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CHAPTER 1

TRANSVERSALS OF UNIT BALLS

In the present chapter we prove the following statement, which belongs to geometric

transversal theory.

THEOREM 1.1. Let d > 2, and F be a family of unit balls in R with the property that
the mutual distances of the centres are at least 2¢/2 + /2 . If every at most d*> members

of F have a common line transversal, then all members do.

This is a joint result with Andras Bezdek and Ferenc Fodor, which was published in
[ABF06]. Progress did not halt then, and there have been further developments related
to Theorem 1.1 since the publication of [ABF06]. These, along with the detailed history
of the subject, are presented in Section 1.1.

The proof of Theorem 1.1 is based on the following fact. For a given collection
of unit balls in R? satisfying the above distance condition on the pairwise distances
of the centres, consider the set of direction vectors of the common transversals which
intersect the balls in a fixed order. The resulting set, which is a subset of S?~1, is
strictly spherically convex. This property is proved in Section 1.2. Then, in Section 1.3,
orderings of the balls induced by common transversals are considered; these are called
geometric permutations. Using properties of them, Theorem 1.1 is proved in Section 1.4

by invoking a version of Helly’s theorem.

1.1 History

First, we give a short account of the quite extended history of the problem. For
further details, consult the survey articles [Eck93], [DGK63], [GPW91] and [Wen99].

A line [ is a transversal to a family F of sets if [ intersects every element of F. If
there is a line that intersects every member of the family F, then we say that F has the
property T'. If every k or fewer members of F have a transversal then F has property
T (k).

In 1958, Griinbaum [Grii58] conjectured that for a family of pairwise disjoint trans-
lates of a convex disk T'(5) = T'. The special case of circular disks was settled by Danzer

[Dan57]. The conjecture was proved in full generality by Tverberg [Tve89] in 1989.



Higher dimensional generalisations for families of balls were initiated by Hadwiger
[Had56]. He stated that for any family of thinly distributed balls in R? the property
T(d?) implies T. A family of balls is thinly distributed if the distance between the
centers of any two balls is at least twice the the sum of their radii. In 1960, Griinbaum
[Grii60] improved the d? in Hadwiger’s statement to 2d — 1 using the Topological Helly
Theorem.

Imposing such a condition on the distances between the centres is natural. To
see this, consider the following example. Take a regular n-gon of unit side length in
the plane and place circular disks of diameter 1/2 centred at the vertices. Enlarge
the disks from their centres with the same factor A. There is a minimal A for which
every n — 1 enlarged disks have a common transversal but there is no transversal to
all n disks. It is easy to see that this minimal A is equal to the minimal width of an
(n — 1)-gon obtained by dropping a vertex of a regular n-gon of unit side length. In
this configuration, T'(n — 1) holds, but 7" does not. Therefore, the minimal k& for which
T(k) = T, is not independent of the minimum pairwise distance of the centres of the
disks. Investigations in this direction were initiated by Heppes. Recently, K. Bezdek,
Bisztriczky, Csikés, and Heppes [BBCHO06] proved new results in this direction.

In 2003, Holmsen, Katchalski and Lewis [HKLO3] proved that there exists a positive
integer ng < 46 such that T'(ng) implies T for any family of pairwise disjoint unit balls
in R3. This bound was improved by Cheong, Goaoc and Holmsen [CGHO5] to 11. On
the other hand, a result of Holmsen and Matousek [HMO04] states that there is no such
Helly-number if one considers families of pairwise disjoint translates of an arbitrary
convex body in R3,

Our result works with a condition on the distances between the centres of the balls,
which is weaker than Hadwiger’s thin distribution condition. Theorem 1.1 generalises
the main result of [HKLO03|, and it also strengthens Hadwiger’s theorem [Had56] for
congruent balls. The main tool of the proof is the convexity of the cone of transversal
directions, that is shown in Section 1.2.

The method presented here has been pushed further in [CGHPOS8], where the
convexity of the cone of transversal directions was showed without the extra distance
condition - in fact, this property was established under a condition which is even weaker
than disjointness. Thus, the authors of [CGHPO08| derived that the components of
the set of transversal directions are contractible. Moreover, in [CGNO05] it has been

shown that any family of at least 9 disjoint unit balls admits at most two geometric



permutations. Using these facts and the Topological Helly theorem, a linear bound can
be obtained instead of the quadratic one. This has been accomplished in [CGHPO0S],
where the authors proved that for any system of disjoint unit balls in R?, T'(4d — 1)
implies T'. This is currently the strongest result regarding this problem. For the latest
developments, see the surveys of Goaoc [Goa09] and Holmsen [Hol08].

Throughout the chapter, F4; will denote a family of d-dimensional unit balls with
the property that the distances of the centres of any two of them are at least 21/2 + /2

(we shall abbreviate this property as the “distance condition”).

1.2 Convexity of the cone of transversal directions

Let By, ..., By, be disjoint unit balls in R?. Consider the set of all directed lines
intersecting By, ..., B;, in this order, and denote the set of unit direction vectors of
these lines by K(Bj, ..., By). Then K(By, ..., By) C S971. The goal of the section is
to verify the following statement, which is based upon Lemma 2.1 in [HKLO03].

THEOREM 1.2. Let Fy = {B1,...,Bn} be a family of unit balls satisfying the distance

condition. Then K(B1,...,By,) is convexz.

Before starting the proof, we present an auxiliary lemma, that also serves as a

motivation for Theorem 1.2.

LEMMA 1.3. Let {Kj,..., K} be a family of disjoint disks in the plane. If there exists a
direction o such that for every two disks K;, K; , 1 <1 < j < m, there is a transversal
of direction o which intersects K; first and K; second, then there is a transversal of

direction o that intersects Ky, ..., K., in this order.

PROOF. Let | be a line perpendicular to the direction «, and take the orthogonal
projection of the family {K7,..., K,;,} to . The images of the disks will be segments,
and from the assumptions we know that they are pairwise intersecting. Therefore we
can apply the Helly theorem in dimension 1 and obtain that the intersection of all of
the segments is not empty, say, it contains the point N. Then the line of direction «

through N is a suitable transversal. O

We note that Lemma 1.3 proves the assertion of Theorem 1.2 in dimension 2. It
is obvious that

K(By,....,Bn) S () K(Bi,Bj)

1<i<j<m



and the Lemma shows that equality holds. It is clear that no K(B;, Bj) can contain
antipodal points of S!. If we pick two points of K(Bj,..., By,), then all of the sets
K(B;, Bj) must contain one of the two arcs between them in S', and our previous
statement implies that this arc can only be the shorter one. Therefore, K(Bj, ..., Bp)

contains the small arc between any of its two points, hence it is convex.

PROOF OF THEOREM 1.2. First we prove the statement for the case m = 2. By def-
inition of convexity we have to show that for any two directions a1, s € K(Bi, Ba),

every normed linear combination of the form

where a(A)=Xa;+(1—XNag, 0< A1 (1.1)

is in (B, Ba) as well. Let P denote the plane generated by a; and as, and let P+
denote the orthogonal complement of P in R?%. Let H(z) = P+ z where z € P+. Then
for every « € PNK(By, Bs) there exists an appropriate transversal to By, By parallel to
«, therefore there exists a z(a) € P+ such that we can find an appropriate transversal
in H(z(«a)) with direction « (of course, z(«) is not necessarily unique). Fix such a z(«)
for every a € PN K (B, B2).

We consider two cases depending on z(ay) and z(«az). First, assume that they are
equal. Then there exists a plane G and two transversals [y and Il in G such that the
direction of [; is oy and the direction of ls is as. We show that for every direction
determined by a combination of the form (1.1) there exists a transversal [ in G. Let
Ki=B1NG, Ko = BoNG. Then Ky, Ky are circular disks in G and the transversals
to By and Bj in G are exactly the transversals to K7 and K3 in the plane G and it is
clear that (K, K2) is convex.

Second, suppose that z(aj) # z(az). Let m be the segment z(o;)z(a2). Since
m C PL, m is orthogonal to P, and the subspace T generated by m and P is of
dimension 3. We prove that for every combination of the form (1.1), there exists a
z € m such that in H(z) we can find an appropriate transversal. Let G; = By N T,
G5 = BoNT be 3-dimensional balls. Note that G; and G2 cannot degenerate to points.
Then for every z € m the transversals in H(z) which intersect B; and By in this order
are exactly the transversals which intersect (G1 and G5 in this order, therefore we have
to handle a 3-dimensional problem.

By scaling and symmetry we may suppose that the radius of Gy is 1 and the radius

of Gy is r < 1. Note that since the unscaled radii of G; and G5 are at most 1, the scaled



distances are at least as large as the unscaled ones. Choose the coordinate system in T’
such that the z-axis contains m, and the centres of G; and G9 are (0,0,0) and (d,0,b),
respectively, with d > 0 and b > 0. For b —r < z < min(b + r,1) the intersections
H(z) NG and H(z) N G are two, possibly degenerated, disks of radius R;(z) and

Ry (z), respectively, where

Ri(z) =1 =22, Ra(z) = /12— (b—2)2

Figure 1.1: The intersection of the d-dimensional balls and 7

Consider the transversals [ in H(z) for b —r < z < min(b + r, 1) intersecting G
before Go. To each [ we assign the angle —5 < ¢ < 7 between the z-axis and .
For every z we get a possible minimal and maximal angle between the z-axis and an
appropriate transversal in H(z), say @min(2) and ¢@max(z), respectively. By symmetry,
Ymax(2) = —@min(2). Denote @max(z) by simply ¢(z). If z traverses from b — r to
min(b+ 7, 1), then the possible (z, ¢) belonging to the order respecting transversals to
G and G3 form a bounded region W (Bj, B) in the (z,¢) plane. It suffices to show
that this region is convex. We shall prove that the upper boundary of W(Bj, By) is

concave:
The function p(z) is concave for b —r < z < min(b+ r,1). (*)
For a given z, we easily obtain that

Ri(2) + Ra(2)

©(z) = arcsin(f(z)), where f(z)= y



We shall compute the second derivative of ¢(z), and verify that ¢”(z) <0 for b —r <

z < min(b+ r,1). Easy computations show that

=4 (s ih),

woy 1 1 r2
FE=-3 (<R1<z>>3 " <R2<z>>3> ’

F(2) (1= (F(2))%) + F)(f'(2))?
(1 (f(2))2)*? '

Hence it suffices to show that in the given interval

¢'(2) =

g9(2) = f"(2) (L = (f(2))?) + F(2)(f'(2))* <0

holds.
By substituting the formulae for f(z), f'(2), and f”(z) in g(z), the desired inequal-

ity turns into

(e )( )

Ri(2) + Ra(2) +R2() 1 z z—b\?
d 'd?'(Rl(zﬁRg(z)) '

SHN

//\

Multiplying both sides by —d3R3(z)R3(z) we obtain

(R3(2) + r? Ri(2)) (@ = (Ra(2) + Ra(2))°) > Ba(2) Ra(2):
- (R1(2) + Ra(2)) (zQRg(z) +22(z = b)R1(2)Ra(2) + (2 — b)QR%(z)) . (1.2)

Since r < 1, we have that
R3(z) + mMR3(z) > (Ra(2)+7Ri(2)) (Rg(z) —rR1(2)Ra(z) + T2R%(z)) . (1.3)

Furthermore, |z| < 1 and |z — b| < r yield

<22R%(z) +22(z — b)R1(2)Ra(z) + (2 — b)zR%(z)>
< (R3(2) + 2rRi(2)Ra(2) + 1°Ri(2)) . (1.4)



We shall use the following elementary inequality : if a,b € R then
a® + 2ab + b* < 4(a® — ab + b?). (1.5)

With (1.3), (1.4) and (1.5), we obtain that the following inequality implies (1.2):

(Ra(2) + 7R1(2)) (d* — (R1(2) + Ra(2))?) = ARi(2)Ra(2) (Ri(2) + Ra(2)). (1.6)

Using r < 1 and dividing both sides of (1.6) by 7(R1(z)+ R2(z)) yield that the following
inequality implies (1.6):
Ri(2)R
d? > PRACLIC) + (R1(2) + Ra(2))*. (1.7)

T

Since Ri(z) < 1 and Ra(z) < r, the right hand side of (1.7) is at most 8. We will use
the following proposition to finish the proof of (*).

The Euclidean distance between the centres of G1 and G is at least 24/ 1 + V2. (**)

Clearly, (**) is true in 2 and 3 dimensions. Consider the case n > 4. Let Oy, O2, @1,
()2 denote the centres of By, By, G1, Ga, respectively. The segments O1Q1 and O2Q)
are orthogonal to T, hence they are perpendicular to the segment Q1@Q2. Furthermore,
|01Q1] < 1, |02Q3| < 1, and |0103| > 24/2 + /2. Therefore we obtain that |Q1Q2| >
2¢/1+ V2.

Notice that the scaled distance of the centres in T is at least as big as the Euclidean
distance.

We divide the rest of argument proving (*) into two cases.
Case 1. b < 1.

Since the distance between the centres of G and Gs is t = V/b% + d?, we obtain
that d? > 3 + 4v/2 > 8.6. It has already been shown that the right hand side of (1.7)
is at most 8, which yields that the inequality (1.7) holds.

Case 2. b>1.

Now, we are going to estimate R;(z) and Ra(z). Since [b—r, 1] is contained in [b—
1, 1], the following inequalities hold: R;(z) < /1 — (b—1)2 and Ra(z) < /1 — (b—1)2.
Furthermore, Ry(z) < r. Using this information, we may estimate the right hand side
of (1.7) by

4 1—(b—1)2+4(1—(b—1)2)>4w+

r

(Ri(2) + Ra(2))2. (1.8)

10



Using d? = 2 — b?, proposition (**) and formula (1.8), we obtain that it suffices

to show the following inequality.
A14V2) =02 +4/1— (b—1)2+4(1 - (b —1)?). (1.9)

Easy computation shows that the maximum of the right hand side of (1.9) is
smaller than 9.3 in the interval 1 < b < 2. Therefore the inequality (1.9) holds, and
this finishes the proof of (*) and proves Theorem 1.2 for m = 2.

Next, we prove Theorem 1.2 for m > 3. Let ay, s € K(By,...,Bn), and again,
consider a combination of the form (1.1). We shall use the same notations as in the
proof of the case m = 2. Suppose first that z(a1) = z(ag) = z. Then in the plane H(z)
the transversals to the family By, ..., By, will be exactly the transversals to the family
Ky, ..., K, the family of the intersections of the balls and the plane H(z). Lemma 1.3
implies that Theorem 1.2 holds in the plane, and thus it verifies the statement in the
case z(a1) = z(ag) = 2.

Assume now that z(a1) # 2z(a2). Notice that for every pair of balls B;, B; we use
a different coordinate system and metric in 7. However, the z axis is the same because
it is determined by the segment m. Changing the directions of the x and y axes results
in a translation parallel to the « axis of W (B;, B;) in the (z,p)-plane, and changing
the position of the origin on z results in a translation in the z direction. Reversing
the direction of any of the axes results in an axial symmetry of W(B;, Bj). Scaling
by a positive factor scales W(B;, Bj) along the z axis. None of these transformations
changes the convexity of W (B;, Bj).

