When is a disk trapped by four lines?

Pe Wontejano and T. Tamfirescu

Szeged , September 2013

A a closed subset of euclidean 3-space. D a planar disk.

D is trapped by A if
D cannot continuously moved through infinity without its relative interior intersecting transversally A

3 lines never trapp a disk.

5 lines may trapp a disk.

Tetraedro ABCD

\mathcal{L} is a pinite collection of lines in \mathbb{R}^{3}

$$
\varphi_{2}: S^{2} \rightarrow \mathbb{R}
$$

$L_{L}(\mu)=$ diameter of the smallest disk, orthogonal to μ, intersecting all lines of \mathcal{L} for every $\mu \in S^{2}$

Essentially
A desk is trapped by

$$
\mathcal{L}=\left\{L_{1}, L_{2}, L_{3} L_{4}\right\}
$$

four lines
if and only if
We has a local maxumum

We need that this
local maximum condition arrives from our 4 lines and it does not arrive from the local maxumatily function of three of my lines.

$$
\begin{aligned}
& \varphi_{\rho}=\psi \\
& \varphi_{\mathcal{L}-j}=\psi_{i}
\end{aligned}
$$

Theorem. Suppose there is a disk of diameter h trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.

Then, there is a local maximum h_{0} of the map Ψ, at vector $v_{0} \in S^{2}$,

$$
\text { such that for } j=1,2,3,4, \quad \Psi_{j}\left(v_{0}\right)<h_{0} .
$$

Furthermore, for every $h_{1} \in\left[h, h_{0}\right)$, there is a disk of diameter h_{1} trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.

Moreover, Suppose there is a local maximum h_{0} of the map Ψ, at the the vector $v_{0} \in S^{2}$,

$$
\text { such that for } j=1,2,3,4, \quad \Psi_{j}\left(v_{0}\right)<h_{0} .
$$

Then there exists $\epsilon>0$ such that for every $h_{1} \in\left(h_{0}-\epsilon, h_{0}\right)$, there is a disk of diameter h_{1} trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.

S = Space of oriented unit disks

(centro, normal vector)

$$
\begin{gathered}
\mathbb{R}^{3} \times S^{2} \\
\mathbb{R}^{2} \times\left(\mathbb{R} \times S^{2}\right) \\
\mathbb{R}^{2} \times\left(\mathbb{R}^{3}-\{0\}\right) \\
\mathbb{R}^{5} \\
\mathbb{R}^{\prime \prime}
\end{gathered}
$$

= Space of oriented unit disks whose interior intersect one of our four lines

An oriented unit disk is trapped by

If and only if

$$
\mathbb{R}^{5}-\mathbb{D}
$$

Has a bounded component
If and only if

$$
H_{4}\left(D, \mathbb{Z}_{2}\right) \neq 0
$$

A dusk of diameter one is trapped by the fines
L_{1}, L_{2}, L_{3} and L_{4}
yo

$$
\mathbb{R}^{5}-\left(D_{1} \cup D_{3} \cup D_{6} \cup D_{4}\right)
$$ has a bounded component if

$$
H_{4}\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4} ; \mathbb{Z}_{2}\right)=0
$$

where D_{i} =space of dusk of diameter me that intersect the lure Li

Lemma

$$
H_{j}\left(D_{i}\right)=0 \text { for } j \geq 3
$$

$D_{i}=$ space of duck of diameter me that internet the lime L :

Idea: we have some central over the homology of $D_{i} ; D_{i} \cup D_{j} D_{i} \cap D_{j}$ etc
try To compute $H_{4}\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4}\right)$ using Mayer-Vietores enact sequent

Mayer Vietovies exact
a duke of diameter one is thappal by the lines
$L_{1} L_{8}, L_{3}$ and L_{4} of ind only 4 there is α

2. 5^{3}
the condition there is $\alpha \neq 0$

$$
\begin{aligned}
& \begin{array}{l}
\alpha \neq 0 \\
H_{1}\left(D_{1} \cap D_{2} \cap D_{3} \cap D_{4}\right) \xrightarrow{J_{2}} \rightarrow H_{1}\left(D_{1} \cap D_{2} \cap\left(D_{4}\right)=0\right.
\end{array} \\
& H_{1}\left(D_{1} \cap D_{J_{2}(\omega)=0} \cap D_{4}\right) \\
& { }^{4} H_{1}\left(D_{2} \cap D_{3} \cap(\alpha)=0.0 D_{4}\right.
\end{aligned}
$$

Means
Ψ has a local maxumams

$$
\begin{aligned}
& \Psi\left(r_{0}\right)=1 \\
& \psi_{1}\left(r_{0}\right)<1
\end{aligned}
$$

how we have To are the dyelraic condition in the spheres S^{2}

Jemima.

$$
\mathscr{H}: \bigcap_{n}^{k} D_{i} \longrightarrow \nVdash\left(\bigcap_{n}^{k} D_{i}\right)
$$

is a hometopy equivalence
Proof the fibers $\mathcal{X}^{-1}(x)$ are contractible.

