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Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice
structure by modifying it a little bit.

nice: e.g. extremal in some sense
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Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice
structure by modifying it a little bit.

nice: e.g. extremal in some sense
A prototype of a stability theorem:

Turan graph (T(n, p)), extremal graph with n vertices, not
containing K4 1. Number of edges of T(n, p):=t(n, p).

Stability of the Turdn graph: Ve > 0, 39 and n(¢), so that:

if the graph G, on n vertices, n > n(¢), does not contain Ky, 1,
and the number of edges > t(n, p) — dn?

= G, can be obtained from T(n, p), by changing (adding or
deleting) < cn® edges. (ERDOS, SIMONOVITS)
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A special case

Theorem (Mantel)

A Ks-free (simple) graph on n vertices has at most m < n®/4
edges.

Let {x,y} be an edge. Then N(x) N N(y) = 0, hence
deg(x) + deg(y) < n. Summing for all edges we get

Z:(deg(x))2 < nm.

X

As > (deg(x))? > n(>_, (deg(x)/n)? = 4m?/n we get Mantel's
result.

Towards a stability theorem: 1) In case of equality the graph is
bipartite with classes of size n/2,n/2 (or (n+1)/2,(n—1)/2.
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A special case: stability version

2) If deg(x) + deg(y) = n, then the graph is bipartite. Hence if
m > n(n — 1)/4, then the graph is bipartite. Indeed, N(x) and
N(y) are the two classes (these are always independent sets).

3) What happens if deg(x) + deg(y) =n— 17

If the remaining point is connected to a points in N(x) and b
points in N(y) then we loose ab edges and win a + b edges.
Maximum no. of edges: a=1 (or b=1): 1+ (n—1)?/4if n'is
odd, 1+ ((n—1)2 —1)/4, if nis even.

4) Otherwise, m < n(n — 2)/2.
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A special case: Erdos—Simonovits

Assume we find two adjacent points with

deg(x) + deg(y) > (1 —~)n. Then N(x) and N(y) induce a large
bipartite subgraph. To get this from the original graph, we have to
modify at most (7 — 7/2)n? edges.

If there is no such pair (x, y) then there are at most (1 — ~)n?/4
edges. Hence for § = v/4, ¢ = (46 — 852) is good if n is large

enough.

More general stability theorems take into account the number of
copies of Kpy1'sin G: LOVASZ, SIMONOVITS
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A classical result in extremal combinatorics

ERDOS-KO-RADO, 61: If F is a k-uniform intersecting family of
subsets of an n element set S, then |F| < (71) provided 2k < n.

If 2k + 1 < n, then equality holds if and only if F is the family of
all subsets containing a fixed element s € S. In other words,
7(F) = 1. What if 7 > 27

This was answered by HILTON, MILNER, see next slide.

Non-uniform version (exercise!): |F| <2771,
Proof: (matching: X, S\ X) At most one can be in F.
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A corresponding stability result

Theorem (Hilton-Milner, 67)

Let F C (["]) be an intersecting family with k > 3, 2k +1 < n and
7(F) > 2. Then |F| < (721) — (".51") + 1. The families
achieving that size are
@ for any k-subset F and x € [n] \ F the family
Fum={Fyu{Ge () :xe G, FnG#0}
° ifk = 3, then for any 3-subset S the family
={Fe(:|Fns|>2}.

Vector space analogues of EKR theorem: HSIEH,
GREENE-KLEITMAN, FRANKL-WILSON

Vector space analogues of HM: BLOKHUIS, BROUWER,
CHOWDHURY, FRANKL, MUSSCHE, PATKOS, SZT for
n>2k+1

BLOKHUIS, BROUWER, SZT: for n = 2k
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Another extremal problem in graph theory

A bipartite graph G = (A, B, E) is K, g-free if it does not contain
a nodes in A and 8 nodes in B that span a subgraph isomorphic to
Ka3. We call (|A],|B]) the size of G. The maximum number of
edges a K, g-free bipartite graph of size (m, n) may have is
denoted by Z, g(m, n), and is called a Zarankiewicz number.
Other formulation: Max. no. of 1's in an m x n 0/1 matrix
without having an a x 3 submatrix with only 1's.