Now, fix a coordinate system in 7" among the given ones, and consider all W (B;, B;)

regions in this frame. Lemma 1.3 implies that

W(Bi,...,Bn) =[] W(BiBj).
1<i<j<m
We show that IC(B;, B;) cannot contain antipodal points of S 1. On the contrary,
assume that there exists a direction o € S9! with the property that there are lines [y
and [ of direction v and —a, respectively, intersecting B; and By in this order. This
means that we can translate By along [; to infinity in the direction a without crossing
Bi. The same is true for the direction —a with the translation along [, hence there is

no transversal parallel to « intersecting By and Bs , a contradiction.

11



Since IC(B;, B;) cannot contain antipodal points, (B, ..., By,) must contain the

(unique) geodesic between any two points of it, hence it is convex. ]

1.3 Geometric permutations

Let F be a family of pairwise disjoint convex bodies in R?, and let [ be a transversal
to F. Then [ induces two opposite orderings of the members of F. These orders are
essentially the same, and together they are called a geometric permutation of F. We will
consider the possible geometric permutations of the family F;. We may suppose that
in F, ={Bi,..., By} the balls B" and B” have the largest distance. Every geometric
permutation is induced by the family D of directed transversals to Fy intersecting B’
and B” in this order. We say that a pair of balls B;, Bj (where 1 < ¢ < j < m) forms
a switched pair in Fg if there exist [,I" € D that meet B;, B; in different orders. If Fy
admits at least one geometric permutation and there are no switched pairs in Fy, then
clearly F; admits exactly one geometric permutation. We will show that this is indeed

the case.

LEMMA 1.4. Let Fy be a family of unit balls satisfying the distance condition. Then Fy

admits at most one geometric permutation.

PROOF. Assume that there is a switched pair in Fy, say, the pair Bi, Bs. Let O and
O denote the centres of By and Bs, respectively. There exist directed transversals [y
and [9 in D with the property that Iy meets B; first and then Bs, while [ intersects Bo
first and By second. Let P be a (two-dimensional) plane parallel to /1 and I in R%. We
use the same notation as in the proof of Theorem 1.2. P+ will denote the orthogonal
complement of P in R?, and H(z) = P+z, where z € PL. For k = 1,2 the intersection
of By and H(z) is a disk K}(z) with centre Cy(2). Choose the directed line s in R?
such that the segments C;(z)Ca(z) are all parallel to it. Hence the angle between
l; and the directed line determined by C1(z),C2(z) is equal to the angle between I,
and s. Proposition (**) yields that the distance between C;(z) and Ca(z) is at least
2 v/2 (this quantity was denoted by d in the proof of Theorem 1.2). Since the radii
of K1(z) and K»(z) are at most 1, the angle between the directed lines /; and s is at
most arcsin(2/(2 v/2)). We obtain in the same way that the same holds for the angle
between the directed lines ls and —s. Thus, the angle between the two transversals [

and Iy is at least ™ — 2arcsin(1/v/2).

12



On the other hand, both the transversals I; and [l intersect B’ and B” in this
order. Since the distance of the centres of B’ and B” is at least 2v/2 + v/2, and their
radius is 1, the angle between [; and I is at most 2 arcsin(2/(2y/2 + v/2)) ~ 1.1437.

It is easy to see that the upper and lower bounds for the angle between [; and I

cannot be sharp at the same time. Furthermore,

arcsin(1/v/2) + arcsin(1/V2 + V2) = /2,

since 1/v/2 + 1/(2 4+ v2) = 1. Thus, 7 — 2arcsin(1/v/2) > 2arcsin(1/y/2 ++/2), a

contradiction.

O
The following lemma will directly lead to Theorem 1.1.

LEMMA 1.5. Suppose that the family F,, = {Bi,..., B} has the property T(d), where
d > 4. Then there exists a linear ordering < of {Bu, ..., By} with the property that for
every d—element subset G C F,, there exists a transversal to G intersecting the elements

of G compatible with the linear ordering <.

PrOOF. We will prove that there exists a geometric permutation of F; with the desired
property by induction on m .

If m = d then there exists a transversal to F;, and we can choose the geometric
permutation induced by it.

Suppose now that the claim holds for m = k, and we shall prove it for m = k + 1.
For every 2 < i < k theset {By, ..., Bg+1}\{Bi} has a geometric permutation with the
desired property. For every such set consider the induced linear ordering <; for which
By <; Bpy1 holds. If for any pair of balls B,, By with 2 < r < s < k the orderings
<iy 2 <t <k, i s# rs agree, then we can uniquely extend the orderings to the
whole family {Bi,..., Bxt1}, and clearly, the extended ordering will have the desired
property. To check this, suppose that there is a pair of balls B;, B; with 2 <i < j <k
and a pair of orderings <,, <s with 2 < r < s < k, {r,s} N {i,j} = 0 such that
B; <, Bj and Bj <s; Bj. Then the family {B1, B;, Bj, By+1} admits two different
geometric permutations, which is in contradiction to Lemma 1.4. Hence we obtained a
suitable linear ordering on {Bi,..., Bx+1}, and this induces a geometric permutation

on {Bi,...,Bkyi1}, too. O

13



1.4 Existence of common transversals

Finally, we turn to the proof of the main theorem.

PROOF OF THEOREM 1.1. Suppose that Fy has the property T(d?), where d > 2.
Because of Lemma 1.5, there exists an ordering < on F, such that for every d?-element
subset G C Fy, there is a transversal to G that intersects the unit balls in the order
compatible with <. Label the elements of F; such that By < By < --- < B,,. Consider
the family C of all the sets K(By,,...,B;,) with 1 <i; < --- < ig < m. Theorem 1.2
states that the elements of C are convex sets of S, and we know from the proof that
they are also strongly convex. Lemma 1.5 yields that the intersection of any d elements
of C is not empty.

We show that |JC # S¢~!. On the contrary, suppose that  and (—z) are antipodal
points of St covered by UC, say, € K(By,,...,B;,) and (—z) € K(Bj,, ..., Bj,).

Then there exists a transversal [ to the family
{Bi,,...,Bi;,Bj,,...,Bj,},

and its direction « is in the intersection of the two cones. At the end of the proof of
Lemma 1.4 we showed that the angle between = and « and the angle between (—z) and
« are less than 1.144, hence the angle between x and (—z) is smaller than 2-1.144 < 7,
a contradiction.

Using this, we can apply the strong version of the Spherical Helly Theorem, see
[Deb70], and obtain that ()C # (). So there is a direction o € S9! such that for any d
balls in Fy, there is a transversal parallel to a. Let H be a hyperplane in R? orthogonal
to «, and consider the orthogonal projection of F; onto H. The images of the balls
will be (d — 1)-dimensional balls in H, and from the above argument we know that
every d of them are intersecting. Hence we are able to apply again Helly’s theorem in
H and obtain that the intersection of the images contains a point, say, ). Then the

line through @ of direction « is a transversal to the whole family F. O

We remark that there exists a configuration of 3-dimensional unit balls with mutual
distances of the centres at least 21/2 + /2, for which 7'(3) holds but 7" does not.

To see this, place the balls centred at the points with the following coordinates:
(0,0,—(1 +¢)), (4,0,1+¢), (8,1+¢,0), and (12,—(1 + €),0). We show that there

exists an e for which the example works. If € = 0, then the four balls have a common
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transversal. Hence there exists a maximal ¢y such that this property holds. At this
point there exists exactly one transversal for the four balls. If for any three of the four
balls, this transversal is not the only common one, then by the strict convexity of the
transversal direction cone, a slightly greater € is appropriate for the example. Hence
it suffices to show that at €p, the common transversal is not contained in any of the
planes determined by three ball centres. This is implied by the fact that for any such
plane, the fourth ball centre is of distance > 1 from the plane, therefore the transversal

cannot be contained in it.

| Q
D~

Figure 1.2: Four balls satisfying T'(3) with no common transversal
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CHAPTER 2
A LOWER BOUND FOR THE STRONG DODECAHEDRAL

CONJECTURE

In this chapter, we show that the minimum surface area of a Voronoi cell in a
unit ball packing in R? is at least 16.1977.... This result, which is joint with F. Fodor
[AF06], provides further support for the Strong Dodecahedral Conjecture according to
which the minimum surface area of a Voronoi cell in a 3-dimensional unit ball packing
is at least as large as the surface area of a regular dodecahedron of inradius 1, which is
about 16.6508 . ... In the proof, the cones suspended by the faces of the Voronoi cell are
replaced with cones of special types in such a way, that the surface to solid angle ratio
does not increase. The obtained configurations belong to a restricted class, in which
the minimiser of the surface area is found by standard analytic methods. The minimal
configuration has 13 identical faces and one face of a smaller solid angle. However,
these faces cannot be joined to form a polytope, which accounts for the error between

our estimate and the conjectured extremal value.

2.1 History

One of the most important topics of Discrete Geometry is the theory of packings
and coverings. A family B of unit balls in R? forms a packing if no two members of B
have a common interior point. We are mostly interested in how dense a packing of unit
balls may be, where the density of a packing is the proportion of the space covered by
the balls. We define this as the limit of the proportion of the volume of the covered part
of a ball, where the centre of the ball is fixed and its radius tends to infinity (of course,
the limit may not exist). According to a conjecture formulated by Kepler [Kep66],
the packing density of unit balls in R? is 7/1/18 ~ 0.74078 ..., which is attained by a
lattice packing. Among lattice packings, this is indeed the best possible, as was shown
by Gauss [Gau40).

The quest for proving Kepler’s conjecture has been a long saga. Concentrating on
relatively new achievements, Rogers [Rogh8] showed that the packing density is at most

0.77963 . ... This bound was improved by Lindsey [Lin86], and then Muder [Mud8§|,
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[Mud93] to 0.773055. ... L. Fejes Téth sketched a strategy for a proof, which reduces
the problem to finitely many cases. Along these lines, the final proof was given by
Hales ( [Hal05], and 7 other papers).

A central concept in the theory of packing and covering is the Voronoi cell of
B € B: this is the set of points € R3 with the property that z is closer to the centre
of B than to any other centre in B. It is well known that Voronoi cells are convex
polyhedra. Since we are interested in the minimum surface area that a Voronoi cell can
have in such a ball packing, we may assume that the packing is reasonably dense, so
the Voronoi cell in question is a polytope.

One of the most beautiful problems related to 3-dimensional unit ball packings is
the Dodecahedral Conjecture formulated by L. Fejes T6th [FT43] in 1943. It states
that the minimal volume of a Voronoi cell in a 3-dimensional unit ball packing is at
least as large as the volume of a regular dodecahedron of inradius 1. This problem
has been recently settled in the affirmative by Hales and McLaughlin [HM]. K. Bezdek
[Bez00] phrased the following generalised version of the Dodecahedral Conjecture in

2000.

CONJECTURE 2.1 (Strong Dodecahedral Conjecture). The minimum surface area of a
Voronoi cell in a unit ball packing in R? is at least as large as the surface area of the

reqular dodecahedron circumscribed about the unit ball, that is 16.6508 .. ..

K. Bezdek [Bez00] proved that 16.143. .. is a lower bound for the minimum surface
area of the Voronoi cell. To achieve this estimate he used a generalised version of Roger’s
lemma. Muder [Mud88], [Mud93] developed powerful techniques for estimating the
volume of a Voronoi polyhedron in a 3-dimensional sphere packing. K. Bezdek and E.
Darécezy-Kiss [BDKO05] discovered that Muder’s ideas in [Mud88] and [Mud93], after
modification, are applicable to the Strong Dodecahedral Conjecture, and thus they
improved the lower bound to 16.1445.... We follow a line of reasoning similar to
that of K. Bezdek and E. Dardczy-Kiss [BDKO05], combined with ideas formulated by
Muder [Mud93].

We shall prove the following statement.

THEOREM 2.2. The surface area of a Voronoi cell in a unit ball packing in R? is at

least 16.1977 .. ..

The geometric idea of the estimate is the following. First, we replace each facecone

of the Voronoi cell with a right circular cone or with a shaved right circular cone. During
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the replacement the solid angle remains the same while the area of the face decreases,
and therefore the surface-to-solid angle ratio also decreases. After the replacement, we
determine the surface areas of the new cones as a function of the solid angle. Finally,
standard analytic tools are applied to find the minimal configuration with respect to
this function. The optimal configuration has 13 faces of the same solid angle, and one
face with a smaller solid angle. The sum of these solid angles is 47 but the given faces
do not form a polytope, hence there is a difference between our lower bound and the

conjectured minimal surface area.

2.2 Replacements

First, we define the special cones used in the reduction procedure. A right circular
cone (RCC) is a cone whose base is a circular disk and its apex lies on the line per-
pendicular to the disk passing through its center. The radius of the RCC is the radius
of its base, while the height is the distance between the apex and the disk. A shaved
circle is the intersection of a disk and a convex polygon that contains the center of
the disk. The order of a shaved circle is the number of the segments of its boundary.
A shaved circle is vertex-free if there is no vertex of the intersecting polygon in the
interior of the circle, and it is regular of order n if the segments of its boundary are n
non-intersecting chords of equal length. A shaved right circular cone (SRCC) is a cone
whose base is a shaved circle and its apex lies on the line perpendicular to the disk and
passing through its center. An SRCC is vertex-free or regular if its base has the same
property. The inner radius of an SRCC is the distance from the center of the disk to
the closest side of the shaved circle. The radius of the base circle is the outer radius of
the SRCC.

The notion of an SRCC is motivated by the fact that a face of a Voronoi polyhedron
cannot have vertices and edges ‘too close’ to its center, moreover, most of the edges
must be ‘far’ from the center: These facts are formulated in the following lemma, whose

proof can be found in Muder [Mud93] TL4 and TL5.

LEMMA 2.3 ([Mud93]). Let F be a face of a Voronoi polyhedron with center A. Suppose
that the distance h between F and A is at most \/2. Then no vertex of F is closer than
\/3/2 to A, no edge of F is closer than 2/v/4 — h? to A and at most five edges of F

are less than 1/3/2 from A.
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We say that a facecone of a Voronoi cell is replaceable with a second cone with the
same apex if the solid angles of the two cones are the same and the area of the base of
the second cone is not greater than that of the first one.

In our argument, the facecones are replaced by four types of SRCCs depending on

the solid angle. The following important angles separate the different possibilities:

0 < b1 < 1hy < 1hg < 2,

with

Y1 == (3—8)=0.3593...,

- 2 1
:10\/7 t — ] =0.9423.. .,
W2 3 arctan (ﬂ)

.2
Y3 = %(\[—ﬂ)W: 1.1529. ...

