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Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice
structure by modifying it a little bit.

nice: e.g. extremal in some sense
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Stability theorems

Stability theorem:
An almost nice structure can always be obtained from a nice
structure by modifying it a little bit.

nice: e.g. extremal in some sense

A prototype of a stability theorem:

Turán graph (T (n, p)), extremal graph with n vertices, not
containing Kp+1. Number of edges of T (n, p):=t(n, p).

Stability of the Turán graph: ∀ε > 0, ∃δ and n(ε), so that:
if the graph Gn on n vertices, n > n(ε), does not contain Kp+1,
and the number of edges > t(n, p)− δn2

⇒ Gn can be obtained from T (n, p), by changing (adding or
deleting) ≤ εn2 edges. (ERDŐS, SIMONOVITS)
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A special case

Theorem (Mantel)

A K3-free (simple) graph on n vertices has at most m ≤ n2/4
edges.

Let {x , y} be an edge. Then N(x) ∩ N(y) = ∅, hence
deg(x) + deg(y) ≤ n. Summing for all edges we get

∑

x

(deg(x))2 ≤ nm.

As
∑

x(deg(x))
2 ≥ n(

∑

x(deg(x)/n)
2 = 4m2/n we get Mantel’s

result.

Towards a stability theorem: 1) In case of equality the graph is
bipartite with classes of size n/2, n/2 (or (n + 1)/2, (n − 1)/2.
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A special case: stability version

2) If deg(x) + deg(y) = n, then the graph is bipartite. Hence if
m > n(n − 1)/4, then the graph is bipartite. Indeed, N(x) and
N(y) are the two classes (these are always independent sets).

3) What happens if deg(x) + deg(y) = n − 1?
If the remaining point is connected to a points in N(x) and b
points in N(y) then we loose ab edges and win a+ b edges.
Maximum no. of edges: a = 1 (or b = 1): 1 + (n − 1)2/4 if n is
odd, 1 + ((n − 1)2 − 1)/4, if n is even.

4) Otherwise, m ≤ n(n − 2)/2.
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A special case: Erdős–Simonovits

Assume we find two adjacent points with
deg(x) + deg(y) ≥ (1− γ)n. Then N(x) and N(y) induce a large
bipartite subgraph. To get this from the original graph, we have to
modify at most (γ − γ/2)n2 edges.

If there is no such pair (x , y) then there are at most (1− γ)n2/4
edges. Hence for δ = γ/4, ε = (4δ − 8δ2) is good if n is large
enough.

More general stability theorems take into account the number of
copies of Kp+1’s in G : LOVÁSZ, SIMONOVITS
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A classical result in extremal combinatorics

ERDŐS-KO-RADO, 61: If F is a k-uniform intersecting family of
subsets of an n element set S , then |F| ≤

(

n−1
k−1

)

provided 2k ≤ n.

If 2k + 1 ≤ n, then equality holds if and only if F is the family of
all subsets containing a fixed element s ∈ S . In other words,
τ(F) = 1. What if τ ≥ 2?

This was answered by HILTON, MILNER, see next slide.

Non-uniform version (exercise!): |F| ≤ 2n−1.

Proof: (matching: X , S \ X ) At most one can be in F .
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A corresponding stability result

Theorem (Hilton-Milner, 67)

Let F ⊂
([n]
k

)

be an intersecting family with k ≥ 3, 2k + 1 ≤ n and

τ(F) ≥ 2. Then |F| ≤
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1. The families
achieving that size are

for any k-subset F and x ∈ [n] \ F the family

FHM = {F} ∪ {G ∈
([n]
k

)

: x ∈ G ,F ∩ G 6= ∅},
if k = 3, then for any 3-subset S the family
F3 = {F ∈

(

[n]
3

)

: |F ∩ S | ≥ 2}.

Vector space analogues of EKR theorem: HSIEH,
GREENE-KLEITMAN, FRANKL-WILSON

Vector space analogues of HM: BLOKHUIS, BROUWER,
CHOWDHURY, FRANKL, MUSSCHE, PATKÓS, SZT for
n ≥ 2k + 1

BLOKHUIS, BROUWER, SZT: for n = 2k
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Another extremal problem in graph theory

A bipartite graph G = (A,B ,E ) is Kα,β-free if it does not contain
α nodes in A and β nodes in B that span a subgraph isomorphic to
Kα,β . We call (|A|, |B |) the size of G . The maximum number of
edges a Kα,β-free bipartite graph of size (m, n) may have is
denoted by Zα,β(m, n), and is called a Zarankiewicz number.

