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Integrable systems of Calogero (Moser, Sutherland, Olshanetsky-
Perelomov, Ruijsenaars-Schneider) type describe point “particles”
moving on the line or on the circle.

These systems are closely connected to soliton theory, for exam-
ple to the KdV and sine-Gordon models, as well as to Yang-Mills
and Chern-Simons field theories, and are located at a crossroad of
important areas of mathematics.

They enjoy intriguing “duality relations”.

• By definition, two integrable many-body systems are dual to each
other if the action variables of system (i) are the particle positions
of system (ii), and vice versa. Underlying phase spaces are sym-
plectomorphic.
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• A special case of duality is self-duality, where the leading Hamil-

tonians of the two systems have the same form.

• Equivalently, an integrable many-body Hamiltonian system is called

self-dual if it admits a global symplectomorphism that “exchanges”

its particle position and action variables. Such symplectomorphism

is called the self-duality map and it usually has order 4.

• First example is the self-duality of the rational Calogero system.

Interpreted in terms of symplectic reduction by Kazhdan, Kostant

and Sternberg (1978).

• Duality was discovered and explored by Ruijsenaars (1988-95)

in his direct construction of action-angle variables for Calogero-

Sutherland systems and their relativistic deformations. Thus we use

terms “Ruijsenaars duality” and “Ruijsenaars self-duality map”.

• Our aim is to derive all Ruijsenaars dualities by means of reduc-

tions of suitable (finite-dimensional, real) phase spaces.
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Duality from reduction: the basic idea

Start with ‘big phase space’, of group theoretic origin, equipped
with two canonical families of commuting ‘free’ Hamiltonians.

Apply suitable single (symplectic) reduction to the big phase space
and construct two ‘natural’ models of the reduced phase space.

The two families of ‘free’ Hamiltonians turn into interesting many-

body Hamiltonians and particle-position variables in terms of
both models. Their rôle is interchanged in the two models.

The natural symplectomorphism between the two models of the
reduced phase space yields the duality symplectomorphism.

The above ‘scenario’ was put forward by Gorsky and Nekrasov in the mid-nineties

(see e.g. Fock-Gorsky-Nekrasov-Roubtsov [2000]). They focused on local ques-

tions working mostly with infinite-dimensional phase spaces and in a complex

holomorphic setting. Global structure of real phase spaces is relevant, and it is

one of our main concerns.
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The simplest self-dual system: HCal(q, p) =
1

2

n∑
k=1

p2k +
1

2

∑
j ̸=k

x2

(qk − qj)2

Symplectic reduction: Consider phase space T ∗iu(n) ≃ iu(n) × iu(n) := {(Q,P )}
with two families of ‘free’ Hamiltonians {tr (Qk)} and {tr (P k)}. Reduce by the
adjoint action of U(n) using the moment map constraint

[Q,P ] = µ(x) := ix
∑
j ̸=k

Ej,k

This yields the self-dual Calogero system (OP [76], KKS [78]):

gauge slice (i): Q = q := diag(q1, . . . , qn), q1 > · · · > qn, with p := diag(p1, . . . , pn)

P = p+ ix
∑
j ̸=k

Ejk

qj − qk
≡ LCal(q, p) Lax matrix, tr (dP ∧ dQ) =

n∑
k=1

dpk ∧ dqk

gauge slice (ii): P = p̂ := diag(p̂1, . . . , p̂n), p̂1 > · · · > p̂n, with q̂ := diag(q̂1, . . . , q̂n)

Q = −LCal(p̂, q̂) dual Lax matrix, tr (dP ∧ dQ) =
n∑

k=1

dq̂k ∧ dp̂k.

The alternative gauge slices give two models of the reduced phase space. Their
natural symplectomorphism is the self-duality map.

This example motivated Ruijsenaars who also hinted at the possibility of analo-
gous picture in general, and the same example motivated also Gorsky et al.
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A ‘dual pair’ of integrable many-body systems

Hyperbolic Sutherland system (1971):

Hhyp−Suth(q, p) =
1

2

n∑
k=1

p2k +
x2

2

∑
j ̸=k

1

sinh2(qj − qk)

Basic Poisson brackets: {qi, pj} = δi,j, x: non-zero, real constant.