Next, we describe the several opportunities used for the reduction steps:

PROPOSITION 2.4. Any facecone of solid angle 1 is replaceable by an SRCC, having the

same solid angle, of the form:
1. An RCC of height h € [2/v/3,V/2] and radius (2 — h?)/\/4 — k2 for
W € [0.41],
2. A reqular, vertea-free, order-5 SRCC of height h € [1,2/+/3], outer radius \/%—7h?,
and inner radius (2 — h2) /4 — h? for ¥ € [i1,1s],

3. A regular, vertes-free, order-5 SRCC' of height 1, outer radius 1/v/2, and inner
radius v € [1/v/3,1/V/2] for ¢ € [ths, )],

4. An RCC of height 1 and radius R > 1/v/2 for ¢ € [y, 27].

PRrROOF. Throughout the proof we will use the following notations. The point A is the
center of the Voronoi cell, and for a planar region R not containing A, C(R) denotes
the cone with base R and apex A.

First, we state the following:

Let H be a plane not containing A, M the orthogonal projection of A onto H,
and P and Q two distinct points in H such that |MP| > |MQ)|. Let Sp and Sg two
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infinitesimal rectangles in H centered at P and Q, respectively, which are translates of

each other. Then the solid angle of Sp is smaller than that of Sq. (*)

For the proof of (*), suppose that the distance between A and H is h, and P has
distance o from A. A simple computation leads to the fact that the area-to-solid angle
ratio of the infinitesimal rectangle centered at P is ¢®/h, which is strictly monotonically
increasing in g if A is fixed. Since h is the same for P and @), this implies (*).

Next, we list two basic types of the replacement cones.

BASIC REPLACEMENT SCHEMES. Let F be a face of the Voronoi polyhedron with center

A, H the plane of F, and M the orthogonal projection of A onto H.

(R1) Consider a disk D in H centered at M such that the solid angle of D is not smaller
than the solid angle of F. Let G be a region of D containing D N F and having
the same solid angle as F. Then C(F) is replaceable with C(G).

(R2) Consider a plane H' parallel to H such that H' separates H and A. Then C(F)
is replaceable with the cone whose base is H' N C(F).

The proof of (R1) is straightforward from (*), while (R2) follows from the fact
that the area of H' N C(F) is smaller than the area of F.

In the rest of the proof, we will simply refer to the above schemes as replacements
(R1) and (R2).

We divide the proof into three steps. First, if a facecone has height at least 2/+/3,
then we replace it with an RCC. For facecones with a smaller height we use either an
RCC or a regular, vertex-free, order-5 SRCC with a specified outer radius. In the third

step we replace those SRCCs by more specific ones.

STEP 1. Any facecone C(F) of height hg > 2//3 is replaceable by either
1. an RCC of height h € [2/v/3, min(hg, v/2)] and radius (2 — h?)//4 — h2, or
2. an RCC of height 2/+/3 and radius R > 1//6.

PrOOF OF STEP 1. Let S be a disk in the plane of F centered at M having the same
solid angle as F. Let R denote the radius of §. Notice that Lemma 2.3 yields that if
ho < V2 then R > (2 — h?)/v4 — h% = p(h).

Using replacement (R1), C(F) is replaceable by C(S). Moreover, (R2) yields that
for any h € [2/v/3,h], C(S) is replaceable by the RCC of height h and radius Rj, =
Rh/hy.
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Note that the function Rj decreases as h decreases. On the other hand, p(h)
increases as h decreases. Therefore there either exists an h € [2//3, min(hg, v/2)] for
which Ry, = p(h), or Ry, > p(2/+/3) = 1/v/6. These possibilities provide cases (1) and
(2) of the statement. O

STEP 2. Any facecone C(F) of height h € [1,2//3] is replaceable by either
1. an RCC of height h and radius R > \/3/2 — h?, or

2. a regular, vertex-free, order-5 SRCC' of height h, outer radius \/3/2 — h? and
inner radius v > (2 — h%)/v/4 — h2.

PrOOF OF STEP 2. Consider a disk D of radius \/m centered at M in the plane
of F. If the solid angle of F is greater than that of D, then we can replace C(F) with
an RCC of the same solid angle by replacement (R1), thus obtaining case (1) of Step
2.

Otherwise, Lemma 2.3 yields that DNF is a vertex-free shaved circle with at most
5 edges. Replacement (R1) allows us to replace C(F) with an order-5 vertex-free SRCC
of outer radius \/m by moving the chords of D N F away from M.

The only thing that remains to be shown is that this SRCC can be replaced by a
regular one of the same solid angle.

For this, consider a circular disk in the plane H centered at M and two infinitesi-
mally narrow parallel chordal bands (regions of the circle bounded by parallel chords)
of the same area. Suppose that for the two bands it also holds that they can be rotated
around M such that M does not separate them, there bounding chords are parallel,
and they are disjoint. Divide both bands into n small pieces, each of them of the same
area, by segments perpendicular to the bounding chords, and enumerate these pieces
from one end of the bands to the other end. An easy computation shows that the center
of the kth such piece is closer to the center of the disk for the chordal band which is
closer to M. Moreover, if n is sufficiently large, then the same inequality holds for
any two points of the kth pieces. Hence, integrating with the help of (*) yields that
the solid angle of the chordal band further from M is smaller. Therefore, if we move
infinitesimal chordal bands of the base of the SRCC closer to its center such that the
solid angle remains unchanged, than the area of the base decreases. In this way we can

transform the SRCC into a regular one, while we do not increase the base area-to-solid
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angle ratio. Moreover, this operation does not decrease the inner radius of the SRCC.
This finishes the proof of Step 2.
O

STEP 3. Any regular, vertez-free, order-5 SRCC' of height ho € [1,2/v/3], outer radius
R >1/3/2 — ho?, and inner radius r > (2 — ho?)/\/4 — ho? is replaceable by either

1. aregular, vertez-free, order-5 SRCC of height h € (1, ho|, outer radius 1/3/2 — h?,
and inner radius (2 — h%)/v/4 — h2, or

2. a regular, vertex-free, order-5 SRCC of height 1, outer radius 1/+/2, and inner
radius v € (1/v/3,1/V/2], or

3. an RCC of height 1 and radius R > 1/+/2.

PRrROOF OF STEP 3. Denote the SRCC by C(S). Let R be the radius such that the
RCC of height hy and radius R has the same solid angle as C(S). If R < m
then we can replace C(S) with an SRCC having the same properties as S, and with
outer radius m using a (R1), just as in Step 2. Otherwise let

3
h— 7Y R R—
max( 0 2(h02 +R2)>

Notice that h < hg. We use replacement (R2) for the plane at distance h from A
to obtain either an RCC of height 1 and radius greater than 1/v/2 (case (3)), or an
RCC of outer radius \/m .

Therefore, it suffices to consider only the SRCCs with outer radius m
and height hg > 1. We may also suppose that the inner radius r > (2 — hg?)/ \/4—7]102
because otherwise we have the statement of case (1).

Hence, to obtain the statements of Step 3 the inner radius must be decreased. Let
S denote the base of the SRCC, which is a regular shaved circle of order 5. We apply
a transformation on C(S) in the following way: Let G denote the ball of radius \/?ﬁ
centered at A, and Hj, the plane parallel to the plane of S and at a distance h from
A. Let Sy, be the shaved circle homothetic to S inscribed in G N Hy, and consider the
SRCC that is based on Sp,. Clearly, for any h € [1, hg) the solid angle of Sy, is greater
than that of S. Moreover, we will show that the base area-to solid angle ratio of C(Sy)
is smaller than that of C(S). Then we may decrease the inner radius of Sy, to obtain an

SRCC with the same solid angle as §. There are two possibilities: either there exists

22



an h for which the decreased inner radius is (2 — h?)/v/4 — h2, when we obtain the
statement of case (1), or the decreased inner radius at h = 1 is at least 1/+/3, which
gives the statement of case (2).

Therefore, we only have to show that for any h € [1,hg) the base area-to-solid
angle ratio of C(Sy,) is smaller than that of C(S). Denote by S* the radial projection of
S onto bd G. Consider the homothety 7 taking S into Sp. It suffices to show that the
surface area of S; is greater than the surface area of 7(S*). It is easy to check that the
image of 7(S§*), under the projection onto G perpendicular to Hj, is contained in Sj.
Moreover, along this projection at each point of 7(S*), the slope of the tangent plane
increases, therefore the surface area of the infinitesimal surface element also increases.

Altogether, we obtain that the surface area of 7(S*) is smaller than that of Sj. O

Now, we assemble Steps 1-3 and prove Proposition 2.4. If the height hy > 2/ V3
then we apply Step 1, yielding either possibility (1), which is the same as case (1) of
Proposition 2.4, or possibility (2), when we can apply Step 3 (note that an RCC is
also a regular, vertex-free SRCC). Notice that the three cases of Step 3 are the same
as cases (2)-(4) of Proposition 2.4.

If ho < 2//3 then we apply Step 2 and then Step 3 as before, concluding the last

three cases of Proposition 2.4. ]

2.3 Approximation

First, we determine the base areas and the solid angles of the regular SRCC’s

obtained in Steps 1-3. The following lemma is the result of elementary computation.
LEMMA 2.5. Let h,r > 0, r < R, and let n be a positive integer such that

R2 _ 2

n arctan <.

r2

Then the vertez-free reqular SRCC of order n, height h, inner radius r, and outer radius

R has base area

2 _ .2
on(h,r, R) = nry/R2 — r2 4+ R? <7r — narctan R ) ,

r2
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and solid angle

h2 2 _ 22
wn(h,raR):2<7r—narctan <\/R2+h2\/R 2T >>_
R? —7“2
R2+h2 T — narctan .

Thus, by Proposition 2.4, the following holds.

PROPOSITION 2.6. A facecone of solid angle 1 has base surface area at least (1) where
o(v) is defined by the following parametric equations:
(2 - h?)?
4—h2 "’
Yn =7 (2= h/4—h?)

op =T

for h € [2/+/3,V/2], in which case vy, parametrises all values in |0, 17131];

52— h?)v/4—3h2 3 —2h? V4 — 3h?
B-r) 2 NCIoR h2)>

hv4 — 3h? 2 V4 — 3h?
Py =2 <7T — 5arctan \/3(2—}12)) — 2\/;h < — 5arctan N h2)>

op = <7T — Harctan

for h € [1,2//3], in which case v, parametrises all values in [12)1,&2];

5\/1—2r2+1 5 anct 1—2r2
=5r——+ = — Harctan
oy r 7 5| ™ arcta 572

1—2r2 2 1 — 9272
=2 (77 — darctan 37427‘> — 2\/; (77 — barctan 27“;)
for € [1/v/3,1//2], in which case ¢, parametrises all values in [1h, 1b3);
or = R?m,

1
=21l — —— .
vn ( VR? + 1)
for R > 1/+/2, in which case g parametrises all values in [1/33, 2m].

In the subsequent part of the article we shall use the following lemma repeatedly.
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LEMMA 2.7 ([Mud93]). Suppose that the function o(v) is parametrised by t in the

interval (a,b). Then o(v) is convex on (a,b) if

d%o (ﬁ)Q _ do d%y dip

dt? ~odt at? dt’

and concave if

d’o (c?tby _do d%y dip

dt? dt dt? dt

S odt dt? dt
for all t such that ¥ (t) € (a,b).

In what follows, we simplify the function o(¢)) and determine a minimal configu-

ration with respect to this substitute function.

PROPOSITION 2.8. The function o(v) can be approximated from below by

:{ %1/;1)1/}7 Zf¢ € [07%;1]

i . o(2)—o(v1) 7 . P
B(p) = { U(¢1)+Wwf—¢1)v if Y € [1%1,1/52]

! O’(w)v wa € [¢27¢3]

U o(vs) + o\ (W)W —ds), iy e [ds,2n]

PROOF. Since B(1)) is linear on all intervals except for [1hy, 1], it suffices to show that
o (1) is concave on (0, 1) and (b1, 1), and convex on (¢3, 2). We are going to look at
these intervals one by one and use the statements of Lemma 2.7 to check the convexity
of B(v).

In the following part of the proof we simply state the derivatives of ¢ and ¢ with

respect to h.

First, let ¢ € [0,41]. Then

do —27(2—h*)h(6 — h?)

dh (4 — h2)2 ’

d?c 2m(—48 + 60h? — 12h* + hY)
dn? (4 — h2)3 ’
dp  —2m(2—h?)

dh — a—pZ
d*y  2mwh(6 — h?)
dhz (4 —h2)3/2°
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From the above formulas it follows by simple computation that

Podp dodp  96(2 - h?)’x? (2.1)
dh? dh  dh dh? (4 — h2)2(4 — h2)3/2° '

The right hand side of (2.1) is positive, while di)/dh is negative on the whole interval
[0, wAl], which implies that (1)) is concave on the designated interval.

Next, let ¢ € [1[11, zﬁg] Introduce the following notation.

(1) 1=~ Saretan Vi )

V2(2 - h?)

Note that «(h) > 0 on the designated interval. Furthermore,

di —2V2
P (5\0/4 3h2 + (4 — h%)y )),

>y 20h(20 — 13h% — 3h%)
dh? f\/4 3h2(3 — 2h2)(4 — h2)?’

do
R 4 — 2 12 4 — 2
e h2 5 (5v2 3h2(6 — h?) + 2(4 — h?)*y(h)) ,

d?c _ —10v/2(144 — 308h° 4 196k — 34h5 + 3h%)
dh? (4 — h2)3(3 — 2h2)\/4 — 3h2

— 27(h).

We need to prove that the following expression is positive:

Pody _dody _
dh?2 dh  dh dh?
4

- V3(4 — h2)4(4 — 3h2)(3 — 2h2) (§o(h) +&1(h)y(h) + 52(h)72(h)> ,

where

€o(h) = 25v/2(4 — 3h?)(288 — 496h% 4 294h* — T3h5 + 9K%),
€1(h) = 200/4 — 3h2(4 — h?)(3 — 2h?)(56 — 62h* + 20h" — 315),
&(h) = V2(4 — h?)4(3 — 2h?%)(4 — 3h?).

Introducing w =4 — h?, z =4 — 3h?, y = h®> — 1, 2 = 3 — 2h2, we obtain
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o(h) = V2w'z > 0,
¢1(h) = 20v/zwz(2z + 9z + 10y% + zy?) > 0,
€o(h) = 25V 2z(4 4 y + 2zw + 1222 + yw? + 12y%z + 9y*) > 0.

Since all of these terms are positive, and dip/dh is negative on the whole interval [1&1, 1/32],
we obtain that (1)) is concave.

Finally, let ¢ € [1&3, 27]. An easy computation yields that in the considered interval

do

dw)=(5) =@
D/ gy
which is a monotonically increasing function, therefore o(¢)) is convex on (3, 27). Also

notice that the right-hand derivative of o(1) at 43 is 1/27/8. O

2.4 The minimal configuration

In this final section, we determine the minimal configuration with respect to the

function B(1), leading to the lower bound formulated in Theorem 2.2.

PROPOSITION 2.9. Suppose 1; € [0,27] for every i € [n], and Y ;" = 4m. Moreover,
let 1y, = 4w — 131&2. Then

n

> B(¥:) = B(thm) + 13B(1hs).