Other formulation: Max. no. of 1’s in an m × n 0/1 matrix
without having an α× β submatrix with only 1’s.

Results for general α, β: KŐVÁRI–T. SÓS– TURÁN,
KOLLÁR–RÓNYAI–SZABÓ, ALON–RÓNYAI–SZABÓ

Constructions and bounds: GUY, BROWN, FÜREDI and the
authors above.

We shall focus on the case α = β = 2.
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Reiman’s theorem

Theorem (Reiman)

Let G = (A,B ,E ) be a K2,2-free bipartite graph of size (n, n).
Then the number of edges in G,

|E | ≤ n

2
(1 +

√
4n − 3).

Equality holds if and only if n = k2 + k + 1 for some k and G is
the incidence graph of a projective plane of order k.

For bipartite graphs of size (m, n) the corresponding bound is

|E | ≤ 1

2
(n +

√

n2 + 4nm(m − 1)),

and in case of equality we have a 2− (n, k , 1) Steiner system with
m = v(v − 1)/k(k − 1) blocks.
Later REIMAN and ROMAN found that extremal constructions
with larger α, β are related to block designs.
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Roman’s bound

Theorem (Roman’s bound)

Let G = (A,B ,E ) be a Ks,t-free bipartite graph of size (m, n), and
let p ≥ s − 1. Then the number of edges in G,

|E | ≤ (t − 1)
(

p
s−1

)

(

m

s

)

+ n · (p + 1)(s − 1)

s
.

Equality holds if and only if every vertex in B has degree p or p+1
and every s-tuple in A has exactly t − 1 common neighbours in B.
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Stability version?

What would be a stability version of Reiman’s theorem?
Several possibilities (all too general):

1 If a bipartite graph has somewhat less edges than projective
planes (or designs), the it can be embedded in a plane (or
design).

2 If m and n are close to the parameters of a projective plane
(or a design) then the extremum in Zarankiewicz’ problem can
be obtained by deleting/adding vertices (and perhaps edges)
from a plane (or a design).

We would need incidence structures close to a projective/affine
plane or a design. Candidates: linear spaces, partial projective
planes etc.
The corresponding embeddability results are typically not strong
enough.
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Stability of projective planes

Result (Metsch)

Let n ≥ 15, (P,L, I) be an incidence structure with
|P| = n2 + n+ 1, |L| ≥ n2 + 2 such that every line in L is incident
with n + 1 points of P and every two lines have at most one point
in common. Then a projective plane Π of order n exists and
(P,L, I) can be embedded into P.

Lemma

Let n ≥ 15, G = (P,L, I) be an incidence graph with
|P| = n2 + n+ 1, |L| ≥ n2 + 2 such that every line in L is incident
with at least n + 1 points of P, and every two lines have at most
one point in common. Then a projective plane Π of order n exists,
and (P,L, I) can be embedded into P; specially, every line in L is
incident with exactly n + 1 points of P.
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Consequence for the Zarankiewicz problem

Theorem (Damásdi, Héger, SzT)

Let n ≥ 15, c ≤ n/2. Then

Z2,2(n
2 + n + 1− c , n2 + n + 1) ≤ (n2 + n + 1− c)(n + 1).

Equality holds iff a projective plane of order n exists. Moreover,
graphs giving equality are subgraphs of the incidence graph of a
projective plane of order n.

Is it true that Z2,2(n
2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) for every

large enough n?
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Subgraph-closed families

Let F(m, n) = {G = (A,B) ∈ F : |A| = m, |B | = n}, and let
exF (m, n) = max{e(G ) : G ∈ F(m, n)}, and let
ExF (m, n) = {G ∈ F(m, n) : e(G ) = exF (m, n)}. Elements of
ExF (m, n) are called extremal.

Theorem

Let F be a subgraph-closed family of bipartite graphs, and let
exF (m, n) ≤ e = a(d + 1) + bd, 0 ≤ a, b ∈ N, m = a+ b, d ∈ N.
Let c ∈ N.

1 If b = 0, then exF (m + c , n) ≤ (m + c)(d + 1).

2 If b > 0 or exF (m + 1, n) ≤ e + d, then
exF (m + c , n) ≤ e + cd.

Moreover, in both cases equality for some c ≥ 1 implies that
equality holds for all c ′ ∈ N, 0 ≤ c ′ < c as well, and any
G ∈ ExF (m + c , n) induces a graph from ExF (m + c − 1, n).
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Around affine planes

A useful embedding result for the complement of two lines in a
projective plane.

