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T he notion of a Finsler metric
Approach I: Vp € M Ly : T,M — RT norm

Lp(u) >0 =0<=u=0

Lp(A(u)) = ALp(w) A > 0 positively homogeneous
Lp(u+v) < Lp(u) + Lp(v)  convexity

L2 :TM\ {0} — RT is of class C2

Lp(—u) = Lp(u) symmetrical/ reversible

indicatrix: Zp = {u € TyM | Lp(u) = 1}



Approach II: variational problem

b
/ L(x(t),z(t))dt — Euler-Lagrange equations

a
1T positively homogenous

Riemannian case: L(z,&) = /g;;(z)d"d/

| | 1 9212
Finslerian case: g;;(z,y) = -
2 0y*oyJ

g(z,y): Riemannian metric in the Finsler vector bundle VT M

Approach III: d: M x M — RT is a metric
veTpM;c:[0,1] — M with ¢(0) =p, ¢(0) = v

Ly(v) = t“_% d(p,tC(t))




Example 1: Funk metric
2 C R™ strictly convex

d(p,q) = |ﬂ|z —p
y |z — q]
4+ c o0
PT L)

VIv2 = (p121y?2 = (2,9)?) + (p,v)

B"=Q; L(y)=
. L(y) 112

— projectively flat

— constant negative curvature —1/4
— non-—reversible

— Randers metric

Example 2: Hilbert metric
~ 1 1
d(p,q) = E(d(p, q) +d(q,p)) = =

mCZ—M:W—pU'
2 z—q| |v—gq



Example 3: Katok’s example (1973), W. Ziller (1982)

S2: standard Riemannian metric o

d4: one parameter group of rotations
leaving the north & south poles invariant
X: Killing vector field

G Killing form

LFS(xay) — O‘(m7y) + €B($,y)

Theorem: For any irrational € a curve c is a closed geodesic of
L: if and only if ¢ is a closed geodesic of « and invariant with
respect to P;.

Properties:
27 27

— the length of the two closed geodesics: ,
14+ 1—¢

— L¢ is a Finsler metric <—= |g| < 1



Isometries of Finsler manifolds

(M, L) : Finsler manifold

d : the induced distance function, not necessarily reversible
The length of a curve in (M, L) is given as usual:

0(c) = /O ' L(é)dt.

The induced distance d between z,y € M can be defined by
taking the infimum of the length of all curves joining x to y:

d(z,y) = inf{£(c) [c(0) = =,c(1) =y}



1. an isometry: a diffeomorphism ¢ : M — M of M onto itself
which preserves L:

L(dp(w)) = L(u)  VueTM

2. an isometry: a mapping ¢ : M — M of M onto itself which
preserves the distance between each pair of points:

d(¢(x), p(x)) = d(z,y) Vo, ye M

[Deng, Shaogiang and Hou, Zixin: The group of isometries of
a Finsler space. Pacific J. Math. 207 (2002), no. 1, 149—-155]
generalizes the Myers-Steenrod theorem in Riemannian geome-

try:

the two definitions are equivalent.



Theorem. Let z € M and Bg(r) be a tangent ball of T,(M)
such that exp, is a Cl diffeomorphism from B.(r) onto B;;"(r).
For A,B € By(r), A% B, let a =exp, A,b = exp, B. Then

L(x,A— B) 1
d(a,b) ’
as (A, B) — (0,0).
Theorem. Let |||, || |2 be two Minkowski norms on R". Let

¢ be a mapping of R" into itself such that ||¢(A) — ¢(B)|l2 =
|A — Bl|1, VA, B € R*. Then ¢ is a diffeomorphism.

Corollary. Let (M,L) be a Finsler space and ¢ be a distance-
preserving mapping of M onto itself. Then ¢ is a diffeomorphism.

Theorem. [Deng, Hou, 2002] The group of isometries I(M)
is a Lie transformation group. The isotropy subgroup I;(M) is
compact.



Area in Minkowski spaces

(R™, L): Minkowski space
B={veR" : L(v)<1}: Minkowski ball

Minkowski measure of D C R";

|| Dl E
1Dlar =

~ IBlle

independent of || - ||g



Angles in Finsler geometry

Finsler angle of Finsler vectors;, U,V € V,,T' M.
Vou(U, U)\/gu(V, V)

<p(U,V) = arccos

Minkowski angle of tangent vectors, rays in the tangent spaces
u,v. non-parallel vectors in T, M,

2 . generated linear space by u,v;

B2 =3>nNB; D=conv(u,v)N B2

<):M(’U/,’U) :€2||DHM7 c = +1

Properties: additive, symmetric; the measure of straight angle
is w iff L is absolutely homogeneous (reversible).



Observation. ¢ : (M,Ly) — (M, L>) is an isometry if and only
for indicatrices

d(b(Ip) = f¢(p) Vp € M.

© ) = Li(u)Lo(dp(—

L1(w) L) =

Lo(dg(u)) = La(L1(u)de(

Theorem. [Tamassy, 2007)]

A diffeomorphism ¢ : (M,L1) — (M,L>) is an isometry if and
only if d¢ preserves the 2-dimensional area and the MinkowskKi
angle.