1=0

PROOF. First, we prove that B(v) is concave on (0,12). To see this, it suffices to
compute that the slope of B(¢)) on (0, 1/31) is

o) _
12)1 = 12_8\/5—1.4571...,
and on (1;171&2> it is
o(1hy) — o () _ 5v/2 + 21 — 15 arctan(1/1/2) 117334
I —2(57 4 2/67) — 4v/21 — 10v/6 arctan(1/y/2)) . Y

which implies concaveness.
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Now we show that B(1) is convex on (i, 27). It suffices to show that o(¢)) is
convex on (tg,13) and that the right- and left-hand derivatives of o(¢)) at 13 are
equal.

A straightforward computation, based on Proposition 2.6, yields that the derivative

of o(1)) on (2, 3) is

do V3
0= (g), =0+
Thus, () is indeed convex on (¢2,13), and its the left-hand derivative at s is
3\/% = \/ﬂ, the same as the right-hand derivative.

We remark that there is an alternative way to compute o’()) on (1&2,1@3). The
cones that belong to this interval are regular, vertex-free, order-5 SRCC’s of height 1,
outer radius 1/4/2, and inner radius r € [1/v/3,1/v/2]. As we increase r, the new part
of the SRCC is the union of five cones over chordal bands of the base circle, and the
derivative is the base area-to-solid angle ratio of these cones. This computation leads
to the same result as above.

Hence, B(¢) is concave on (0,1)3) and convex on (i, 27). Therefore, if we are

given two angles 0 < ¢y < Y1 < 1])2, then

B(io) + B(y1) = B(o — t) + B(¢1 + 1),

where t = min(t)y, oy — 11). Therefore, in the sum 1", B(1;), we can eliminate the
angles smaller than 1&2 except for at most one of them. Moreover, the convexity of
B(®)) yields that the angles that are at least @Zg can be replaced by identical angles,
and since 14@[}2 > 47, we also know that there are at most 13 of these. Altogether, we
can replace any configuration of angles by another configuration consisting of at most
one angle smaller than 1&2 and at most 13 identical angles which are at least 1&2. In

summary, we obtain the following statement.

Let k <13 and

50 = Bw) + k8 ()

k
for all ¢ € |0, min(q/A)g, 47 — hzﬂg). Then
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for some k < min(n, 13) and ¢ € [0, min(vg, 47 — kiy)). (1)

In what follows, we will find the minimal configuration with respect to #. The first

step in this process is to prove that it is sufficient to consider (13(1)).

If k <13, then Bi(v) = Brt1(0). (1)

For the proof of (1), we introduce the following function.

P2

1-{"”’2 ,if g € [0,4)
(BOW), if € [ih2,27).

The concavity of B(1)) on [0,»] implies that g(y)) < B(t) everywhere in [0, 27].
Furthermore, by definition, the right-hand derivative of g at ’IZ)Q is

o', (a) = 4V3_2v2 1.6329. ...

3v2 V3

Since on the interval (0, 12)

o (hy) _ 5V2+3m — 15arctan(1/v/2)
vy (2 — 467 4 20v/6 arctan(1/1/2))

we may conclude that g(1) is convex on [0, 27). Hence

g () = =1.2846...,

Br() 2 9(¥) + kg (4Trk_¢) > (k+1) g(]fj:1>'

Moreover, k < 13 implies that 47 /(k + 1) > 5 and so

(k+1) g (25) = 6+ 1) B (25) = Aen 0),

which proves (1).
Thus, we obtained that if k¥ < 13 then ﬁk(@b) > (13(0), and so, by (), a lower
bound for £13(¢) is also a lower bound for >°" ; B(t;).

Now, we shall look for the minimum of 513(1)).

4 —
13 )

for ¢ € [0,4m — 13¢] C [0,41]. On this interval, B(t) is linear, and

Bia(¥) = B'(¢) — o'(

=1.4571....




On the other hand,
47 —
13
so o'((4m —)/13) = (1 + r?)4/3/2. The angle ¢ varies between 1&2 and 47 /13, so the

inner radius r is at least 1/ V3, and

€ [1&27 %] - [1[)271;3]7

o' (4”1; 1/1) = (1+7%)/3/2>2V2/V3=1.6329....

Therefore, 315(¢) is negative in the entire interval. It follows that 313(¢)) is minimal
when 1 is maximal, that is, when ¥ = ¢,,, = 47 — 131/}2.
O

PrOOF OF THEOREM 2.2. Using the exact value of 1/}2, we obtain that

Vm = —= + ?\/é(w — 5arctan(1/v/2)) = 0.3155.....

w
3
After substituting the value of 1/;2 and v,,, the new bound for the minimum surface

area of the Voronoi cell is

B(thm) + 13 (h) = Jgpl)wm +130(¢) = 16.1977.....

1
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CHAPTER 3

STABILITY RESULTS FOR THE VOLUME OF RANDOM SIMPLICES

It is known that for a convex body K in R of volume one, the expected volume of
random simplices in K is minimised if K is an ellipsoid, and for d = 2, maximised if K
is a triangle. In this chapter, we provide corresponding stability estimates in terms of
the Banach-Mazur distance of K from the ellipsoid and the triangle. In Section 3.1, the
long history and various connections of the problem are presented. The main results
are listed in Section 3.2. The core technical lemmas leading to these are proved in
Section 3.3. The next section contains the proof of the stability of the lower bound,
which is obtained first for centrally symmetric, then for general convex bodies. The
argument estimates the change of the expectation when applying one step of Steiner
symmetrisation. The stability of the upper bound in the plane is shown in Section 3.5,
using linear shadow systems. We conclude the chapter by showing that our results also
imply the stability of the Petty projection inequality. These results are a joint work
with K. J. Boroczky [AB].

3.1 The saga

Let K be a convex body in R%. What is the expected value of the volume of
a random simplex in K7 Naturally, this question needs to be clarified further. We
will work with two (or three) models: in the first, all the vertices of the simplex are
chosen uniformly and independently from K, while in the second, one vertex is at
a fixed position — in a special case, this is the centroid of K. We are interested in
other moments as well, and also, we would like the answer to be invariant under affine
transformations.

As a general reference for stochastic geometry, we refer to R. Schneider, W. Weil
[SWO08], and for convexity, to T. Bonnesen, W. Fenchel [BF87], P.M. Gruber [Gru07]
and R. Schneider [Sch93]. V or V; stands for the d-dimensional volume (if the dimen-
sion is clear, we shall omit d), the convex hull of the points z; ...,z, is denoted by

[1,...,2y], and y(K) is the centroid of K.
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DEFINITION 3.1. Let K be a convex body in R%. For any n > d+ 1 and p > 0, let

B (K) = V(K)*”*P/K.../KV([a;l,...,xn})pdxl...da;n.

Further, for a fixed z € R?, let

EP(K) = V(K)_d_p/K.../KV([J:,xl,...,md])pdxl...dxd.

Specifically, we write Ef(K) for EE(K), when 2 = v(K).

In particular, for integer p, Ef +1(K) is the expectation of the pth moment of
the relative volume of simplices in K. Clearly, E?(K) and EL(K) are invariant under
non-singular affine transformations, and EZ(K) is invariant under non-singular linear
transformations, where o stands for the origin. We note that for fixed K and p > 1,
EP(K) is a strictly convex function of z, therefore it attains its minimum at a unique
point. If K is o-symmetric, then the minimum is attained at o, and E2(K) = EX(K).

In the rest of the section, we give an overview of the history of the quantities intro-
duced in Definition 3.1 and their various connections. The main results are presented
in Section 3.2, whose proofs are found in the subsequent parts. Section 3.6 contains

further corollaries.

3.1.1. Sylvester’s problem. The quantity E§+1(K) arose right at the first steps of
random convex geometry. Indeed, (probably) the first question in this topic is due
to Sylvester [Syl64]: in 1864 he (vaguely) asked, what is the probability that four
randomly chosen points in a planar convex disc are in convex position, that is, none
of them is in the convex hull of the other three. Generalising to higher dimensions,
if d + 2 points are chosen randomly from a convex body K C R? then the sought
quantity is exactly 1 — (d + 2)Ej,;(K). It is then natural to ask: for which convex
bodies is this probability minimal and maximal? The first steps in this direction were
taken by Blaschke ([Blal7] and [Bla23]), who showed that in the plane, the probability
in question is maximal for ellipses, and minimal for triangles. The maximisers in higher
dimensions are the ellipsoids (cf. Groemer [Gro73]), whereas the minimiser bodies in
higher dimensions are still not known. We shall state these results as theorems later.
For a thorough historical account of this problem, see Klee [Kle69], and also Bérany

[B4r08).
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3.1.2. Minimisers and affine inequalities. Let K C R? be a convex body with ~(K) =
0. The intersection body I K of K is defined by its radial function:

p]K(u) = Vd,1<K N UJ').

H. Busemann [Bus53] established the formula

(d - 1)!

Va(K)*t = 5 Jeun

Vit (K Nnut)AENK Nut)do(u), (3.1)

where o is surface area measure on S%!. In the same paper, he proved the Busemann
random simplex inequality:

EL(K) > EL(BY). (3.2)

Combining (3.1) and (3.2), he derived the Busemann intersection inequality, stating

that the volume of the intersection body is maximal for ellipsoids:

d
,i —_ p—
VallK) < Sty (k)i (3.3)
Ka
where kg = Vy(BY).
A couple of years later, Petty [Pet61] introduced centroid bodies: the centroid

body 'K of K is the convex body in R? defined by the support function

B (1) = V(IK)/Km,dex.

Using an approximation argument and the volume formula for zonotopes, he obtained

the following formula for the volume of I'K:
Va(TK) = 29V,(K)E(K). (3.4)

The argument is nicely presented in [Gar06]. Using the Busemann random simplex
inequality (3.2), Petty obtained the Busemann-Petty centroid inequality, which states

that the volume of the centroid body is minimal for ellipsoids:

V4(I'K) 264-1 \?
Va(K) (<d+ 1>nd> |
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The conjectured converse of this inequality is that the volume is maximised for sim-
plices provided that o is the centroid; this would be crucial in high dimensional convex
geometry, as we shall soon see.

The minimisers of the mean volumes of random simplices are known in full gener-

ality: they are the ellipsoids for all the quantities introduced in Definition 3.1.
THEOREM 3.2 (Blaschke, Busemann, Groemer). For any convex body K in R?, for any

p =1, and for anyn > d+ 1, we have

EP(K) > EP(BY) and EL(K) > EY(BY) and EP(K) > EP(B?).

n

\

Here EE(K) = EE(B?) if and only if K is an o-symmetric ellipsoid, and EY(K) =
E2(B?) or EP(K) = EP(B?) if and only if K is an ellipsoid.

As we noted before, Blaschke [Bla23] handled E}(K) in the planar case, Groemer
[Gro73] extended his result to higher dimensions, H. Busemann [Bus53]) obtained the
estimate for EE(K). Groemer [Gro74] derived the result for EP(K). All the proofs
are similar and based on Steiner symmetrisation. For thorough discussions of these
inequalities and relatives, see the survey article [Lut93] by E. Lutwak, or the monograph
[Gar06] by R.J. Gardner. The minimal values in the cases of random simplices when

p > 1 is an integer, can be found as Theorems 8.2.2 and 8.2.3 in R. Schneider, W. Weil

... /2
[SWO08]. Writing kg = V(B?) = r?gﬂ)’ we have
d—+p -1 —d— K1...Kq

EP(BY) = < > podPd e Rd

( ) d d d+p Rp+1 .. Kptd

d+p\"" 4 K24 dp+d K1...Kq
B, (BY) — (dw—p( ) podpl ) Ry K

i d ¢ TP K ydprdip Fpl - Rprd

3.1.3. Maximum inequalities and the slicing conjecture. As usual, let K be a convex
body in R?, and assume that v(K) = o. The inertia matriz of K is the d x d matrix
M given by

M;; = /Kxiacj dz,

where ; is the ith coordinate of z. Since for any y € R?, we have y My = [ (z,y)2dx,
it follows that M is a positive definite, symmetric matrix, and hence it has a positive
square-root A. The inertia matrix of the convex body A~'K is then I;/det A (see
J. Bourgain, M. Meyer, V. Milman, A. Pajor [BMMP88|, and for a more detailed
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discussion, see Ball [Bal88]). For a non-singular affine transformation ® € GLg4, we
say that ®K is in isotropic position with the constant of isotropy Ly, if v(K) = o,
Va(®K) = 1, and the inertia matrix of ®K is a multiple of the identity, that is,

|, te)de = Lyl

for every y € R%. We just have seen that every convex body has a non-singular affine
image that is in isotropic position, and it is well known that the isotropic position is

unique up to orthogonal transformations. Hence, Lk is an affine invariant. Moreover,
Ly = (det M)Y/23y, (k)= (@+2)/2d (3.6)

By expanding the determinant of M, one obtains (see Blaschke [Blal8] or Giannopou-
los [Gia])
det M = d! Vy(K)4?E2(K),

and hence from (3.6),
L3¢ = dIFY(K). (3.7)

The slicing conjecture, initiated by J. Bourgain [Bou86], asserts that there exists a
universal constant L, for which Lx < L for every convex body K, regardless of the
dimension. There are various equivalent formulations of this major open problem; for
thorough surveys, consult the papers V.D. Milman and A. Pajor [MP89], and A.A.
Giannopoulos and V.D. Milman [GMO04] for some later results.

By (3.7), one has to determine the maximum of E2(K). The most general conjec-

ture is the following, where T stands for a d-dimensional simplex:

CONJECTURE 3.3 (Simplex conjecture). If K is a convex body in R?, then for anyp > 1
and for anyn > d—+1,

EP(K) < EZ(T*) and EE(K) < EL(T"),

n

with equality if and only if K is a simplez.

Little is known about Conjecture 3.3. The proposed extremal values are known

explicitly only in a few cases. W.J. Reed [Ree74] proved that if p > 1 is an integer,
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then

12 P /p\ 2
E4(T?) = 6(p+1)*+ (p+2)° :
) = o e e @ e [P TY T L
For all n, only the first moments E (7?) and E! (T3) are known, see C. Buchta [Buc84]
and C. Buchta, M. Reitzner [BRO1], respectively. Even explicit values of E},(7) for

d > 4 are missing. It is important that for any d > 2,

BA(TY) < . (3.8)
see Giannopoulos [Gia]. Thus, the simplex conjecture for E2(K) implies the slicing
conjecture.

The method of Dalla and Larman [DL91], who considered E}(K), combined with
Theorem 3.9 of Campi, Colesanti, and Gronchi [CCG99] yields Conjecture 3.3 if K is
a polytope of at most d + 2 vertices. Barany and Buchta [BB93] proved the following
asymptotic version of Conjecture 3.3 for p = 1. If K is not a simplex, there exists a
threshold ny depending on K, such that EL(K) < EL(T?) for n > ng. Conjecture 3.3

for all K and n is verified only in the plane.

THEOREM 3.4 (Blaschke,Dalla-Larman,Giannopoulos). If K is a planar convex body,
then for anyn > 3 and p > 1, EE(K) < ER(T?), with equality if and only if K is a

triangle.

More precisely, it was proved by Blaschke [Blal7] for n = 3, and by Dalla and
Larman [DL91] for n > 4, that EP(K) < EE(T?). In addition, Giannopoulos [Gia92]
verified that equality holds only if K itself is a triangle.