Result (Totten)

Let S = (P,L) be a finite linear space (that is, an incidence
structure where any two distinct points are contained in a unique
line) with |P| = n2 − n, |L| = n2 + n − 1, 2 ≤ n 6= 4, and every
point having degree n + 1. Then S can be embedded into a
projective plane of order n.
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A consequence for the Zarankiewicz problem

Proposition (Damásdi, Héger, SzT)

Let c ∈ N. Then

Z2,2(n
2 + c , n2 + n) ≤ n2(n + 1) + cn,

Z2,2(n
2 − n + c , n2 + n − 1) ≤ (n2 − n)(n + 1) + cn,

Z2,2(n
2 − 2n + 1 + c , n2 + n − 2) ≤ (n2 − 2n + 1)(n + 1) + cn,

if n ≥ 4.

Equality can be reached in all three inequalities if a projective
plane of order n exists and c ≤ n + 1, or c ≤ 2n, or c ≤ 3(n − 1),
respectively.
Moreover, if c ≤ n + 1, or c ≤ 2n and 2 ≤ n 6= 4, then graphs
reaching the bound in the first two cases, can be embedded into a
projective plane of order n.
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What would be the real question?

What is Z2, 2(m, n) if both m and n are close to k2 + k + 1?
Warning: n = m = 8: two examples, one from an affine plane of
order 3, another a Fano plane plus one point! (They are different
even from the combinatorial point of view.)

Other good question: if we have somewhat less than
n
2 (1 +

√
4n − 3) edges in a bipartite graph of size (n, n) can one

obtain it from the incidence graph of a projective plane by deleting
some edges?

The previous embedding theorems (Metsch,Totten) are special
cases, we don’t know such a general result.
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Arcs in finite planes

ARC: set of points no three of which are collinear

complete arc: maximal w.r.t. inclusion

BOSE: In a projective plane of order q an arc has AT MOST q + 2
points. If q is odd then it has AT MOST q + 1 points.

OVALS, HYPEROVALS

EXAMPLES: CONICS in PG(2, q) (for q even an extra point can
be added.)
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Stability results in finite geometry: arcs

More common name: SEGRE type results

Theorem (SEGRE)

If A is arc in PG(2, q) with |A| ≥ q −√
q + 1 when q is even and

|A| ≥ q −√
q/4 + 7/4 when q is odd, then A is contained in an

arc of maximum size (that is, in an oval or hyperoval).

Several improvements: THAS, VOLOCH,
HIRSCHFELD-KORCHMÁROS
Beautiful improvement:

Theorem (HIRSCHFELD-KORCHMÁROS)

Let A be arc in PG(2, q) with q − 2
√
q + 5 < |A| < q −√

q + 1.
Then A is contained in a larger arc of size q + 2 or q −√

q + 1.
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Stability results in finite geometry: blocking sets

Smallest blocking sets: lines
2nd smallest: Baer subplanes, BRUEN (in Πq)
Stability of minimal blocking sets: in PG(2, q) small minimal
blocking sets have size in certain subintervals of [q + 1, 32(q + 1)),
SZT, SZIKLAI
In some cases small blocking sets can be classified/characterized:
BLOKHUIS, SZT, POLVERINO, POLVERINO-STORME
BLOKHUIS: In PG(2, p) there are no small blocking sets.
Another stability version:

Theorem (Erdős and Lovász)

A point set of size q in PG(2, q), with less than√
q + 1(q + 1−√

q + 1) 0-secants always contains at least
q + 1−√

q + 1 points from a line.
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Stability of small blocking sets I

For planes PG(2, q), with q prime.

Theorem (Weiner-SzT)

Let B be a set of points of PG(2, q), q = p prime, that has at
most 3

2(q + 1)− β (β > 0) points. Suppose that the number of
0-secants, δ is less than (23(β + 1))2/2. Then there is a line that

contains at least q − 2δ
q+1 points.

Note that for |B | = cq, c ≥ 1 the bound on δ in the above
theorem is c ′q2.
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Stability of small blocking sets II

Theorem (Weiner-SzT)

Let B be a point set in PG(2, q), q ≥ 16, of size less than
3
2(q + 1). Denote the number of 0-secants of B by δ, and assume
that

δ < min

(

(q − 1)
2q + 1− |B |
2(|B | − q)

,
1

2
(q −√

q)3/2
)

. (1)

Then B can be obtained from a blocking set by deleting at most
δ

2q+1−|B| +
1
2 points of it.