Results for general a, 3: KOVARI-T. SOS—- TURAN,
KOLLAR-RONYAI-SZABO, ALON-RONYAI-SZABO

Constructions and bounds: GUY, BROWN, FUREDI and the
authors above.

We shall focus on the case a = § = 2.
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Reiman’s theorem

Theorem (Reiman)

Let G = (A, B, E) be a K;-free bipartite graph of size (n, n).
Then the number of edges in G,

E| < g(l +/4n—3).

Equality holds if and only if n = k? + k + 1 for some k and G is
the incidence graph of a projective plane of order k.

For bipartite graphs of size (m, n) the corresponding bound is

1
el 2 _
\Elgz(n—k\/n +4nm(m — 1)),

and in case of equality we have a 2 — (n, k, 1) Steiner system with
m = v(v —1)/k(k — 1) blocks.

Later REIMAN and ROMAN found that extremal constructions
with larger «, 8 are related to block designs.
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Roman’s bound

Theorem (Roman's bound)

Let G = (A, B, E) be a Ks -free bipartite graph of size (m, n), and
let p>s— 1. Then the number of edges in G,

(t—1)(m (p+1)(s—1)
E| < TR
(sfl) <S> &

Equality holds if and only if every vertex in B has degree p or p+ 1
and every s-tuple in A has exactly t — 1 common neighbours in B.
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Stability version?

What would be a stability version of Reiman’s theorem?
Several possibilities (all too general):

© If a bipartite graph has somewhat less edges than projective
planes (or designs), the it can be embedded in a plane (or
design).

@ If m and n are close to the parameters of a projective plane
(or a design) then the extremum in Zarankiewicz' problem can
be obtained by deleting/adding vertices (and perhaps edges)
from a plane (or a design).

We would need incidence structures close to a projective/affine

plane or a design. Candidates: linear spaces, partial projective
planes etc.

The corresponding embeddability results are typically not strong
enough.
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Stability of projective planes

Let n> 15, (P, L,T) be an incidence structure with

|P| = 2 + 2 such that every line in L is incident
with n+ 1 points of P and every two lines have at most one point
in common. Then a projective plane ' of order n exists and

(73 L,T) can be embedded into P. O]

Lemma

Let n > 15, G = (P,L,T) be an incidence graph with
|P|=n 2 + 2 such that every line in L is incident
with at least n+ 1 points of P, and every two lines have at most
one point in common. Then a projective plane I of order n exists,
and (P, L,T) can be embedded into P; specially, every line in L is
incident with exactly n+ 1 points of P.

o
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Consequence for the Zarankiewicz problem

Theorem (Damaésdi, Héger, SzT)

Let n > 15, ¢ < n/2. Then
Zop(mP+n+1—c,n”*+n+1)< (NP +n+1-c)(n+1).

Equality holds iff a projective plane of order n exists. Moreover,
graphs giving equality are subgraphs of the incidence graph of a
projective plane of order n.

Is it true that Zo2(n? +1,n% + n+ 1) < (n? +1)(n + 1) for every
large enough n?
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Subgraph-closed families

Let F(m,n) = {G = (A,B) € F: |A| = m,|B| = n}, and let
exr(m,n) = max{e(G): G € F(m,n)}, and let

Exr(m,n) ={G € F(m,n): e(G) = exr(m, n)}. Elements of
Exz(m, n) are called extremal.

Theorem

Let F be a subgraph-closed family of bipartite graphs, and let
exr(m,n)<e=a(d+1)+bd, 0<a,beN m=a+b, deN.
Let c € N.

Q Ifb=0, then exr(m+c,n) < (m+c)(d +1).

Q Ifb>0orexr(m+1,n) < e+d, then

exr(m+c,n) < e+ cd.

Moreover, in both cases equality for some ¢ > 1 implies that
equality holds for all ¢’ € N, 0 < ¢’ < ¢ as well, and any
G € Exg(m+ c, n) induces a graph from Exz(m+ c — 1, n).
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Around affine planes

A useful embedding result for the complement of two lines in a
projective plane.