We shall see in Section 3.5 (compare (3.29) and Lemma 3.15) that the method
of S. Campi, A. Colesanti, P. Gronchi [CCG99], see Theorem 3.9, leads to the planar

version of the first statement of Conjecture 3.3.

THEOREM 3.5. If K is a convex disc, then for any p > 1, we have EX(K) < E(T?),

with equality if and only if K is a triangle.

For centrally symmetric planar convex discs and p = 1, T. Bisztriczky and K.
Boroczky Jr. [BBO1] proved the analogue of Theorem 3.5 with o-symmetric parallelo-

grams instead of triangles as maximisers. The method readily extends to all p > 1.
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3.1.4. Equivalence. Finally, we establish connections between the different quantities
measuring the mean volumes of random simplices.

For every p > 1 and for any convex body K C R¢, we have
(BE(K)'P < (Bf (K)VP < (d+ 1) (BR(K)) P, (3.9)

For a proof, see Proposition 1.3.1 of Giannopoulos [Gia].

Specifically, for p = 2, one obtains
(d+1EXK) = E(K). (3.10)

The proof goes by assuming that v(K) = o and K is in isotropic position. Given
Tl Td4+1 € Rdv

1

7 det((z1,1),..., (xgy1,1)).

Vd([l'h cee ,xd+1]) =

Using this formula and proceeding as in Proposition 3.7. of Milman and Pajor [MP89],
one obtains (3.10).

Thus, in view of (3.7), to prove the slicing conjecture, it would suffice to estimate
B3, (K).

Next, we show that all the quantities EX(K) and E} (K) are equivalent in the
following sense: for any p,q > 0, there exist constants ¢, , and C) , depending on p and

q only, such that if EP(K) stands for either EX(K) or E}j ,(K), then
¢ g (BP(K))P < (BU(K))YT < Cp (B2 (K)) VP (3.11)

To this end, using (3.9), it suffices to show that EF(K) and E{(K) are equivalent.
Holder’s inequality implies that for 0 < p < g,

(B2(K)P < (B4(K))V1. (3.12)

To see the estimate in the other direction, we refer to Milman and Pajor [MP89].
Proposition 3.7 therein states that there exists an absolute constant ¢ > 0, such that

for any convex body K C R%, and for any 0 < p < 2,

(E2(K))Y? < (B2 (K)) P, (3.13)
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The key step is using the concentration of volume property of convex bodies (in-
deed, for log-concave functions), cf. Borell’s lemma, which then establishes that for a
fixed v € RY, all the L,-norms ( [y |(x,v)|Pdx)"/P are equivalent. Then, one uses the

fact that fixing 21,...,24-1, V[21,...,24| is a linear function of x4, and hence,

B () = [ I o) dag

for some v € RY, provided Vy4(K) = 1. Equation (3.13) can then be obtained by an
inductive argument, provided K is in isotropic position.
When p > 2, then we use the following Khinchine type inequality: if K ¢ R% is a

convex body of volume 1, then for any v € R,

(A |(:c,v>|pda:)1/p < cpﬁ( |(x,v)| dz < cp (A \(w,v>|2dx)l/2

for some universal constant ¢ (see Proposition 2.1.1. of Giannopoulos [Gia]). Then the
argument of Milman and Pajor works, yielding that there exists a constant C', such
that

g ! P 1/p 2 1/2
(5) @2 < @20

Referring to (3.12) and (3.13), we arrive to (3.11).
We note that in order to prove the slicing conjecture, using formulas (3.7) and
(3.11), it would suffice to verify either the first or the second statement (with n = d+1)

of Conjecture 3.3 for any particular p > 1.

3.2 Results

Our goal is to provide stability versions of Theorems 3.2, 3.4 and 3.5. We shall
use the Banach-Mazur distance dpy (K, M) of the convex bodies K and M, which is
defined by

MK, M) =min{A\>1: K-z C ®(M —y) C MK —x)
for ® € GLg, z,y € Rd}.

If K and M are o-symmetric, then x = y = o can be assumed. It follows by Fritz

John’s ellipsoid theorem that dgy(K, BY) < d for any d-dimensional convex body K,
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and 0y (K, BY) < v/d holds if K is centrally symmetric. Moreover, J. Lagarias and G.
Ziegler verified in [LZ91] that dpm (K, T%) < d + 2.
First, the stability version of Theorem 3.2.

THEOREM 3.6. If K is a convex body in R? with dpv(K,BY) =1+ 6 for § > 0, then
for anyp >1,

E2(K) > (1476 *)ER(BY)
EZH(K) > (1+ 7p5d+3)E§+1(Bd)7

where the constant v > 0 depends on d only. Moreover, if K is centrally symmetric,

then the error terms can be replaced by P8(4+3)/2,

Similar stability estimates preceded our work. Groemer [Gro94] showed that under
rather strict regularity conditions on the boundary of K, the above statement holds
with an error term of order §°¢° for some universal constant c. Fleury, Guédon and
Paouris [FGPO07] proved a stability result for the mean width of L,-centroid bodies,
which in the case p = 1, yields a stability estimate for E}(K) by (3.4). However, the
error term obtained this way is again only of order 5 for some universal constant c.
We remark that for p # 1, no such direct connection exists between EP(K) and the
volume of the L,-centroid body.

Second, the stability version of Theorems 3.4 and 3.5.

THEOREM 3.7. If K is a planar convex body with gy (K, T?) =1+ 6 for some 6 > 0,
and p > 1, then

EL(K) < (1-6*)ER(T?)
E5(K) < (1-c)E5(T?),

where ¢ is a positive absolute constant. This estimate is asymptotically sharp as é tends

to zero.

3.3 Linear shadow systems and Steiner symmetrisation

For obtaining the stability versions of both the minimum and maximum inequal-

ities, we shall use the following notion. Given a compact set Z in R? a unit vector v,
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and for each = € E, a speed p(z) € R, the corresponding shadow system is
Er={z+tp(x)v:x €=} forteR.

According to the classical work of H. Hadwiger [Had57], C.A. Rogers, G.C. Shephard
[RS58] and Shephard [She64],

THEOREM 3.8 (Hadwiger,Rogers,Shephard). For a shadow system E, every quermass-

integral of = is a convex function of t.

We note that for any p > 1, the convexity of the pth moment of the quermassin-
tegrals follows as well.

In the last decades, shadow systems were successfully applied to various extremal
problems about convex bodies (see e.g. S. Campi, P. Gronchi [CGO06], and M. Meyer, Sh.
Reisner [MRO06]). For our purposes, we need a restricted class of shadow movements,
introduced in [CCG99] by S. Campi, A. Colesanti, and P. Gronchi. We say that K,
t € [a,b], is a linear shadow system of convex bodies, if we start with a convex body K,

the speed () is constant along any chord of K parallel to v, and
K ={z+tp(x)v: x € K} fort e [a,b

is convex for every t € [a,b]. In this case, ¢(x) is continuous on K, and it depends
only on the projection 7,z of = to v. Moreover, the volume of K; is constant, and the
transformation x — z + tp(z)v from K to K; is measure preserving.

For any linear shadow system K, there also exists a linear shadow system .’F\(Jt,

t € [a,b], such that
v(K;) = o for t € [a,b], and each K; is a translate of K. (3.14)
To see this, note that
Y(Ky) = y(K)+t-v-V(K)™! /K (z)dz. (3.15)
Therefore, K; = K; — ~v(K}) can be achieved by using the speed

@(x) = p(z +y(K)) - V(K)™! /K o(z)dz forz € K.
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The main reason for restricting shadow movements is the following result of [CCG99]

(where linear shadow systems were called RS-movements).

THEOREM 3.9 (Campi, Colesanti, Gronchi). If Ky, t € [a,b], is a linear shadow system,
then EP(K;), EP(K};) and EL(K};) are convex functions of t. If either of these convex
functions is linear, then any two elements of the system are affine images of each other,

and actually linear images in the case of EP(Ky).

We note that although Theorem 3.9 was proved only for EP (K) in [CCG99], the
method works for the other functionals as well (see also Lemma 1 for a direct approach).
Indeed, for handling EP (K}), the authors consider for each n-tuple E = {z1,...,z,} C

K the associated shadow system
= = [z + to(x1)v, ... @y + ()]
Since V(=) is a convex function of ¢t by Theorem 3.8, we conclude Theorem 3.9 by

EP(K;) = K)™"Px

V(
/ . / V([z1 +te(xi)v, ..., zn + to(an)v])P doy .. dy,.
K K

In order to obtain the convexity of EE(K}), to each d-tuple {z1,...,24} C K\o one
assigns the d + 1-tuple Z = {0, x1,...,24}, and defines the speed of o to be zero. The
convexity EX(K}) follows from (3.14).

Finally, we have to deal with the extremal situations only. The argument is based
on ideas in [CCGY99]. Let us indicate it in the case when EZ(K}) is a linear function of ¢,
which also settles the case when EY(K,) is a linear function of . If for some s,t € [a, b],
s < t, Ky and K are not images of each other by any linear transformation, then there
exist 7+ pu, T — p € [s,t], p > 0, and d-tuple {z1,...,x4} C K with the property that
{z1+70(21)V, ..., 249+TP(24)V} is linearly dependent, and {1+ (7+u)p(z1)v, ..., x4+
(T4 p)p(xq)v} is linearly independent. It follows for = = {z1,..., x4, 0} that V4(E;) <
T (Va(Er_p) + Va(E+4,)), which in turn yields E5(K-) < $(EB(K-—,) + EB(K-1,)) by
Theorem 3.8 and the continuity of .

When dealing with linear shadow systems, the following simple observation is very

useful. If p > 0, oq, ..., 04 are parallel segments, and @ is an affine transformation that
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acts by translation along any line parallel to the o;’s, then

/ .../V([o,zl,...,zd])pdzl...dzd
o1 o4

:/ [ V@0, 021,. .. B2g))P dz .. dea, (3.16)
doy Doy

and

/ oo | V([z0,---,24])P d2o ... dzg
oo o4

:/ / V([®z0, ..., 0z4))P dzo .. . dzg. (3.17)
Pop Doy

All the known proofs of Theorem 3.2 use the fact that the moments to be estimated
are monotone decreasing with respect to Steiner symmetrisation. This is a consequence
Theorem 3.9, due to the following connection between Steiner symmetrals and shadow
systems. Let K be a convex body, and H a hyperplane. Consider the unique linear
shadow system K, t € [—1,1], such that K; = K, and K_; is the reflected image of
K through H. Then Kj is the Steiner symmetral Kz of K with respect to H. Now,
Theorem 3.2 follows by using the well-known fact that V(K )%Bd can be obtained as a
limit of a sequence of Steiner symmetrals starting from K.

The behaviour of E}j ;(K), E5(K) and EY(K) under Steiner symmetrisation can
be computed easily using basic properties of determinants. Refining the proof, we will
be able to deduce the stability estimates. It goes as follows. Assume that we take the
Steiner symmetral of K with respect to H. Let zg,..., x4 be an arbitrary set of points
of H, and consider the integral over those simplices whose vertices project to the points
(x;) in H. By (3.16) and (3.17), we may assume that the midpoints of the chords of K
through xg,...,z4_1 are located in H. Then the Steiner symmetrisation moves only
o(xq), and the situation is easily handled.

For Lemmas 3.10 and 3.11, let g, . .., x4 be contained in a hyperplane H in R? in
a way such that no d of them are contained in any (d — 2)-plane, and let v be a unit
vector not parallel to H. In addition, let 6 > 0, ag > 0, and o; > 0 for i =1,...,d. For
Lemma 3.10, to save space, we also use the (slightly obscure) convention that [, dto =1

for JO == {ZC(]}
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LEMMA 3.10. Let p > 1, let 0 < B; < «; fori=1,...,d, and let By = «o, if ag = 0,
and 0 < By < ag if g > 0. For J; = [—ay, — ;] U [Bi,ai], 0=1,...,d, we have

cp(s) :/ / / V([l‘o—i—tov,...,wd—i-tdv])pdto...dtd
Ja+sJJqg—1 Jo

is convezx, and ¢(s) = ¢(0).

PrOOF. For any fixed t; € J;, 1 =0, ...,d, the function
V([zo + tov, ..., x4—1 + tg—1v, x4 + (tg + s)v])?

of s is convex because it is the pth power of the absolute value of a linear function.

Therefore ¢(s) is convex as well. Since ¢(s) is even, we have ¢(s) = ¢(0). O

Naturally, Lemma 3.10 with 8; = 0, ¢ = 0,...,d, directly yields Theorem 3.9 for
El. (K), E5(K) and EX(K). Now we provide a stability version under a technical (but

necessary) side condition.

LEMMA 3.11. Let p > 1 and 0 € (0,4/2), and assume that if |t;| < «; for every
1=0,...,d—1, then

aff{zo + tov,...,xq_1 + tg_10} N [2g — (g — O)v, 24 + (g — §)v] # 0. (3.18)

Then the following inequalities hold.

(i) In the case ag = 0:

ag+d  pog_1
/ . V([IQ, 1 +tv,...,xq + tdv])p dty...dtg
ad+5 —Qd_1
ag—1
/ / . V([:Uo, 1+ v, .., xq + tqu))Pdty .. dtg
ad—1
2d p—1
> 520 TR R 1o Vo (mofzo, - wa—1])P.

(i) If ag > 0, then

dtag fog-1
/ / / V([zo + tov, ..., zq + tgv]) dty . . . dtg

xg—1
Qg—1
/ / / ([l’o—i—tov,...,xd—i-tdv])pdto...dtd
Ag—1
d—p
p2 _
> 62 T Q... og_10) 1Vd_1(7rv[330,...,md_1])p.
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PRrROOF. We prove only (ii); obtaining (i) by the same method is straightforward. Due

to condition (3.18) and symmetry, and by using the notation

w(to, t1,... ,td) :V([(I}O +tov,..., 241 +lq_1v,2q + tdv])p

+ V([xo —tov, ..., x4-1 — tg—1v, x4 + tqv])P,
the following holds:

ag+d  pog_1 o
/ / . V([wo + tov, ..., xq + tqu|)P dty . . . dtg

ag+d J—ag_y

—2/ /dl1 . 0V([xo—|—tgv,...,xd—{-tdv])pdto...dtd

Qd—1

e / to,...,td_l,td+5)—w(to,...,td_l,td)dto...dtd.
og—

For fixed t; € [—a;, 4], 1 =0,...,d — 1 and t4 € [ag — §, ay4], let s € [—aq + 0, g — I]
satisfy that zg + tov,...,xq_1 + tq—1v and x4 + sv are contained in a hyperplane. It

follows that

w(to,. costd—1,td —{—5) —w(to,. . -atd—latd) =

Vdfl(%[xo,n-,%dq])px
dr

[(tg+ 0+ 8)P + (tg+ 6 — )P — (tg+ )P — (ta — s)].