When |B | is relatively far from q and gets closer to 3
2(q + 1) then

the bound on δ gets worse.
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Sets of even type

Πq: projective plane of order q

set of even type: intersects each line in an even number of points
Only exist for q even. Hence from now on

q IS EVEN

We shall concentrate on PG(2, q).

More general structures (e.g. Steiner systems): TALLINI
Smallest example has q + 2 points: hyperoval.

Small sets of even type are close to arcs, hence we cannot expect a
stability result for arcs from above.

SzT Stability theorems in finite geometry



A class of examples

KORCHMÁROS, MAZZOCCA:

(q + t, t)-arc of type (0, 2, t): set of q + t points such that every
line meets it in either 0,2 or t points

In PG(2, q) KORCHMÁROS, MAZZOCCA: t divides q
Conjecture that for every 4|t|q there is such an arc

GÁCS, WEINER: t-secants are concurrent

Constructions: KM, GW infinite classes, e.g. for t =
√
q.

VANDENDRIESSCHE: infinite class for t = q/4

Sporadic ones: q = 32, t = 4, KEY, MCDONOUGH, MAVRON
even more examples: LIMBUPASIRIPORN
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Sets of almost even type

set of almost even type: has only few odd secants
Typical example: modify ε pts of a set of even type
No. of odd secants is roughly δ = ε(q + 1).

AIM: show that a set of almost even type is “typical” if δ=no. of
odd-secants is small

This is a stability theorem

Further motivation: small Kakeya-sets in AG(2, q), q even
BLOKHUIS, DE BOECK, MAZZOCCA, STORME

Rough picture: dual of a (small Kakeya set + line of infinity) is a
(q + 2)-set having a small number of odd secants (almost all
intersecting lines are 2-secants) and a special point through which
there pass only 2-secants. More details later.
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Our stability theorem

Theorem (Weiner-Szőnyi)

Assume that the point set H in PG(2, q), 16 < q even, has δ
odd-secants, where δ < (⌊√q⌋+ 1)(q + 1− ⌊√q⌋). Then there
exists a unique set H′ of even type, such that
|(H ∪H′) \ (H ∩H′)| = ⌈ δ

q+1⌉.

So “small” on the previous slides is roughly q
√
q and the number

of modified points is what we expect.
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Application to arcs

An arc with k points has k(q + 2− k) odd secants (tangents).

Hence for a complete k-arc in PG(2, q), q even we (almost) get
SEGRE’s bound, namely we get

k ≤ q − ⌊√q⌋+ 1.

This is sharp for q square (proved earlier with essentially the same
method by WEINER).
Also applies for sets, where “almost all” lines are 2-secants.
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No. of lines intersecting a point set of size (q + 2)

The minimum no. of lines is obtained for hyperovals. The next
result gives the stability of hyperovals.

Theorem (Blokhuis, Bruen)

Let H be a point set in PG(2, q), q even, of size q + 2. Assume
that the number of lines meeting H in at least one point is
(

q+2
2

)

+ ν, where ν ≤ q
2 . Then H is a hyperoval or there exist two

points P and Q, so that (H \ P) ∪ Q is a hyperoval.

One cannot go further, since by deleting 2 points from a
(q + 4, 4)-arc of type (0, 2, 4) one gets a set of size q + 2 having
fewer lines meeting it in at least one point than a hyperoval ±2
points, see the next slide.
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(q + 2)-sets with few lines meeting it

Sets with few lines meeting them are almost arcs.

Theorem

Let H be a point set in PG(2, q), 16 < q even, of size q + 2.
Assume that the number of lines meeting H in at least one point is
(

q+2
2

)

+ ν, where ν < 1
4(⌊

√
q⌋+ 1)(q + 1− ⌊√q⌋). Then there

exists a set H∗ of even type, such that
|(H ∪H∗) \ (H ∩H∗)| ≤ ⌈ 4ν

q+1⌉.

Note that the number of points that have to be modified is again
what we expect.
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Small Kakeya sets

How to obtain a small dual Kakeya set?

1 Start from a small set of even type

2 Delete some of its points to get a (q + 2)-set (with a special
point through which there are only 2-secants)

Smallest ones: hyperoval, hyperoval ±1 points, (q + 4, 4)-arc of
type (0, 2, 4), hyperoval ±2 points, ....

Problem: we do not know enough about sets of even type of size
q + 6 (do they exist?) or about larger ones ...
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THANK YOU

THANK YOU FOR YOUR ATTENTION
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