂, w)i,k := wi (p̂i)
k−1 (diagonal× Vandermonde)

My main observation: The manifold

Ŝ := {(Γ(p̂, w)−1,Λ(p̂)) | (p̂, w) ∈ Rn
> × Rn

+}

is a global cross-section of the orbits of N+×O(n,R) in constraint surface Φ−1(µ0).

The key is to consider Iwasawa decomposition

Γ(p̂, w)−1 = η+(p̂, w)ρ(p̂, w)ηO(p̂, w) with ρ(p̂, w) = diag(ρ1(p̂, w), . . . , ρn(p̂, w)).

Fact: ηO(p̂, w)Λ(p̂)ηO(p̂, w)−1 is Jacobi matrix, determines (p̂, w) up to scale of w.

Then unique gauge transformation from Ŝ to S yields a map

R : Ŝ → S, (p̂, w) 7→ (eQ(q)/2, L(q, p)) = (ρ(p̂, w), ηO(p̂, w)Λ(p̂)ηO(p̂, w)−1).

It is EASY to find this map explicitly since Γ(p̂, w) is diagonal× Vandermonde.

Using Cauchy-Binet, trivial calculation of Ĥk(g,J ) = mk((ggt)−1) in the two gauges gives

k∏
j=1

eqn+1−j ◦ R = mk(Γ(p̂, w)tΓ(p̂, w)) =
∑
|I|=k

(∏
l∈I

w2
l

∏
i,j∈I
i̸=j

|p̂i − p̂j|
)
.

To finish, parametrize Moser’s variables (p̂, w) by Darboux coordinates (p̂, q̂).
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Ruijsenaars’ action-angle map and duality from reduction

Reduced symplectic form is easily calculated in the Moser gauge

ι∗
Ŝ
(Ω) = 2

n∑
i=1

d lnwi ∧ dp̂i +
n∑

j,k=1
j ̸=k

dp̂j ∧ dp̂k

p̂j − p̂k
(thanks to C. Klimcik)

Corresponding Poisson brackets: {p̂i, p̂j} = 0, {p̂i, wj} = wj

2
δij, {wj, wk} = 1

2
wjwk

p̂j−p̂k
.

These variables linearize the Toda flows, whose Hamiltonians become on Ŝ

ι∗
Ŝ
(Hk) =

1

2

n∑
i=1

(p̂i)
k.

Toda action-angle variables (p̂, q̂) are obtained by the parametrization

wi(p̂, q̂) := e
1

2
q̂i

n∏
j=1
j ̸=i

|p̂i − p̂j|−
1

2 , (p̂, q̂) ∈ Rn
> × Rn ≡ M̂,

which brings ι∗
Ŝ
(Ω) into Darboux form ω̂ =

∑n
i=1 dq̂i ∧ dp̂i.

Map R : Ŝ → S is automatically symplectomorphism, and “explains” Ruijsenaars’
formula. Reduced Hamiltonians ι∗

Ŝ
(Ĥk) are Ruijsenaars’ dual Hamiltonians.

Toda position variables qk are action variables of main dual Hamiltonian:

Ĥ = eqn ◦ R = ι∗
Ŝ
(Ĥ1) =

n∑
i=1

w2
i =

n∑
i=1

eq̂i
∏
j ̸=i

1

|p̂i − p̂j|.
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CONCLUSION

Main point of the reduction approach:

Once the correct starting point is ‘guessed’, GLOBAL phase spaces

and duality symplectomorphisms result automatically.

This approach links integrable many-body systems and their duality

to a host of interesting subjects.

We applied reduction methods to several many-body systems and

obtained group-theoretic interpretation of their duality relations.

Major open questions: How to obtain the hyperbolic RS system?

How to deal with relativistic Toda?

All BCn RS-vD systems from reduction?

(related work by Marshall, arXiv:1311.4641)

What about the elliptic systems?
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