Result (Totten)

Let S = (P, L) be a finite linear space (that is, an incidence
structure where any two distinct points are contained in a unique
line) with |P| = n? —n, |L| = n?>+n—1,2 < n#4, and every
point having degree n+ 1. Then S can be embedded into a
projective plane of order n.
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A consequence for the Zarankiewicz problem

Proposition (Damdésdi, Héger, SzT)

Let c € N. Then

2272(n2 -+ C, n2 + n)
2272(n2 —n+c,n’4+n— 1)
Zoa(n* —2n+1+¢c,n*+n—2)

ININ A

n?>—2n+1)(n+1)+ cn,
ifn> 4.

Equality can be reached in all three inequalities if a projective
plane of order n exists and c < n+1, orc < 2n, or c < 3(n—1),
respectively.

Moreover, if c < n+1, orc <2n and 2 < n # 4, then graphs
reaching the bound in the first two cases, can be embedded into a
projective plane of order n.
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What would be the real question?

What is Z»,2(m, n) if both m and n are close to k? + k + 17
Warning: n = m = 8: two examples, one from an affine plane of
order 3, another a Fano plane plus one point! (They are different
even from the combinatorial point of view.)

Other good question: if we have somewhat less than

2(14 +/4n — 3) edges in a bipartite graph of size (n, n) can one
obtain it from the incidence graph of a projective plane by deleting
some edges?

The previous embedding theorems (Metsch, Totten) are special
cases, we don't know such a general result.
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Arcs in finite planes

ARC: set of points no three of which are collinear
complete arc: maximal w.r.t. inclusion

BOSE: In a projective plane of order g an arc has AT MOST g + 2
points. If g is odd then it has AT MOST g + 1 points.

OVALS, HYPEROVALS

EXAMPLES: CONICS in PG(2, q) (for g even an extra point can
be added.)
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Stability results in finite geometry: arcs

More common name: SEGRE type results

Theorem (SEGRE)

If A'is arc in PG(2, q) with |A] > g — \/q + 1 when q is even and
|Al > g — \/q/4 +7/4 when q is odd, then A is contained in an
arc of maximum size (that is, in an oval or hyperoval).

Several improvements: THAS, VOLOCH,
HIRSCHFELD-KORCHMAROS
Beautiful improvement:

Theorem (HIRSCHFELD-KORCHMAROS)

Let A be arc in PG(2,q) withq—2,/q+5 < |A| <q—/q+1.
Then A is contained in a larger arc of size q +2 or q — \/q + 1.
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Stability results in finite geometry: blocking sets

Smallest blocking sets: lines

2nd smallest: Baer subplanes, BRUEN (in Iy)

Stability of minimal blocking sets: in PG(2, g) small minimal
blocking sets have size in certain subintervals of [q + 1,3 (g + 1)),
SZT, SZIKLAI

In some cases small blocking sets can be classified /characterized:
BLOKHUIS, SZT, POLVERINO, POLVERINO-STORME
BLOKHUIS: In PG(2, p) there are no small blocking sets.
Another stability version:

Theorem (Erdés and Lovasz)

A point set of size q in PG(2, q), with less than

Vq+1(g+1—+/q+ 1) 0-secants always contains at least
g+ 1—+/q+ 1 points from a line.
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Stability of small blocking sets |

For planes PG(2, q), with g prime.

Theorem (Weiner-SzT)

Let B be a set of points of PG(2, q), g = p prime, that has at
most %(q +1)— B (B > 0) points. Suppose that the number of
O-secants, § is less than (3(3 + 1))2/2. Then there is a line that

contains at least q — q%fl points.

Note that for |B| = cq, ¢ > 1 the bound on ¢ in the above
theorem is ¢’q?.
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Stability of small blocking sets Il

Theorem (Weiner-SzT)

Let B be a point set in PG(2, q), g > 16, of size less than

%(q + 1). Denote the number of 0-secants of B by §, and assume

that ) 18| 1
. q+1- 3/2

6<m|n<q—1,q— q > 1

Then B can be obtained from a blocking set by deleting at most

5 1 o -
m —+ bl pOIntS Of It.