Rational Ruijsenaars-Schneider system (1986):

Hrat−RS(p̂, q̂) =
n∑

k=1

cosh(q̂k)
∏
j ̸=k

[
1+

x2

(p̂k − p̂j)2

]1
2

Poisson brackets: {p̂i, q̂j} = δi,j (p̂i are RS ‘particle positions’).
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Two further dual pairs

Trigonometric Sutherland system

Htrigo−Suth =
1

2

n∑
k=1

p2k +
x2

2

∑
j ̸=k

1

sin2(qk − qj)

and its Ruijsenaars dual

H̃rat−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

x2

(p̂k − p̂j)2

]1
2

‘Relativistic’ deformation (here c = 1) of above dual pair:

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sin2(qk − qj)

]1
2

and the physically very different dual system

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j ̸=k

[
1−

sinh2x

sinh2(p̂k − p̂j)

]1
2

Here, naive dual phase spaces need completion [Ruijsenaars, 95].
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Other self-dual systems

Hyperbolic Ruijsenaars-Schneider system:

Hhyp−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sinh2(qk − qj)

]1
2

Compactified trigonometric RS (IIIb) system, locally given by

Hcompact−RS =
n∑

k=1

(cos pk)
∏
j ̸=k

[
1−

sin2x

sin2(qk − qj)

]1
2

These two systems are drastically different.
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• Ruijsenaars duality has “right to exist” principally because of

its usefulness for analyzing the dynamics. This provided the main

motivation for Ruijsenaars himself, who used the duality (among

others) to analyze the scattering theory of the pertinent systems.

Duality has other applications as well, e.g., crucial ingredient in the recent work

of Bogomolny, Giraud and Schmit on new integrable random matrix ensembles.

• So far we have successfully elaborated all of Ruijsenaars’ examples

in the reduction approach except for the hyperbolic RS system.

• Our results connect Ruijsenaars duality to modern developments

in symplectic and Poisson geometry, such as Poisson-Lie symmetry

and quasi-Hamiltonian manifolds.

• The key symplectomorphism property of the duality map was

originally very difficult to prove. It is an automatic consequence in

the reduction approach.
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Rest of the talk: treat self-duality of compactified trigo RS system

The completed, compact phase space of the local IIIb Hamiltonian

H loc
x ≡

∑n
k=1(cos pk)

∏
j ̸=k

[
1− sin2x

sin2(qk−qj)

]1

2

is known to be CP (n− 1).

We reduce the phase space (internally fused quasi-Hamiltonian double)

SU(n)× SU(n) = {(A,B)} by imposing constraint ABA−1B−1 = µ0(x)

using µ0(x) = diag(e2ix, ..., e2ix, e2(1−n)ix) and gauge symmetry

(A,B) −→ (gAg−1, gBg−1), g ∈ SU(n) with gµ0(x)g
−1 = µ0(x).

Reduced phase space is moduli space of flat SU(n) connections on
the torus with a hole, such that the holonomy around the hole is
constrained to conjugacy class of µ0(x). The matrices A and B are
the holonomies along the standard cycles on the torus, and their
invariant functions generate two Abelian Poisson algebras.

For geometric reasons, the mapping class group of the “one-holed
torus” – SL(2,Z) – acts symplectically on the reduced phase space.
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• First result: We have shown that the reduced phase space is

CP (n − 1) and “spectral functions” of A and B descend to global

particle position and action variables of the compactified RS system.

• Second result: We have proved that the usual “duality generator”

S ∈ SL(2,Z) induces Ruijsenaars’ self-duality symplectomorphism of

the compactified RS system.

Thus we have proved conjectures and “globalized” local results of

Gorsky-Nekrasov [95] and Fock-Gorsky-Nekrasov-Roubtsov [2000].

The precise global treatment relies on quasi-Hamiltonian geometry.
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Quasi-Hamiltonian geometry [Alekseev-Malkin-Meinrenken 1998]

Let G be a compact Lie group. The G-manifold M equipped with

the invariant 2-form ω is called quasi-Hamiltonian if there exists a

(moment) map µ : M → G such that:

dω = −
1

12
⟨µ−1dµ, [µ−1dµ, µ−1dµ]⟩;

ω(ζM , ·) =
1

2
⟨µ−1dµ+ dµµ−1, ζ⟩, ∀ζ ∈ Lie(G);

Ker(ωm) = {ζM(m) | ζ ∈ Ker(Adµ(m) + IdLie(G))}, ∀m ∈ M ;

µ(Ψg(m)) = g(µ(m))g−1, ∀m ∈ M, ∀g ∈ G.