Proof. Necessity: d¢ is linear = preserves the ratio of areas :

wlds(D)lle _ ®IDlle _
B2z 1152l

lde (D)l 7 =



Sufficiency. Suppose: ¢ : (M,L1) — (M, L>) diffeomorhism;
preserves area and angle. Let By = (d¢) 1 (By,))-

If fp #* 1,, then there are two nearby rays u,v such that

conv (u,v) N By C conv (u,v) N By,

however

angle

lconv (u, v)NBpllar = llconv (dp(u), dp(v)NBy 7 ‘=" llconv (u, v)NB;

Remark: In this case the Finsler angle is preserved, too.



H. C. Wang, J. London Math. Soc. 22 (1947):
n#4, dmI¥ (M) > %n(n —1)4+1 = (M, L) is Riemannian

Ku Chao-Hao, Sci. Records N.S. 1 (1957), 215— 218.
A. 1. Egorov, Gos. Ped. Inst. Ucen. Zap. (1974), 17—-21.

T here exist non-Riemannian Finsler spaces with

dim 1f'(M) = %n(n —1)41.



[Szabo, Z. 1. Generalized spaces with many isometries. Geom.Dedicata
11 (1981), no. 3, 369-383.]:

Study of all the non-Riemannian Finsler spaces having a group
of motions of the largest order.

Theorem 1. If (M, L) is a non-Riemannian Finsler space of di-
mension n > 4 and its group of motions I(M) is of order
n(n—1)/2 4 1, it must be of one of the following types:

(1) (M,L) is a symmetric Berwald space which is the non-
Riemannian Cartesian product of Riemannian spaces U [resp.
V], where U =R, S! and V = Rr—1 gn—1 gn—-1 pn—1(R),

(2) (M, L) is a BLF™-space.

Theorem 2. Every BLF™ space (n > 2) is a non-Berwaldian
Wagner space which is conformal to a Minkowski space.



H™. hyperbolic space

G = {isometries of H" leaving S and S* invariantly}
GY isotropy group at p € H"

r:(0,27] = R

(o, r7(p)) indicatrix of a Minkowski (non-Euclidean) norm

g* Riemannian metric tensor of H"

1X]| = /" (X, X)

*(N,X
L(X) = r(arc tanHX_ggf(N,X))N”)||X||




Alan Weinstein (1968):

Let f be a an isometry of a compact oriented Riemannian man-
ifold M. Suppose that M has positive sectional curvature and
that f preserves the orientation of M if the dimension is even,
and reverses if it is odd. Then f has a fixed point: f(p) = p.

Weinstein’s Theorem for Finsler manifolds: (Kozma & Pe-
ter, 2006)

Let f be an isometry of a compact oriented positively homoge-
neous Finsler manifold M of dimension n. If M has positive flag
curvature and f preserves the orientation of M for n even and
reverses the orientation of M forn odd, then f has a fixed point.



flag curvature:
gy(R(V,y)y,V)
K(y,V) = ¢
gy(W, gy (V, V) — g2(y,V)

second variation formula:
Consider now the variation of o given by

> i (—e€,e) x[0,4] = M

dQEZ(O) = /(f{gd(VaUa VsU) = 95(R5(U),U) }dt
+9500)(£0(0),5(£)) — 95(0)(k0(0),(0))
+T50)(U(0)) — T4 (U(¥))

where T' = ¢ and U are the tangential and transversal vector
fields, resp; of the variation .



Proof:

Step 1:

Suppose that the isometry f has no fixed points:

f(x) # x for all x € M.

Since the manifold M is compact, the function h: M — R, given
by h(x) = d(x, f(x)) attains its minimum at a point x € M:
h(x) > 0.

The completeness of the manifold M implies that there exists a
minimizing normalized geodesic o : [0,4] joining z and f(x).
Show that the curves formed by ¢ and f oo form a geodesic.
Then dfz(0'(0))) = o'(£)).



Step 2:

Find a unit parallel vector field E(t) which is 95 (¢)—Orthogonal
complement of o(t).
Then dfz(E(0)) = E¥)).

Step 3:

Construct a variation 2 of o given by
> i (—€,e)x[0,4] - M
> (s,t) = expg(t)(sE(t)), s € (—e,e), t€[0,4].
Then
0
U(t) = 5 exPy(py (sE(1)|s=0 = E(®).

so the transversal vector of the variation > is parallel transported
along o.



Step 4:

The second variation formula reduces to:

d2ls l N
(0) = —/ 95 (R(U, 66, U)dt < 0,
ds? 0

which contradicts the minimality of the curve o, which joins x

and f(x).
Therefore d(x, f(x)) > 0 is impossible.

Chang Wan Kim (2007, J. Math. Kyoto):

M is oriented Finsler manifold with k-th Ricci curvature > k.
f is an isometry satisfying d(z, f(x) > w\/(k — 1)k.

(1) If M is even dimensional, then f reverses the orientation.
(2) If M is odd dimensional, then f is orientation preserving.




Killing vector field X € X(M) of (M,L): if any local one-
parameter transformation group of X consists of local isometries.

zeros of X <«—= fixed points of isometries
Chang Wan Kim (2007, J. Math. Kyoto):

M is an even-dimensional compact Finsler manifold of positive
flag curvature, then every Killing field has a zero.



Theorem [S. Deng, 2007]

(M, L): connected, forward complete

V={_{peM|X(p) =0} =UV;; V,are connected components.
e cach V; is a totally geodesic closed submanifold of M,
codimVj is even;

e Vx € V;,y € Vj,i # j there is a one-parameter family of
geodesics connecting x and y; = x and y are conjugate points.
e M compact,; then for the Euler number :

x(M) =) x(V;)

Corollary: the flag curvature is non-positive — V is empty or
connected.



