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The näıve method

Algorithm:

1 Get married!

2 Stop.

Several disadvantages:

might be very time consuming

unreliable

just doubles the workload for most women
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The näıve method

Algorithm:

1 Get married!

2 Stop.

Several disadvantages:

might be very time consuming

unreliable

just doubles the workload for most women

Viktor V́ıgh SZTE Bolyai Institue How to sew in practice?
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Introduction

The rough idea of sewing is the following: given a polytope P with
as many faces as possible, we would like to constuct a new
polytope P+ such that

vertP+ = vertP ∪ {x̄},
with x̄ /∈ P, and P+ has still as many faces as possible.
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Introduction

We shall work in the d-dimensional Euclidean space Ed . We will
usually assume that d is even, in this case we write d = 2m.

Definition

A d-polytope P is neighbourly if every bd2 c vertices determine a
face of P.

This is the strongest meaningful definition, since if every
bd2 c+ 1 vertices determine a face of P, then P is a simplex.

All 2- and 3-polytopes are neighbourly.

If d is even, then neighbourly polytopes are simplicial.
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Are there neighbourly polytopes?

Cyclic polytopes

Consider the moment curve

m(t) = (t, t2, t3, . . . , td)

in Ed , and choose n points v1 = m(t1), v2 = m(t2), . . . , vn = m(tn)
(t1 < t2 < . . . < tn) on it. The polytope

C (n, d) = [v1, v2, . . . , vn]

is called the d-dimensional cyclic polytope with n vertices. The
combinatorial structure of this polytope is independent of the
points chosen, that is any two of them are combinatorially
equivalent. Furthermore, if a polytope P is combinatorially
equivalent to C (n, d) for some n and d , then P is also called a
cyclic polytope.
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About the facelattice of cyclic polytopes

Gale’s evenness condition

Let n > 2m + 2, and let C = C (n, 2m) be a cyclic polytope as
above, and set vn+1 = v1. Then F is a facet of C if, and only if,
there exist i1 < i2 < . . . < im such that∣∣∣∣∣

m⋃
k=1

{vik , vik+1}

∣∣∣∣∣ = 2m and F =

[
m⋃

k=1

{vik , vik+1}

]
.

Remark: Every set V of vertices determines a face if, and only if,
V is a subset of a facet, thus Gale’s evenness condition gives us all
the information about the face lattice of C (n, 2m).

The proof of the statement depends on the fact, that if a
hyperplane H intersects m(t) in exactly 2m points, then every
intersection point is a cutpoint (the curve ”passes through” the
hyperplane). The neighbourlyness of C (n, 2m) readily follows from
the remark. o/2
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History

It was conjectured by Motzkin that all neighbourly polytopes are
cyclic. This was refuted by constructing certain 4-dimensional
polytopes with 8 vertices. Note, that if n ≤ 2m + 3 then we obtain
a cyclic polytope.

In 1970 McMullen proved the celebrated Upper Bound Theorem,
and neighbourly polytopes became the subject of special interest.
The theorem states that amongst the d-polytopes with n vertices,
neighbourly polytopes have the maximal number of k-faces (for all
meaningful k).

However, it remained a challenging task to construct neighbourly
polytopes other than the cyclic ones.

In 1982 Shemer introduced the idea of sewing which finally allowed
one to construct infinite families of neighbourly polytopes (but not
all neighbourly polytopes can be obtained by sewing).
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Quotient polytopes

Definition

Let P be a d-polytope, x0 be a vertex of P, and let H be a
hyperplane that separates x0 from the other vertices of P. Then
H ∩ P is a (d − 1)-polytope called the vertex figure of P at x0.

P/{x0} = H ∩ P.

F ∈ F(P/{x0}) if and only if [F , x0] ∈ F(P) (P simplicial).

(F(P/{x0}),⊆) is a sublattice of (F(P),⊆).

Any two vertex figures of P at x0 are combinatorially
equivalent.
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Quotient polytopes

Lemma

Let P be a d-polytope, and G be a face of P. Consider the
sublattice L̂ of the face lattice of P that is generated by G. Then
there exists a polytope P̂ with the face lattice given by L̂.
Furthermore, P̂ is unique up to combinatorial equivalence.

Definition

We call the polytope P̂ the quotient polytope of P with respect to
G , and denote it as P/G .

We can consider quotient polytopes as iterated vertex figures. o/2
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Universal faces

Definition (Universal face)

Let Q be a neighbourly 2m-polytope, and let Φ be a k-face of Q,
0 ≤ k ≤ d − 1. We call Φ a universal k-face if [Φ,A] is a face of
Q for every A ⊆ (V(Q) \ V(Φ)) where

|A| ≤
⌊

1

2
(2m − |V(Φ)|)

⌋
.

Equivalently, Φ is universal if either Q/Φ is a neighbourly polytope
with |V(Q)| − |V(Φ)| vertices or Φ is a facet of Q.