Here ⟨·, ·⟩ denotes an invariant scalar product on Lie(G), ζM is the

vector field on M that corresponds to ζ ∈ Lie(G), and Ψg : M → M

is the action of g ∈ G.
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QUASI-HAMILTONIAN DYNAMICAL SYSTEMS

The axioms of quasi-Hamiltonian geometry imply that for each
G-invariant function α there exists a unique G-invariant (“quasi-
Hamiltonian”) vector field vα on M verifying

ω(vα, ·) = dα and Lvαµ = 0. (∗)
Moreover, the function

{α, β} := ω(vα, vβ) (∗∗)
is G-invariant and thus one obtains a Poisson bracket on the space of
G-invariant functions on M . This yields an honest Poisson structure
on M/G, if M/G is an honest manifold.

The G-invariant functions on M are called Hamiltonians and, via
(∗), they induce G-invariant evolution flows on M that descend to
the symplectic leaves of M/G.

Thus one can work with G-invariant functions on quasi-Hamiltonian
manifolds in much the same way as with arbitrary functions on
symplectic manifolds.
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QUASI-HAMILTONIAN REDUCTION

With h ∈ C∞(M)G, consider a quasi-Hamiltonian dynamical system
(M,G, ω, µ, h), an element µ0 ∈ G, the isotropy subgroup G0 < G of
µ0 with respect to the adjoint action and the “constraint surface”

Cµ0 = µ−1(µ0) = {m ∈ M |µ(m) = µ0}.

We say that µ0 is strongly regular if Cµ0 is an embedded submanifold
of M and the quotient P (µ0) ≡ Cµ0/G0 is a manifold such that the
canonical projection p : Cµ0 → Cµ0/G0 is a smooth submersion. For
strongly regular µ0 there is a symplectic form ω̂ and a Hamiltonian
ĥ on P (µ0) uniquely defined by

p∗ω̂ = ι∗ω, p∗ĥ = ι∗h

with tautological embedding ι : Cµ0 → M .

Hamiltonian vector field and flow defined by ĥ on reduced phase
space P (µ0) can be obtained by first restricting the quasi-Hamiltonian
vector field vh and its flow to the constraint surface Cµ0 and then
applying projection p. /P (µ0) ≃ µ−1(Gµ0)/G is stratified symplectic space in general./
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EXAMPLE: INTERNALLY FUSED DOUBLE

This quasi-Hamiltonian manifold (D,G, ω, µ) is provided by direct
product

D := G×G = {(A,B) |A,B ∈ G}.

The group G acts on D by componentwise conjugation

Ψg(A,B) := (gAg−1, gBg−1), ∀g ∈ G.

The 2-form ω on D reads

ω :=
1

2
⟨A−1dA ∧, dBB−1⟩+

1

2
⟨dAA−1 ∧, B−1dB⟩

−
1

2
⟨(AB)−1d(AB) ∧, (BA)−1d(BA)⟩,

and the G-valued moment map µ is defined by

µ(A,B) = ABA−1B−1.

We take G := SU(n) and invariant scalar product

⟨η, ζ⟩ := −
1

2
tr (ηζ), ∀η, ζ ∈ su(n) ≡ Lie(SU(n)).
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Mapping class group action on D and on P (µ0)

Consider the (orientation-preserving) mapping class group of the

“one-holed torus” Σ,

MCG+(Σ) ≡ π0(Diff+(Σ)) ≃ SL(2,Z),

which is generated by two elements S and T subject to

S2 = (ST )3, S4 = 1.

As concrete matrices, one may take

S =

[
0 1
−1 0

]
, T =

[
1 0
1 1

]
.

In association to S and T , define diffeomorphisms SD and TD of D:

SD(A,B) := ΨB(B−1, A) = (B−1, BAB−1), TD(A,B) := (AB,B)

In fact, SD and TD are automorphisms of the double D:

S∗
Dω = ω, SD ◦Ψg = Ψg ◦ SD, µ ◦ SD = µ, and similar for TD.
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Moreover, SD and TD satisfy

S2
D = (SD ◦ TD)3, S4

D = Q,

where Q is the following “universal central automorphism” of D:

Q(A,B) := Ψµ(A,B)−1(A,B).

SD and TD descend to maps SP and TP on any reduced phase
space P (µ0), and these maps generate SL(2,Z) action on P (µ0).
Indeed, Q descends to the trivial identity map idP on P (µ0), and therefore

S2
P = (SP ◦ TP)

3, S4
P = idP .

Resulting SL(2,Z) action preserves (stratified) symplectic

structure on P (µ0).

This is a concrete description of the standard mapping class group action on the

moduli space Hom(π1(Σ), G)/G.