We claim that
(ta+ 0+ 8P + (ta+ 0 — 8)P — (tg + )P — (tg — s)P > pdaly ' j2p~1, (3.19)

We may assume that s > 0, and hence s € [0,¢4]. Let 9(s) be the left hand side of

(3.19) as a function of s, then
W' (s) =pta+ 0+ )P = plta+6— 5P = [p(ta+ 5)P1 = p(tg — s)"~'].

Since prP~! is convex, if p > 2, and concave, if 1 < p < 2 for 7 > 0, we deduce that
1’ is non-negative, hence v is increasing, if p > 2, and 1/ is non-positive, hence 9 is
decreasing, if 1 < p < 2. In particular, we may assume s = 0, if p > 2, and s = tg4, if
1 < p < 2in (3.19). Therefore the estimates ty > agq/2 and (7 + §)P — 77 > pdrP~1 for
T =tq or T = 2ty yield (3.19). In turn we conclude Lemma 3.11. O
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3.4 Stability of the minimum inequalities

We are going to use Vinogradov’s >> notation in the following sense: f > g or
g < f for non-negative functions f and g iff there exists a constant ¢ > 0 depending
only on d, for which f > ¢g holds. In addition, we write h = O(f) if |h| < f.

We will say that a convex body K C R? is in John position, if its unique inscribed
ellipsoid of maximal volume is BY. We are going to use the following simple consequence

of Fritz John’s ellipsoid theorem (see [Joh48] and [Bal97]).

PROPOSITION 3.12. Assume that the o-symmetric convex body K C R is in John

position. Then for any point p € ST, there is a contact point q between K and B¢,
for which (p,q) > 1/V/d.

The statement is equivalent to the well-known fact that any point in K has norm
at most \/&

We will use the following notations. Let K be a convex body in R?. Let H be a
hyperplane of R with normal v. Let £ be the line of direction v, and for any x € H,
denote by o(z) the secant K N (z + ¢), and by M (z) the midpoint of o(z). Moreover,
let m(zx) be the signed distance of x and M (z), that is, m(z) = (M(x) — z,v).

Now, for Theorem 3.6. First, we deal with the case when K is o-symmetric and

its Banach-Mazur distance from B? is sufficiently small. This is the core of the proof.

LEMMA 3.13. For any d > 2, there exists 9,5 > 0, such that if K C R is an o-
symmetric convexr body in John position, and the maximal norm of the points of K 1is

1+ ¢ with e < &g, then for any p > 1,

Ef(K) — Eb(BY) >

>
Ef o (K) = By (BY) > 4reltt9/2,

PRrROOF. Let r be a point of K of maximal norm. By Proposition 3.12, there is a contact
point ¢ € K N S ! with (—r,¢) > ||r||/Vd. Let £ be the line passing through 7, ¢
with direction vector v = (r — q)/|r — ql|, let H = v+, and choose a coordinate system
such that the dth coordinate axis is parallel to /. Taking z4 = 7,7 = 7,q, a simple
calculation shows that , ,

zall < NV (3:20)
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For any z € H N B, let o(x) = K N (z + ¢£) with midpoint M (z), and define m(z) =
(M (z) — x),v). Since B* C K C (14 ¢)BY, if ||| < 0.9, then m(z) can be estimated

as

ey < YOF P —Nal? = 1Tl _ (4 0(e)
? 21— [P

Note that for = = x4, equality holds in (3.21).

(3.21)

The estimating function is illustrated on Figure 3.1.

L I
-1.0 -05

Figure 3.1: Estimating the deviation

The tangent from o to the graph of f(z) = 1/4/1 — 22 has its contact point at
z = 1/4/2. Due to the convexity of f(2), estimates (3.20) and (3.21) imply that if we
choose the points x1,...,74_1 of norm about 1/v/2 with x4 € [0,21,...,24_1], then
M (z4) is separated from [o, M (z1), ..., M (x4)] by ce, where ¢ is a constant depending
on d only. This then yields a positive error E2(K) in comparison with E2(B%). This
idea is transformed to a quantitative proof as follows.

First, we estimate the decay of m(x) around x4. By convexity, [B% r] C K. Let
#=991No,r], and 7 = S9N ([gr]\q). Estimate (3.20) yields that |7 —7|| < e. For
s € S9! denote by T'(s) be the tangent hyperplane to S9! at s. It is easily obtained
that the intersection [B?, r] N T(#) is a (d — 1)-dimensional ball of radius m ,
and thus, A = [B% r]NT(7) contains a ball of radius \/E/TE) centred at 7. Then, again
by (3.20), m,(A) contains a ball D of radius v/¢/4 centred at x4. Since T'(¢) is a tangent

hyperplane of K, m(z) can be estimated over D linearly:

m <xd + tfu) > (1—t)m(zg), Yue STLvtelo] (3.22)
Next, we are going to estimate E(K)—E2(B%). Let g = o, and choose x1, ..., Tq_1

as follows. Take § = xq/|lz4|. If d = 2, then let 1 = §/v/2. If d > 3, then take
y = (1/v/2-1/(100d))w, and let 21, ..., 241 be of norm 1/v/2—1/(500d), the vertices of
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aregular (d—2)-simplex in (y+y*)NH with centroid y. Note that the distance between
any two of these is > 1/100v/d. Let o = 1/(1000d) and define X; = 2; + oB4! c H
for every i =1,...,d — 1. Then Vy_1(X;) > 1.

Note that by (3.20), there exists a neighbourhood U of z4 of radius > /¢ in H
such that for any «; € X;, i =1,...,d — 1, we have U C [o,2],...,2/,_,]. For such a
collection of (), and for any z/, € U, define

D((JZ/)) = D('rllﬂ e 7x2lfl?x/d) = [OaM(xll)v e 7M(x2lfl)] N U(xél)a

)

and let d((z})) = (D((«%)),v). Note that for any 2, € X;, 1 <i<d—1,

(2

i_i<”x’”<i_i
V2 500d TN /B 500d

Thus, (3.21) yields that there exists a neighbourhood V' C U of z4 in H, still of area
> £(@=1/2 such that for any 2} € X;,i=1,...,d — 1 and any ', € V, for sufficiently
small € we have

TAllE
d(a, .. o) < —dl

< TTr000) (3.23)

Since
£ |zalle

20 /1 |lzg|2 1 — 1/(100d)

as a function of ||z4| is decreasing for ||z4|| < 1/v/2, estimates (3.20), (3.21) and (3.23)
yield that for 2} € X; and 2/, € V,

, , 1 1/V2 = 1/(4V4d)
m(l'd)_d(xla"'vxd) 26(\/§+ 1/(2@) B 1—1/(100d) >
> 20d

Let R = v/2¢/(100d), and take X4y = VN(zq+RB* 1) C H. Then Vy_;(X4) > eld=1/2,
Moreover, since m(z4) < €/v/2, the above estimate and (3.22) yield that for o} € X;,
i=1,....d

/ / / €
— - > .

(3.24)

Let now K’ be the Steiner symmetral of K with respect to H. By Theorem 3.9, it
is sufficient to prove that EP(K) — EE(K') > 4Pe(d+3)/2. We calculate the average
volume of random simplices by integrating along the d-tuples of chords of K parallel

towv. For z € H, let ox(z) = o(x) = KN (z+¥), and og/(x) = K' N (z + ¢). For
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zh, ...,z € HN K, define

w(l"l,--.,x&)Z/ / Vio,y1,- -, Yal dya - - - dy
ok (@) ok ()

—/ / Vio,y1, .- yal dyq - . . dys
ogr(zh) o (zh)

Lemma 3.10 yields that for any (z}){ ¢ H N K, we have w(z},...,z};) > 0. Moreover,
by the construction of (X;){™!, for any 2/ € X;, we have Vy_i([o, 2}, ..., 2/ ;]) > 1.
Thus, by (3.24), Lemma 3.10, and part (i) of Lemma 3.11,

EB(K) — EP(K') 2/}( /X w(xy, ... xl)dxl;. .. dx} 2%’5(d+3)/2
1 d

for some ; > 0 depending only on d.

Next, we estimate Efj, ,(K) — E} ;(K’). We start as before. There are two cases
to be considered depending on ||z4||. First, assume that ||z4|| > 1/100 (we need only
lzql| > 1). Then construct (X;)¢ as before. Choose R > 0 small enough such that the
following hold:

i) For any zf, with [|zp|| < R, and any 2 € X;, i = 1,...,d, we have 2, €

[z0, ..., 2]

ii) For any z(, with |zp|| < R and m(z) <0, and any o} € X;,i=1,....,d,

m(xly) — (M (z(), ..., M(zh)_1)] No(xl),v) > e. (3.25)

Let Xo = {x € H : |z| < R, m(z) < 0}. By the symmetry of K, the measure of
X is at least half as large as that of RB4~!, thus, Vz_1(Xo) > 1. Then, part (ii) of
Lemma 3.11 applies as before, yielding

Efy oy (K) = By (K') > A3

for some 2 > 0 depending only on d.
In the second case, x4 is close to the origin: ||z4|| < 1/100. Let A be the annulus

{x € H:1/2 < ||z|| < 3/4}. For this instance, define the function d’ on A? by

d'(20,..,7g1) = (([M(x0), ..., M(zq_1)] N o(0)),v).
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Note that by symmetry, d'(—z(,...,—z}_,) = —d'(z{,...,2)_;). Let C =1/100, and
consider only those (z})d~' C A, for which |(u,v)| > C, where u is the normal vector
of [M(zg),...,M(z},_y))]. Then the (product) measure of these point sets is > 1;
moreover, at least half of them satisfies d'(z, ..., z),_;) < 0. These also satisfy (3.25).

Thus, integrating over these sets, the argument works as before. O

REMARK. In the planar case, one can obtain the following quantitative result: If K

satisfies the conditions of Lemma 3.11, then for small £ > 0,

1 1/ 2 gd/?
E(K)-E. (B —

From this, it also follows that if K is a centrally symmetric convex disc, and E!(K) <

(1+ 6)EL(B?), then there exists an ellipse E, for which E ¢ K C (1 + 200%/°)E.

To obtain the estimate for not necessarily symmetric bodies, we cite the following

result of K. J. Boroczky, see Theorem 1.4 of [Bor].

LEMMA 3.14. For any convex body K C R? with Spym(K, BY) > 1+ ¢ for some & >
0, there exists an o-symmetric convex body C with axial rotational symmetry and a
constant v > 0 depending only on d, such that 5y (C, BY) > ve2, and C results from

K as a limit of subsequent Steiner symmetrisations and affine transformations.

Now, we are ready to prove the general result.

PROOF OF THEOREM 3.6. Let sy (K, BY) =1+ 6. By Lemma 3.14, we may assume

that K is an o-symmetric convex body in John position, provided we prove

EP(K) > (1 ++75°% )EP(BY), and (3.26)
d+3
Ep 1 (K) = (144762 )E,(BY) (3.27)

for v > 0 depending only on d. Let the maximal norm of points of K be 1+ €. Since
the volume of K \ B? is > £(4T1/2 it follows that

d+1

YE 2T SKO0<Ke€E (3.28)

for 9 > 0 depending only on d.
d+1
Let ¢ and 4 come from Lemma 3.13. If § < dp = y0g,® then € < g9 by (3.28),

and hence we have (3.26) and (3.27) with v =4 by Lemma 3.13 and (3.28).
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Therefore we may assume that & > dy. Choose a sequence of Steiner symmetrals
Ko, K1, K, ... starting with K = K| that converge to B¢, and hence there exists K,
such that dpy(Kpt1) < do < dpym(Ky). Let Ly - t € [—1,1] be the linear shadow
system with L; = K,, and Ly = K, 41 corresponding to the Steiner symmetrisation of
K, (see Section 3.3), thus there exists ¢ € [0, 1) such that dppas(L¢) = do. It follows that
EL(Ly) < EX(K,) < EX(K) and E} ,(L;) < Ef, | (K,) < Ej,,(K), thus we conclude
(3.26) and (3.27) by the previous case and § < V/d. O

We made no attempt to find the best possible constants. However, the estimate
e(d+3)/2 for centrally symmetric K is close to the truth: if K = [r, —r, Bd], where r is

of norm 1+ ¢, then
ES(K)

o

EL(B9)

—1 < gldtD)/2,

3.5 Stability of the maximum inequalities in the plane

Since here we work only on the plane, a conver disc means a planar convex body,
and A(K) = Va(K) is the area of K. For a polygon II with at least four vertices
qi,---,qr in this order, a basic linear shadow system at g1, basic system for short, is
defined as follows. Let ¢] and ¢{ be points different from ¢; such that ¢; € [¢}, /],
qy — gy is parallel to ¢2 — g, and @9, . .., g lie on the boundary of II' = [¢}, g2, - - - , @]
and 11" = [¢}, q2, ..., qx]. The corresponding basic system is the unique linear shadow
system Iy, t € [—f3, a], such that o, 5 > 0, a4+ =1, II_g = 11", Il = II, and 11, = IT'.
In this case, the generating vector is parallel to g2 — ¢x, and the speed of any point in

[q2, .., qk] is zero. Tt follows from Theorem 3.9 that for any n > 3 and p > 1,
EP(IT) < max{EP(IT'), EP(IT")}, (3.29)
where EP(IT) stands either for E2(II) or EP (IT). More precisely, the following holds:
EP(II_¢) on [0, G], or EP(II;) on [0, o], is strictly increasing. (3.30)

For a convex disc K, let Tk be a triangle of maximal area contained in K. It
follows that the triangle, the midpoints of whose sides are the vertices of Tk, contains
K. In particular, A(K) < 4A(Tk).

First, we reduce the case to polygons with at most 6 vertices.
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PropPoOSITION 3.15. For a convex disc K, let T be the triangle, the midpoints of whose
sides are the vertices of Tir. Forn > 3 and p > 1, there exist polygons 11 and Iy with
A(I}) = A(ITy) = A(K) such that Tx C IIy, Iy, all vertices of 111,11y are on 8T, and

EP(K) < E(IL) and E(K) < ER(IL).

PrOOF. We may assume that K is not a triangle, and by continuity, that K is a
polygon. However, for k£ > 4, suitable basic systems and (3.29) yield that among
polygons P of at most k vertices with fixed area such that T C P C T , any polygon
maximising either E(P) or EZ(P) has all of its vertices in T O

The core lemma comes.

LEMMA 3.16. There exist positive absolute constants g, ¢ such that if p > 1, and
A(K) = (14¢)A(Tk) for a convex disc K and € € (0,9, then

EL(K) < (1 — @) ER(T?) and EE(K) < (1 — F*)ER(T?).

PRrROOF. We first consider EL(K). Let Tx = [p1,p2,ps], and let ¢1,q2, g3 be the such
that p; is the midpoint of [g;, ], {7,7,k} = {1,2,3}. We may assume that each side
of Tk is of length one, and v(Tx) = o.