Lemma

Let Q be a neighbourly 2m-polytope, and Φ,Ψ be faces of Q with
Φ ⊂ Ψ, and assume that Φ is universal in Q. Then Ψ is universal
in Q if and only if Ψ/Φ is universal in Q/Φ.
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Universal faces of cyclic polytopes

Extended Gale’s Evenness Condition

Let n > 2m + 2 and C = C (n, 2m) be a cyclic polytope with the
vertex array v1 = m(t1), . . . , vn = m(tn), t1 < t2 < . . . < tn, and
vn+1 = v1. Then U ∈ U2j−1(C ), for some j = 1, . . . ,m if, and only
if, there exist i1 < i2 < . . . < ij such that∣∣∣∣∣

j⋃
k=1

{vik , vik+1}

∣∣∣∣∣ = 2j and U =

[
j⋃

k=1

{vik , vik+1}

]
.

In other words, odd dimensional universal faces are disjoint unions
of universal edges.
Note that, by the previous lemma disjoint unions of universal edges
are always universal faces, however the converse is not true in
general.
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Universal tower

Definition

Let Q be a neighbourly 2m-polytope, and let T = {Φj}mj=1, where
Φj ∈ U2j−1(Q) for j = 1, . . . ,m such that Φ1 ⊂ Φ2 ⊂ . . . ⊂ Φm.
We say that T is a universal tower of Q.

We write
Φ1 = [x1, y1],

and for j = 2, . . . ,m,

Φj = [xj , yj ,Φj−1].

When necessary, we set Φ0 = ∅. o/2
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The idea of sewing

Let Q be a 2m-dimensional polytope, and T a tower in Q. For
every facet F of Q let iF be the maximal integer with ΦiF ⊆ F .
There exists a point x̄(T ) = x̄ such that x̄ sees F if and only if iF
is odd.

Theorem (I. Shemer, 1982)

With the notation above Q+ = [Q, x̄ ] is a neighbourly polytope
with vertQ+ = vertQ ∪ {x̄}.

Note that not every neighbourly polytope has a universal tower,
but we can start with a cyclic polytope, and it can be shown that a
sewn polytope always has a universal tower, so the sewing process
never stops.
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Beneath and beyond

Φ0 beneath Category I

Φ1 beyond Category II

Φ2 beneath Category III

...

Viktor V́ıgh SZTE Bolyai Institue How to sew in practice?



Problem

How to sew in practise?
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A Combinatorial Equivalence

Theorem (R. Trelford, V. V. (2011+))

Let Q be a neighbourly 2m-polytope, T = {Φj}mj=1 be a universal

tower in Q. Let Q+ = [Q, x̄ ] be sewn through T , and
(Q/Φ1)+ = [Q/Φ1, z̄

∗] sewn through T /Φ1 . Then

(Q/Φ1)+ ∼= Q+/[x1, x̄ ] ∼= Q+/[y1, x̄ ].

The bijection of the vertices is given by

v∗ 7→ v∗∗ if v ∈ V(Q) \ {x1, y1}
z̄∗ 7→ y∗∗1 (or z̄∗ 7→ x∗∗1 )

Lemma

Any facet of Q+ that is not a facet of Q contains x̄ and at least
one of x1 and y1.
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Generalization

Theorem (R. Trelford, V. V., 2011+)

With the notation above;

(P/Φi )
+

ϕ∼= P+/[Φi−1, xi , x̄ ]
(∼= P+/[Φi−1, yi , x̄ ]

)
for 1 ≤ i ≤ m,

with the bijection ϕ of the vertices given by v∗ 7→ v∗∗ if
v ∈ V(P) \ V(Φi ), and ȳ∗ 7→ y∗∗i . For
v ∈ V(P+)\(V(Φi−1) ∪ {xi , x̄}), v∗∗ denotes the corresponding
vertex of P+/[Φi−1, xi , x̄ ].
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Keeping track of universal faces

Theorem. (R. Trelford, V. V., 2011+)

Let U ∈ U2k−1(P), 0 ≤ i < k < m, Φi ⊆ U and xi+1 /∈ U. Then
U ∈ U2k−1(P+) if, and only if, i is even and
[U, x̄ , xi+1] ∈ U2k+1(P+).

Based on this theroem, the sewing algorithm can be extended such
that given the list of all odd dimensional universal faces of P, we
obtain the same information about P+. The running time is a
log-factor worse than the theoretical best possible.
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Dimension (P/Φm−1)+ (P/Φm−2)+ · · · (P/Φ2)+ (P/Φ1)+ P+

2m − 1 m2−m+2
2

↗ ↓
2m − 3 m2−3m+4

2
m2−m+4

2
↗ ↓ ↗ ↓

...
...

...
...

↓ ↗ ↓ ↗ ↓
5 m2−3m−2

2
m2−m−4

2
m2+m−4

2
↗ · · · ↗ ↓ ↗ ↓ ↗ ↓

3 2 . . . m2−3m
2

m2−m−2
2

m2+m−2
2

↗ ↓ ↗ · · · ↗ ↓ ↗ ↓ ↗ ↓
1 1 3 . . . m2−3m+2

2
m2−m

2
m2+m

2

Table: The order of the steps in Algorithm 2
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Open questions

T. Bisztriczky (2000) generalized the sewing method for odd
dimensional polytopes. It is very natural to ask wheter the
results extend into odd dimensions.

Find a new construction method to obtain neighbourly
polytopes.

In particular examine the family of neighbourly polytopes that
are subpolytopes of totally sewn polytopes.
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Thank you very much for your attention!
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