16



“Free” Hamiltonians on the double and their reductions

For any H ∈ C∞(G)G, let H1 and H2 be the invariant functions on

D given by H1(A,B) := H(A) and H2(A,B) := H(B). Then {H1}
and {H2} form two Abelian Poisson algebras on D. One can easily

write down the corresponding quasi-Hamiltonian flows on D.

By reduction, one obtains two Abelian Poisson algebras on each

reduced phase space P (µ0):

Ca := {Ĥ1 |H ∈ C∞(G)G}, Cb := {Ĥ2 |H ∈ C∞(G)G}.

These Abelian algebras are interchanged under the action of SP .

More exactly, for H ∈ C∞(G)G, define H♯ ∈ C∞(G)G by H♯(g) := H(g−1). Then

Ĥ2 ◦ SP = Ĥ1 and Ĥ1 ◦ SP = Ĥ♯
2, ∀H ∈ C∞(G)G.
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Some more preparations

For any −π
n
< x < π

n
introduce the closed polytope

Px :=
{
(ξ1, ..., ξn−1) ∈ Rn−1

∣∣∣ ξj ≥ |x|, j = 1, ..., n− 1,
n−1∑
j=1

ξj ≤ π − |x|
}

Prepare the n× n matrices

Hk := Ek,k − Ek+1,k+1, λk :=
k∑

j=1

Ej,j −
k

n
1n, k = 1, ..., n− 1.

For ξ ∈ P0 and τ = (τ1, ..., τn−1) = (eiθ1, ..., eiθn−1) ∈ Tn−1 define

δ(ξ) := exp
(
−2i

n−1∑
k=1

ξkλk
)
, Θ(τ) := exp

(
−i

n−1∑
k=1

θkHk

)
.

Since any g ∈ G = SU(n) is conjugate to δ(ξ) for unique ξ ∈ P0,

can specify conjugation invariant function Ξk on G by

Ξk(δ(ξ)) := ξk, ∀ξ ∈ P0, k = 1, ..., n− 1.

The “spectral function” Ξk is continuous on G and its restriction

to Greg belongs to C∞(Greg)G.
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Local IIIb system: δj = ei2qj (j = 1, ..., n) are particle positions and their conjugate

momenta pj encode Θj = e−ipj. To keep H loc
x ≡

∑n
j=1(cos pj)

∏n
k ̸=j

[
1− sin2 x

sin2(qj−qk)

]1

2

real on a connected open domain, |x| < |qj − qk| < π − |x| must hold for all j ̸= k
and the coupling constant x ̸= 0 must satisfy 0 < |x| < π/n.

Impose center of mass condition
∏n

j=1 δj =
∏n

j=1Θj = 1. Take local phase space

M loc
x ≡ P0

x × Tn−1,

using the parametrization P0
x × Tn−1 ∋ (ξ, τ) 7→ (δ(ξ),Θ(τ)).

Symplectic form and SU(n)-valued local Lax matrix are

Ωloc :=
1

2
tr

(
δ−1dδ ∧Θ−1dΘ

)
= i

n−1∑
k=1

dξk ∧ τ−1
k dτk =

n−1∑
k=1

dθk ∧ dξk.

Lx
loc(ξ, τ)jl :=

eix − e−ix

eixδj(ξ)δl(ξ)−1 − e−ix
Wj(ξ, x)Wl(ξ,−x)Θl(τ)∆l(τ)∆j(τ)

−1

with the positive functions

Wj(ξ, x) :=
n∏

k ̸=j

[
eixδj(ξ)− e−ixδk(ξ)

δj(ξ)− δk(ξ)

]1

2

and ∆(τ) := diag(τ1, ..., τn−1,1)

H loc
x = Re tr(Lx

loc) and the spectral invariants of Lx
loc Poisson commute.
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To complete IIIb system, consider (CP (n− 1), χ0ωFS) using χ0 ≡ π − n|x| and

CP (n− 1) = S2n−1
χ0

/U(1), S2n−1
χ0

=
{
(u1, ..., un) ∈ Cn |

n∑
k=1

|uk|2 = χ0
}

With πχ0 : S
2n−1
χ0

→ CP (n−1), define symplectic embedding E : M loc
x → CP (n−1)

E(ξ, τ) := πχ0(τ1
√

ξ1 − |x|, ..., τn−1

√
ξn−1 − |x|,

√
ξn − |x|), ξn := π −

n−1∑
k=1

ξk

(M loc
x ,Ωloc) is mapped onto dense open submanifold CP (n − 1)0 ⊂ CP (n − 1).

Lx
loc extends smoothly and yields global Lax matrix Lx ∈ C∞(CP (n−1), SU(n)).