Let II be the polygon provided by Claim 3.15, and let « be the farthest vertex of
IT from Tx. We may assume that z € [p1, ¢2]. It follows that A([x,p1,ps]) is between
€A(Tk)/6 and €A(Tk ), and hence

e/6 < |z —pi|l <e. (3.31)

Let us number the vertices of II in such a way that x = x3, its neighbouring vertices
are xa € [p1,qs] and x4 € [ps3, g2], and the other neighbours of x5 and x4 are 21 € [p2, ¢s3]
and x5, respectively; see Figure 3.2. Here possibly x5 = 1, and either z5 € [ps3, q1],
or x5 € [p2,q1]. The definition of z = x3 yields that for any i = 1,2,4,5 there exists
J € {1,2,3} such that

s = pyl < llz = ol (3.32)

To deform II, let [ be the line parallel to x9 — x4 passing through z, and let 2’ and
z” be the intersections of | with aff{xo,z;} and aff{z4, x5}, respectively. We consider

the basic system I, t € [-3,a], o, > 0, a« + 3 = 1, where Iy = II, 2’ is a vertex
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of I1,, and 2 is a vertex of II_g. We write p(z) to denote the speed of a z € II, and

observe that the generating vector is v = ”‘”2_“

wa—wa|”

a3 1 D2 @5 T
Figure 3.2: Modifying convex discs

It follows by (3.15) that v(II) = ~y(Ila) + ay(II_g). Thus for any 21,22 € II,
Theorem 3.8 yields

A([’Y(H% 215 22]);0 < ﬁA([V(Ha)ﬂ z1 + acp(zl)v, z2 + Oz(p(Zg)U])p

+ aA([y(II-g), 21 — Bp(z1)v, 22 — Bp(z2)v])P. (3.33)

In order to obtain a stability statement, we improve on (3.33). As a first step, we
localise y(II;). The centroid ~(II) has the property that —1/3 (IT — y(II)) C IT — ~(II).
It follows by (3.31) and (3.32) that

~(II) € 2:T. (3.34)

We note that by (3.32), |p(2)| < 1.1 for z € II, and ¢(z) = 0 if z is separated from
x = x3 by the diagonal [z9, z4]. Thus (3.15) yields

y(II;) = y(II) + twv, for w € (0,2¢) independent of ¢. (3.35)

As [p1,ps] is close to | (any z € [p1, p2] is of distance at most 3¢ from [) and [p1, pa]

is close to [z2,x1], we may choose g9 small enough to ensure €/12 < ||z — 2/|| < 2e.
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In addition, [z4,25] is either contained in [g2,q1], or it is close to [ps,pe], therefore

2/3 < ||z — 2”|| < 3/2. We deduce

£/24 < o < de. (3.36)

We may assume that R = v+

, oriented in a way such that m,p3 > 0. We observe
that
1 1 < < €
— — <7 TyT3 — —.

For y € m,intll and ¢ € [—f, a], we write 04(y) to denote the chord of II; parallel to

— e < myps <

v and projecting into y, and my(y) to denote the midpoint of o.(y). In particular,

oi(y) = oo(y) if y < mpaa. If £¢ is small enough then for any s € (0, %),
(v, m(mups — 5))| < 25 and Vi(o(y)) > 4.
We consider the intervals
Iy = [myps — 15, mop3 — 55) and Ir = [=mpr + Bryas, smepr + Smas),
and hence (3.31) yields

Vi(I1) = 35 and Vi(I2) > 1555 (3.37)

In addition, o4(y) = oo(y) if y € I; and t € [-3,a]. To ensure the condition (3.18) in

Lemma 3.11, for y € I, we restrict our attention to

o1 (y) = g(oe(y) — me(y)) +ma(y).

Our main claim is that there exists an absolute constant c¢; > 0, such that for any

y1 € I; and yo € I, the integral

£(t) = [I o [; oy MO0 2]) 1z

satisfies

af(=B)+Bf(a) = £(0) + cfe. (3.38)
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It follows by (3.34) and (3.35) that if eg is small enough, then there exists a 7 €

(13

7> 1)» such that y(II_7), m_(y1) and m_;(y2) are collinear. Writing w; to denote the

intersection point of aff {(I1;), m¢(y1)} and affo,(y2), the function (v,w; —my(y2)) of ¢

is linear, zero at —7, and satisfies
(v, wa = ma(y2)) > & and (v,0_5 — m_p()) < 1.

We deduce by Lemma 3.10 and (3.16) that f(¢) is convex, and has its minimum at —7.
Thus Lemma 3.11 yields

fla), f(=B) = f(—7) + b for an absolute constant ¢y > 0.

It follows by f =1 — « and (3.36) that

af(—B) + B1(@) = F(0) > af () + Bf(a) — 5% F(~7) — 37 f(0)
= af(~8) +a- 5T f(a) — 52 f(-7)
>0 g5 e

Therefore we have verified (3.38). In turn combining this with (3.33) and (3.37) proves

for a suitable absolute constant ¢ > 0, that
EY(IT) + che? < BER(ILa) + aEY(I1-5) < max{EY(IL.), EX(IT_4)}.

Applying subsequent basic systems to the one of I, and II_g with larger EL(-), we
conclude

EP(K) + che? < ER(II) + che® < EP(T?).

Turning to E{(K), the major difference of the argument is that we need a third
interval for the third vertex of the triangle. Writing I; = [a, b], we define I, = I, and

fgz@H-%(Il—a) andflzb—l—%o(h—b).

In addition, we shorten o} (y) for y € I; to

G1(y) = g5(oe(y) — mu(y)) + mu(y).
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We change our main claim (3.38) to the following. There exists an absolute constant

¢4 > 0, such that for any yg € fo, Y1 € fl and yo € fg, the integral

f(t) = / / / A([Z(), 21, ZQ])p dzodz1d22
G¢(yo) Joe(y1) Jour(y2)

satisfies

af(—B)+ Bf(e) = £(0) + ce. (3.39)

Now the proof of Lemma 3.16 can be completed along the argument above by intro-

ducing the obvious alterations. O

COROLLARY 3.17. There exists a positive absolute constant ¢ such that if p > 1, and
A(K) = (14¢)A(Tk) for a convex disc K, then

EL(K) < (1 — @e*)EL(T?) and EE(K) < (1 — &e)EE(T?).

PROOF. We present the argument only for E§(K'). Let ¢ and £y come from Lemma 3.16.
We may assume that K is an m-gon for m > 4 by continuity, and that A(K) >
(14 ¢£0)A(Tk) by Lemma 3.16. It follows by (3.30), that there exist m — 3 consecutive
basic systems that induce a continuous deformation of K into a triangle in a way
such that E5(-) is strictly increasing during the deformation. Therefore there exists a
polygon K’ such that EL(K’) > E§(K), and A(K') = (1 + £9)A(Tk+). Now we apply

Lemma 3.16 to K’, and using € < 3, we deduce
E5(K) < B4(K') < (1 - @)EL(T?) < (1 - 55 - 2)EA(T?). 0
Having Corollary 3.17, Theorem 3.7 is a consequence of the following.
LEMMA 3.18. If Sy (K, T?) =1+ 6 for a convex disc K, then
(1+0)A(Tk) < A(K) < (1+0)24(Tk).

PROOF. The upper bound is consequence of the fact that by the definition of the
Banach-Mazur distance, there exists a triangle 7" C K, and x € T’, such that K C
(1+6)(T" — x) + x. For the lower bound, we may assume that Tk is a regular triangle
of edge length one. Let pi1,ps, p3 be the vertices of Ty, and let g1, q2, g3 be the such
that p; is the midpoint of [g;, qx], {7, 7, k} = {1,2,3}. If {i,4,k} = {1,2,3}, then let ¢;
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be the maximal distance of points of K N [g;, pj, px| from [p;j, pg]. On the one hand,
A(K) > A(Tg) + (b1 + b2 +t3)/2 = (1+ Fo (b + b2+ 1)) A(Ti).

On the other hand, K is contained in a regular triangle, that is similarly situated to

Ty, and whose height is @ + t1 + to + t3. It follows that

1+ < (L +ti+t+15)/ B =1+ Z(t+ 12 +15) S AK)/A(Tx). O

That the exponent 2 in the error term 62 is optimal is shown by the example of

the closure of T\07T, where T is a triangle such that o is a vertex.

3.6 Stability of Petty projection inequality

Theorem 3.2 readily implies the stability version of the Busemann-Petty centroid
inequality (3.5), using (3.4). Here we also derive the stability version of Petty’s projec-
tion inequality (cf. [Lut93]). Given a convex body K, its projection body I1K is defined

by its support function

hHK(u) — Vdfl(pu(K))'

The Petty projection inequality states that the quantity
Va(E) 1V (IT (K))

is maximised for ellipsoids. Citing formula (5.7) of [Lut93] and using (3.4), we arrive

to that if Vz(K) = 1, then

= (d+1)'EL(IT*K). (3.40)

1 _(d+1 4V, (T(IT*K))
Vd(K)led(H*K)/( 2 ) Vy(IT*K)

Let 6pp (K, BY) = 1+ 6. Bourgain and Lindenstrauss [BL88] proved that there exists

a constant C' depending on d, so that

opm (TIK, Bd) >1+ 05(d2+5d)/2'
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Referring to 0 (11K, BY) = 65 (IT* K, BY), Theorem 3.2 implies that there exists a

constant ¢ depending on d only, so that
ELIIK) > (1+ C’éd(d%)(d%)/z)Eé(Bd).
Thus, from (3.40) we obtain that
Va(K) (I K) < (1 +cdd(d+3)(d+5)/2)_1Vd(Bd)d_1Vd(H*Bd).

We note that the stability version of the Busemann intersection inequality (3.3)
would also follow by verifying a statement of the following type. If K is a convex body
in R, and 657 (K, BY) = 146 for some 6 > 0, then there exist v, > 0 (depending on
§) so that 6pp (K Nut, B¥1) > 1417 for a set of directions u of measure at least v. The
enthusiast would believe in such a statement with an absolute constant v and n = §4

for some ¢ > 0.
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SUMMARY

The dissertation investigates three different problems, which are connected via
the underlying, intuitive geometric motivation. The results are obtained by using ge-
ometric, combinatorial and analytic tools. We note that all the topics discussed here
originate from the first half of the 20th century, hence they are well embedded in the re-
search field of discrete and convex geometry. The dissertation is based on the following

three publications of the author.

e G. Ambrus, A. Bezdek, F. Fodor, A Helly-type transversal theorem for n-dimen-
sional unit balls, Archiv der Mathematik 86 (2006), no. 5, 470-480.

e G. Ambrus, F. Fodor, A new lower bound on the surface area of a Voronoi poly-

hedron, Periodica Mathematica Hungarica 53 (2006), no. 1-2., 45-58.

e G. Ambrus, K. J. Boroczky, Stability results for the volume of random simplices.

Submitted to American Journal of Mathematics. pp. 1-26.

Transversals of unit balls

Chapter 1 deals with the following question. Let F be a family of sets in R%. We
say that a line £ is a transversal to F, if it intersects every member of F. If F has a
transversal, then it is said to have property T'. If every k or fewer members of F have
a transversal, then F has property T'(k).

The question is the following: how can we guarantee that property 7" holds? In
particular, we would like to derive the validity of 7" from 7'(k) with some k. Such a
setting is familiar from Helly’s classical theorem, which states that if every at most
d 4 1 members of a finite family of convex sets in R? has a common point, then all the
sets in the family intersect in a common point. Thus, such a transversal theorem can
be understood as a generalisation of Helly’s theorem.

It turns out that the above goal is too optimistic, if one considers all families of
convex bodies: there exists no such general result. Even for families that consist of
pairwise disjoint translates of an arbitrary convex body in R?, no such result exists, as

was shown by Holmsen and Matousek [HMO04].
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Our work considers the case when F consists of unit balls in R?. We are typically
interested in large d’s. The first related result by Hadwiger [Had56] states that for any
family of thinly distributed balls in R, the property T(d?) implies T, where a family
of balls is thinly distributed if the distance between the centers of any two balls is at
least twice the the sum of their radii. Prior to our result, in [HKL03] and [CGHO05] it
was proved that or any family of pairwise disjoint unit balls in R?, T(11) implies 7T

We impose a condition on the pairwise distances of the centres, which is weaker
than Hadwiger’s condition, but stronger than disjointness. This will be referred as the

distance condition.

THEOREM 1.1. Let d > 2, and F be a family of unit balls in R? with the property
that the mutual distances of the centres are at least 2v/2 + /2 . If every at most d>

members of F have a common line transversal, then all members do.

The methods used to prove Theorem 1.1 have been pushed further since the pub-
lication of [ABF06]. After a series of results, Cheong, Goaoc, Holmsen and Petitjean
[CGHPO8] proved that for any system of disjoint unit balls in R?, T'(4d — 1) implies T

The proof of Theorem 1.1 is based on the following statement. Let B1,..., B,, be
disjoint unit balls in R?. Consider the set of all directed lines intersecting Bi, . . ., By, in

this order, and denote the set of unit direction vectors of these lines by (B, ..., By).

THEOREM 1.2. Let Fg={Bi,...,Bn} be a family of unit balls satisfying the distance

condition. Then K(Bj1,...,By) is strictly spherically convez.

The crucial advantage of Theorem 1.2 is that it reduces the original problem to a
3-dimensional one, which can be attacked by standard analytical tools.

After establishing the convexity of the cone of transversal directions, in Section 1.3
we prove that if a family F,; of unit balls satisfying the distance condition has a transver-
sal, then all the transversals of Fy intersect the unit balls in the same order (or its
reverse). This ordering is called a geometric permutation of F4. Thus, the distance
condition implies that there is at most one geometric permutation of Fy.

Finally, in Section 1.4, we prove Theorem 1.1 by using the previous results and

invoking the strong version of the Spherical Helly Theorem.
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A new bound for the Strong Dodecahedral Conjecture

The contents of Chapter 2 are to give an improvement on the lower bound on the
surface area of a Voronoi cell in a unit ball packing.

A family B of unit balls in R? forms a packing if no two members of B have a com-
mon interior point. We are mostly interested in how dense a packing of unit balls may
be, where the density of a packing is the proportion of the space covered by the balls.
We define this as the limit of the proportion of the volume of the covered part of a ball,
where the centre of the ball is fixed and its radius tends to infinity. According Kepler’s
Conjecture [Kep66], the packing density of unit balls in R3 is 7/v/18 ~ 0.74078.. .,
which is attained by a lattice packing. Among lattice packings, this is indeed the best
possible, as was shown by Gauss [Gau40]. The general result was proved recently by
Hales [Hal05].

In a ball packing, the Voronoi cell of a ball B € B is the set of points z € R?
with the property that z is closer to the centre of B than to any other centre in B.
It is well known that Voronoi cells are convex polyhedra, and we may in fact assume
that they are polytopes. The Dodecahedral Conjecture, formulated by L. Fejes Téth
[FT43] in 1943, states that the minimal volume of a Voronoi cell in a 3-dimensional
unit ball packing is at least as large as the volume of a regular dodecahedron of inradius
1. This problem has been recently settled in the affirmative by Hales and McLaughlin
[HM]. K. Bezdek [Bez00] phrased the following generalised version of the Dodecahedral
Conjecture in 2000.

CONJECTURE 2.1 (Strong Dodecahedral Conjecture). The minimum surface area of
a Voronoi cell in a unit ball packing in R3 is at least as large as the surface area of the

reqular dodecahedron circumscribed about the unit ball, that is 16.6508 .. ..
In Chapter 2, we prove the following statement.