When |B| is relatively far from g and gets closer to 3(q + 1) then
the bound on ¢ gets worse.
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Sets of even type

lNg: projective plane of order g
set of even type: intersects each line in an even number of points
Only exist for g even. Hence from now on

g 1S EVEN

We shall concentrate on PG(2, q).

More general structures (e.g. Steiner systems): TALLINI
Smallest example has g + 2 points: hyperoval.

Small sets of even type are close to arcs, hence we cannot expect a
stability result for arcs from above.
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A class of examples

KORCHMAROS, MAZZOQCCA:

(g + t, t)-arc of type (0,2, t): set of g + t points such that every
line meets it in either 0,2 or t points

In PG(2, ) KORCHMAROS, MAZZOCCA: t divides g
Conjecture that for every 4|t|qg there is such an arc

GACS, WEINER: t-secants are concurrent

Constructions: KM, GW infinite classes, e.g. for t = ,/q.

VANDENDRIESSCHE: infinite class for t = q/4

Sporadic ones: g = 32, t = 4, KEY, MCDONOUGH, MAVRON
even more examples: LIMBUPASIRIPORN
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Sets of almost even type

set of almost even type: has only few odd secants
Typical example: modify € pts of a set of even type
No. of odd secants is roughly 6 = e(q + 1).

AIM: show that a set of almost even type is “typical” if d=no. of
odd-secants is small

This is a stability theorem

Further motivation: small Kakeya-sets in AG(2, g), g even
BLOKHUIS, DE BOECK, MAZZOCCA, STORME

Rough picture: dual of a (small Kakeya set + line of infinity) is a
(g + 2)-set having a small number of odd secants (almost all
intersecting lines are 2-secants) and a special point through which
there pass only 2-secants. More details later.
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Our stability theorem

Theorem (Weiner-Szényi)

Assume that the point set H in PG(2,q), 16 < q even, has 0
odd-secants, where 6 < (|/q] +1)(g+1— [\/q]). Then there
exists a unique set H' of even type, such that

(HUR)\ HOH)| = [55].

So “small” on the previous slides is roughly g,/q and the number
of modified points is what we expect.
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Application to arcs

An arc with k points has k(g + 2 — k) odd secants (tangents).

Hence for a complete k-arc in PG(2, g), g even we (almost) get
SEGRE's bound, namely we get

k<q-—|vq+1

This is sharp for g square (proved earlier with essentially the same
method by WEINER).

Also applies for sets, where “almost all” lines are 2-secants.
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No. of lines intersecting a point set of size (g + 2)

The minimum no. of lines is obtained for hyperovals. The next
result gives the stability of hyperovals.

Theorem (Blokhuis, Bruen)

Let H be a point set in PG(2,q), q even, of size g + 2. Assume
that the number of lines meeting H in at least one point is

(qu) + v, where v < %. Then H is a hyperoval or there exist two
points P and Q, so that (H \ P)U Q is a hyperoval.

One cannot go further, since by deleting 2 points from a

(g + 4,4)-arc of type (0,2,4) one gets a set of size g + 2 having
fewer lines meeting it in at least one point than a hyperoval +2
points, see the next slide.
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(g + 2)-sets with few lines meeting it

Sets with few lines meeting them are almost arcs.

Theorem

Let H be a point set in PG(2,q), 16 < g even, of size q + 2.
Assume that the number of lines meeting H in at least one point is
(73%) + v, where v < 1(|\/q] +1)(q+ 1 — [\/q)). Then there
exists a set H* of even type such that

(HUH*)\ (HNH)| <

q+1

Note that the number of points that have to be modified is again
what we expect.
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Small Kakeya sets

How to obtain a small dual Kakeya set?

© Start from a small set of even type
@ Delete some of its points to get a (g + 2)-set (with a special
point through which there are only 2-secants)
Smallest ones: hyperoval, hyperoval +1 points, (g + 4, 4)-arc of
type (0,2,4), hyperoval 2 points, ....

Problem: we do not know enough about sets of even type of size
g + 6 (do they exist?) or about larger ones ...
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THANK YOU

THANK YOU FOR YOUR ATTENTION
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