Compactified IIIb system, (CP (n − 1), χ0ωFS, L
x), has two distinguished Abelian

Poisson algebras. First spanned by “global particle positions” Jk:

Jk ◦ πχ0(u) := |uk|2 + |x|, k = 1, ..., n− 1.

The Jk satisfy Jk(E(ξ, τ)) = ξk and form toric moment map

J := (J1, ...,Jn−1) : CP (n− 1) → Rn−1

generating rotational action of Tn−1 on CP (n− 1). Its image is the polytope Px.

Second Abelian algebra is spanned by action variables furnished by Ik := Ξk◦Lx.
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To present our main results, define the spectral Hamiltonians αk and βk on D by

αk(A,B) := Ξk(A) and βk(A,B) := Ξk(B)

They descend to “reduced spectral Hamiltonians” α̂k and β̂k on any reduced
phase space P (µ0). Under the SL(2,Z) generator SP :

β̂k ◦ SP = α̂k and α̂k ◦ SP = β̂n−k, ∀k = 1, ..., n− 1.

Theorem 1. For the particular moment map value

µ0 = diag(e2ix, ..., e2ix, e2(1−n)ix), 0 < |x| < π/n,

the “constraint surface” µ−1(µ0) lies in Greg × Greg. The reduced phase space
(P (µ0), ω̂) is smooth and is symplectomorphic to (CP (n− 1), χ0ωFS). The maps

α̂ := (α̂1, ..., α̂n−1) : P (µ0) → Rn−1 and β̂ : (β̂1, ..., β̂n−1) : P (µ0) → Rn−1

are toric moment maps generating two effective Hamiltonian actions of Tn−1 on
(P (µ0), ω̂). The images of both α̂ and β̂ yield the polytope Px. There exists a
symplectomorphism

fβ : CP (n− 1) → P (µ0)

that satisfies

β̂k ◦ fβ = Jk and α̂k ◦ fβ = Ik, ∀k = 1, ..., n− 1.

Therefore, fβ converts the toric moment maps β̂ and α̂ respectively into the
particle positions J and action variables I of the compactified RS IIIb system.
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Corollary 1. The symplectomorphisms f−1
β ◦ SP ◦ fβ and f−1

β ◦ TP ◦ fβ generate

an SL(2,Z) action on the compactified IIIb phase space (CP (n− 1), χ0ωFS). The
mapping class “duality symplectomorphism”

S := f−1
β ◦ SP ◦ fβ

acts by exchanging particle positions Jk with action variables Ik according to

Jk ◦S = Ik, and Ik ◦S = Jn−k, ∀k = 1, ..., n− 1.

We have constructed the map fβ:

Using vj(ξ, x) :=
[

sinx
sinnx

]1

2 Wj(ξ, x), introduce gx(ξ) ∈ U(n) for each ξ ∈ P0
x by

gx(ξ)jn := −gx(ξ)nj := vj(ξ, x), ∀j = 1, ..., n− 1, gx(ξ)nn := vn(ξ, x),

gx(ξ)jl := δjl −
vj(ξ, x)vl(ξ, x)

1 + vn(ξ, x)
, ∀j, l = 1, ..., n− 1.

Theorem 2. The map f0 : CP (n− 1)0 → P (µ0) defined by

(f0 ◦ E)(ξ, τ) := p ◦Ψgx(ξ)−1 ◦Ψ∆(τ) (L
x
loc(ξ, τ), δ(ξ))

is a diffeomorphism from CP (n − 1)0 onto a dense open submanifold of P (µ0).
This map is symplectic, f∗

0ω̂ = χ0ωFS, and it extends to a global diffeomorphism
fβ : CP (n− 1) → P (µ0), which satisfies β̂k ◦ fβ = Jk and α̂k ◦ fβ = Ik.

/We described fβ even more explicitly using n coordinate patches on CP (n−1)./
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CONCLUSION

Mapping class symplectomorphism S qualifies as self-duality map.

In fact, S reproduces the self-duality symplectomorphism of the

compactified IIIb system constructed originally by a very different

(non-geometric, direct) method by Ruijsenaars [1995].

Remark: A second parameter can be introduced into the system by scaling the
2-form of the double D. This becomes important quantum mechanically.

We have also applied reduction methods to obtain other many-body systems
together with geometric interpretation of their duality relations.

Principal advantage of the reduction approach:
Once the correct starting point is ‘guessed’, completion of local phase spaces
and duality symplectomorphisms result automatically. This approach also links
integrable many-body systems and their duality to several interesting subjects.

An important open problem: How to obtain the hyperbolic RS system?
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