The projection of alpha to the D-sphere Give rise to a curve that surrounds a local maximum of our function

This is concluded using elementary
ideas of Morse Theory on the
2-sphere.

$$
\psi^{-1}(0 \Leftrightarrow A)=\frac{\psi\left(D_{1} \cap D_{2} \cap D_{3} \cap D_{4}\right)}{h}
$$

α sungular
pant

Set \mathscr{T} be a convex figure in the plane

When is a disk with the shape of \mathscr{T} trapped by four lines?

Th particulars, When is a triangle or a planar quadrilateral figure trapped with four lines?

The space of dish are now all congruent copies of \mathscr{T}, that is:

$$
S=R^{3} \times S 0(3)
$$

$$
L_{1}, L_{2}, L_{3}, L_{4}
$$

= Space of disks with the shape of F whose interior intersect one of our four lines

D is contained in S

A disk with the shape of is trapped by

If and only if

L is a finite collection of lines I' a ponce plane figure on the plane contamed the orem

$$
\varphi: S 0(3) \longrightarrow \mathbb{R}
$$

$\varphi:(\phi)=$ diameter of the smallest Translated copy of $\phi(F)$ intersecting the lines of \mathcal{L} for every $\phi \in S O(3)$

Essentially
A desk is trapped by

$$
\mathcal{L}=\left\{L_{1}, L_{2}, L_{3} L_{4}\right\}
$$

four lines
if and only if
We has a local maxumum

Theorem. Suppose there is a disk of diameter h trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.

Then, there is a local maximum h_{0} of the map Ψ, at vector $v_{0} \in S^{2}$,

$$
\text { such that for } j=1,2,3,4, \quad \Psi_{j}\left(v_{0}\right)<h_{0} .
$$

Furthermore, for every $h_{1} \in\left[h, h_{0}\right)$, there is a disk of diameter h_{1} trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.

Moreover, Suppose there is a local maximum h_{0} of the map Ψ, at the the vector $v_{0} \in S^{2}$,

$$
\text { such that for } j=1,2,3,4, \quad \Psi_{j}\left(v_{0}\right)<h_{0} .
$$

Then there exists $\epsilon>0$ such that for every $h_{1} \in\left(h_{0}-\epsilon, h_{0}\right)$, there is a disk of diameter h_{1} trapped by the lines $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$.
\mathscr{T} a disk trapped by four lines Then there is a triangle or a cuadrilateral trapped by four lines.
\mathscr{F} a disk trapped by four lines Then there is a triangle or a cuadrilateral immobilized by four lines.

Immobilization of Convex Figures in the plane.

A collection of points \mathscr{T} on the boundary of a plane figure \mathscr{F} is said tomimmobilize \mathscr{F} if any small rigid movement of \mathscr{F} causes on point in \mathscr{T} to penetrate the interior of \mathscr{F}

$$
a_{1} r_{1} k_{1}+a_{2} r_{2} k_{2}+a_{3} k_{3} k_{3}<1
$$

$$
a_{1} r_{1} k_{1}+a_{2} r_{2} k_{2}+a_{3} k_{3}>1
$$ do nगt unmobluge unnobileze

$\left(a_{1}, a_{2}, a_{3}\right)$ booricentec coordenates of O in $\Delta y_{1} y_{2} Y_{3}$
k_{j} curvature of $f_{\text {at }} x_{j}$

$$
a_{1} Y_{1}+a_{2} Y_{2}+a_{3} Y_{3}=0
$$

There is a formula that tell us when four points in the boundary of a three dimensional convex body immobilize it. This formula is expressed in terms of cuadratic forms.

Work in Progress

To find a formula in terms of cuadratic forms that tell us when a cuadrilateral plane figure is immobilized by 4 lines.