THEOREM 2.2. The surface area of a Voronoi cell in a unit ball packing in R? is at

least 16.1977 .. ..

This is currently the best estimate related to the problem. Prior to our result, the
strongest bound was given by K. Bezdek and E. Daréczy-Kiss [BDKO05], who, based on
Muder’s ideas ([Mud88] and [Mud93]), established the lower bound 16.1445.... Our

improvement follows these lines as well.
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In the proof, the cones suspended by the faces of the Voronoi cell are replaced
with cones of special types in such a way, that the surface to solid angle ratio does
not increase. The obtained configurations belong to a restricted class, in which the
minimiser of the surface area is found by standard analytic methods.

In Section 2.2, the replacement steps are established. The cones used for replace-
ments are the following. A right circular cone (RCC) is a cone whose base is a circular
disk and its apex lies on the line perpendicular to the disk passing through its center. A
shaved circle is the intersection of a disk and a convex polygon that contains the center
of the disk. A shaved right circular cone (SRCC) is a cone whose base is a shaved
circle and its apex lies on the line perpendicular to the disk and passing through its
center. The desired replacements with RCC’s or SRCC’s are achieved via a series of
basic replacement steps. Then, in Section 2.3, the surface to solid angle ratio of these
special cones are further approximated.

Finally, in Section 2.4, the optimal configuration is determined using the previous
approximations by a quite strenuous calculation. The minimal configuration has 13
identical faces and one face of a smaller solid angle. However, these faces cannot be
joined to form a polytope, which accounts for the error between our estimate and the

conjectured extremal value.
Stability results for the volume of random simplices

The following question serves as the motivation for Chapter 3. Given a convex
body K in R¢, what is the expected value of the volume of a random simplex in K?
We work with two (or, rather, three) models: in the first, all the vertices of the simplex
are chosen uniformly and independently from K, while in the second, one vertex is at a
fixed position — in a special case, this is 7(K), the centroid of K. We are interested in
other moments as well, and also, we would like the answer to be invariant under affine

transformations.

DEFINITION 3.1. Let K be a convex body in R*. For anyn >d+1 and p > 0, let

EP (K) = V(K)_”_p/K...AV([xl,...,xn})pdasl...dxn.
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Further, for a fived x € R?, let

EP(K) :V(K)*d*p/ / V(iz, 21, ..., zd))P der .. . dzg.
K JK
Specifically, we write EL(K) for EP(K), when x = (K).

These quantities have many connections to other concepts; for example, Sylvester’s
problem, the volume of centroid bodies and intersection bodies, the volume of Legen-
dre’s ellipsoid, Busemann’s random simplex inequality, the Busemann-Petty centroid
inequality, and so on. These links are elucidated in Section 3.1.

One is mostly interested in the the minimisers and maximisers of the above expec-
tations among convex bodies. The search of these dates back to the early 20th century,

see Blaschke ([Blal7] and [Bla23]). The minimisers are known in full generality.

THEOREM 3.2. (Blaschke [Bla23], Busemann [Bus53|, Groemer[Gro74]) For any con-
vex body K in R?, for any p > 1, and for any n > d + 1, we have

EP(K) > EP(BY) and EL(K) > EY(BY) and EP(K) > EP(B?).

o

Here EP(K) = EP(B

) if and only if K is an o-symmetric ellipsoid, and EY(K) =
E2(B?) or EP(K) = EP(B?) if and only if K is an ellipsoid.

As for the maximisers, the Simplex conjecture states that for any convex body K
in R%, and for any p > 1 and n > d + 1, E{(K) < EZ(T?9) and E2(K) < E2(T?), with
equality if and only if K is a simplex. This is verified only in the plane.

THEOREM 3.4. ([Blal7],[DL91],[Gia92],[CCG99]) If K C R? is a convex disc, then
for anyn >3 and p > 1, ER(K) < EB(T?) and EX(K) < EX(T?), with equality if and
only if K is a triangle.

The importance of the Simplex conjecture stems from the fact that the affirmative
answer to it would imply the Slicing conjecture.

In Chapter 3 of the dissertation, we provide the corresponding stability estimates
for Theorems 3.2 and 3.4. The results are formulated with the use of the Banach-Mazur
distance dpm (K, M) of the convex bodies K and M, which is defined by dpnm (K, M) =
min{A\ >1: K -2 C ®M —y) C \(K — 2)}, where & € GLg and =,y € R%. Our

results are as follows.
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THEOREM 3.6. If K is a convex body in R® with dpy(K, BY) =146 for 6 > 0, then
for anyp >1,

E2(K) = (14~76"%)E5(BY)
EZH(K) > (1+ 7p5d+3)E§+1(Bd)»

where the constant v > 0 depends on d only. Moreover, if K is centrally symmetric,

then the error terms can be replaced by ~Po(4+3)/2,

THEOREM 3.7. If K is a planar convex body with dpym(K, T?) = 1+ 6§ for some & > 0,
and p > 1, then

EL(K) < (1-d'6*)ER(T?)
E5(K) < (1-c)E5(T?),

where ¢ is a positive absolute constant. This estimate is asymptotically sharp as é tends

to zero.

For the proof of Theorem 3.6, we first assume that K is a symmetric convex body
in John’s position, i.e. the unique ellipsoid of maximal volume inscribed in K is the
unit ball. The core lemma estimates the change of the expectation when applying
one step of Steiner symmetrisation in a suitable changed direction. The general result
is then obtained by invoking a recent result of Boroczky [Bor|, which estimates the
Banach-Mazur distance between a convex body K and a symmetric convex body which
is obtained by the limit of Steiner symmetrisations from K. We note that the bound of
Theorem 3.6 is almost asymptotically sharp in terms of §: there is an example, where
the error is of order e(¢+1)/2,

The stability version of the maximum inequality, Theorem 3.7 in the plane is
obtained by the method of linear shadow systems, that were introduced by Campi,
Colesanti and Gronchi [CCG99]. We assume that the triangle inscribed in K of maximal
area is an equilateral triangle. With the aid of basic linear shadow systems, first we
reduce the problem to polygons with at most 6 vertices. These polygons are then
further modified in order to obtain the desired inequality.

To conclude the chapter, in Section 3.6 we derive the stability version of the Petty

projection inequality from Theorem 3.2.
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OSSZEFOGLALAS

A disszertacioban harom problémat vizsgalunk, melyek f6leg a megoldasukat in-
spiral6é geometriai intuicion keresztiil kapcsolédnak. Bizonyitdsaink geometriai, kombi-
natorikus és analitikus eszkozoket hasznalnak. Megjegyezziik, hogy a vizsgélt tertiletek
gyokerei a 20. szizad elsé felébe nytlnak vissza, s igy a kutatott kérdések szamos szdllal
kapcsolédnak a diszkrét és konvex geometria kiillonb6z6 teriileteihez.

Az értekezés az alabbi harom publikacion alapszik:

e G. Ambrus, A. Bezdek, F. Fodor, A Helly-type transversal theorem for n-dimen-
sional unit balls, Archiv der Mathematik 86 (2006), no. 5, 470-480.

e G. Ambrus, F. Fodor, A new lower bound on the surface area of a Voronoi poly-

hedron, Periodica Mathematica Hungarica 53 (2006), no. 1-2., 45-58.

e G. Ambrus, K. J. Boroczky, Stability results for the volume of random simplices.

Publikaldsra benyujtva, American Journal of Mathematics. pp. 1-26.

Egységgombok transzverzalisai

Az 1. Fejezetben a kovetkez6 kérdéskorrel foglalkozunk. Legyen F R?-beli halma-
zok egy rendszere. Az £ az F rendszer transzverzalisa, ha minden benne lev$ halmazt
metsz. Az F rendszerre teljesil a T tulajdonsdg, ha van transzverzélisa, és teljesil rd a
T(k) tulajdonsdg, ha barmely legfeljebb k elemének van transzverzdlisa (itt & > 1 egész
szam).

Az alapkérdés a kovetkezd: hogyan tudjuk garantalni a T tulajdonsag teljesiilését?
Specidlisan, szeretnénk belatni, hogy ha F-re teljesiil T'(k) (valamely k-ra), akkor van
transzverzalisa is. Ez a felallas ismerds a klasszikus Helly-tételb6l, mely szerint ha az
R?-beli konvex halmazok egy véges rendszerének barmely legfeljebb d+ 1 tagja metszd,
akkor a rendszer Osszes tagjanak van kozos pontja. Tehat a fenti tipusu transzverzalis
eredmények a “0O-dimenziés” Helly-tétel “1-dimenziés” altalanositdsédnak is tekinthetok.

Az, hogy minden tovabbi megszoritas nélkiil bizonyitsunk a fenti sémanak megfelel6

transzverzélis eredményt, tul optimista cél. Holmsen és Matousek eredménye [HMO4]
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mutatja, hogy még olyan tétel sem adhatd, mely az Osszes olyan rendszerre igaz, ami
egy R3-beli konvex test paronként diszjunkt eltoltjaibdl all.

Az &ltalunk vizsgalt szitudciéban F az R%-beli egységgombok egy rendszere, ahol d
tetsz6leges pozitiv egész. Az els6 kapcsol6dd eredmény Hadwigerhez kotheté [Had56],
aki belatta, hogy T'(d?)-b6l kovetkezik T barmely R%-beli gdmbok ritkdn elosztott rend-
szerére: itt barmely két gomb kézéppontjanak tavolsaga legalabb 2-szer akkora, mint
sugaraik Osszege. Egy mdsik vonatkozé eredmény szerint, 1d. [HKLO03] és [CGHO5],
T(11)-bé8l kdvetkezik T tetszdleges R3-beli diszjunkt egységgombdokbél 4ll6 rendszerre.

Az altalunk hasznalt feltétel erésebb, mint a diszjunktsag, de gyengébb a Hadwiger-

féle kritériumanadl; a tovabbiakban csak tdvolsdgfeltételként fogunk ré hivatkozni.

1.1. TETEL. Legyen d > 2, és F Re-beli eqységgombik eqy rendszere, melyekre
teljestil, hogy bdrmely kettd kizéppontjdnak a tdvolsdga legaldbb 2\/2+ 2 . Ha F
bdarmely legfeljebb d? elemének létezik koz0s transzverzdlisa, akkor az dsszes gombnek is

létezik transzverzdlis egyenese.

Az [ABF06] cikk publikaldsa 6ta tovabb folyt a kutatas a témaban. Ennek eredmé-
nyeképp, Cheong, Goaoc, Holmsen és Petitjean [CGHPO0S8] az itt alkalmazottakhoz ha-
sonlé médszerekkel bebizonyitotta, hogy tetszéleges, diszjunkt, Re-beli egységgdmbok
rendszerére T'(4d — 1) implikalja T-t.

Az 1.1. Tétel bizonyitasa a kovetkezo dllitason alapszik. Legyenek By, ..., By, disz-
junkt R%beli egységgémbok. Vegyiik azon irdnyitott egyeneseket, melyek a By, ..., By,
gomboket az indexiiknek megfelel sorrendben metszik, és jelolje K(B1, ..., By,) ezen

egyenesek (egység hosszi) irdnyvektorainak halmazat.

1.2. TETEL. Legyen Fy = {Bi,...,Bn} egységgombok egy olyan rendszere, mely
teljesiti a tdvolsdgfeltételt. Ekkor (B, ..., Bp) gombi konvex halmaz.

fgy a problémat egy 3-dimenziés kérdésre redukéljuk, amely hatékonyan kezelheto
analitikus moédszerekkel. Ezutan bebizonyitjuk, hogy ha az egységgdmbokbdl allé Fy
rendszer teljesiti a tavolsagfeltételt valamint létezik transzverzalisa, akkor barmely tran-
szverzélisa ugyanabban a sorrendben (vagy a forditottjaban) metszi a gdmboket. Ilyen
indukalt rendezést az F; rendszer egy geometriai permutdcidjanak neveziink. Tehat
a tavolsagfeltételbdl kovetkezik, hogy Fy-nek legfeljebb egy geometriai permutaciéja
létezik. Végiil, az 1.1. Tételt a fenti eredmények és a gombi Helly-tétel segitségével
igazoljuk.
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Alsé6 korlat az Er6s Dodekahedralis Sejtésre

A 2. Fejezetben az egységgomb-pakolasok Voronoi celldinak minimalis felszinmér-
tékére vonatkozd alsé korlatot javitjuk.

Az R3-beli egységgémbok egy B rendszerét pakoldsnak nevezziik, ha semelyik két
gbémbnek nincs kozos belsé pontja. A legfontosabb kapcsolédé kérdés, hogy mennyire
lehet stri egy gémbpakolds, ahol a stlirtiség alatt a lefedett tér aranyat érjtik: egy
rogzitett kozéppontd gomb sugardt a végtelenbe tartatva, a kapott aranyok hatarérté-
keként definidljuk (mdar ha ez a hatérérték létezik). Kepler [Kep66] klasszikus sejtése
szerint, a 3-dimenzids egységgombok pakoldsi stirfisége 7/v/18 ~ 0.74078. .., amelyet
egy racsszerii elrendezéssel érhetiink el. A racsszerli pakolasokra szoritkozva, ez a korlat
valéban optimalis, ahogy Gauss megmutatta [Gaud0]. A Kepler-sejtést Hales igazolta
[Hal05].

Tekintsiink egy B gombpakolast. Egy B gémb Voronoi celldja azon pontok hal-
maza, melyek kozelebb vannak B koézéppontjdhoz, mint barmelyik méasik gémbkozép-
ponthoz. Kozismert, hogy a Voronoi cellak konvex poliéderek, és esetiinkben feltehetd,
hogy politépok. A Dodekahedralis Sejtés allitasa szerint, melyet Fejes Téth Laszlé fo-
galmazott meg [FT43], egy egységgomb-pakolds tetsz6leges Voronoi celldjanak térfogata
legalabb akkora, mint az egységgémb koré irt szabdlyos dodekaéder térfogata. Ezt a
kozelmultban Hales és McLaughlin igazoltak [HM].

Bezdek Karoly [Bez00] a Dodekahedrélis Sejtést a kbvetkezéképpen altaldnositotta.

2.1. SEJTES. (Erés Dodekahedrélis Sejtés). Egy R3-beli egységgémbpakolds tetszbleges
Voroni celldjanak felszine legaldbb akkora, mint az egységgomb koré irt szabdlyos do-

dekaéder felszine: 16.6508 . . ..
Mi a kovetkezo korlatot adjuk.

2.2 TETEL. Egy R3-beli egységgombpakolds tetszéleges Voroni celldjinak felszine le-
galabb 16.1977. . ..

Jelenleg ez a problémara vonatkozé legjobb alsé korlat. Kordbban Bezdek K.
és Dardczy-Kiss E. [BDKO05] adott alsé becslést D. Muder [Mud88],[Mud93] gondo-
latmenetének felhasznaldsdval. Mi is ezt az utat kovetjik.

A bizonyitas alapotlete a kovetkezd. A Voronoi cella lapjai altal kifeszitett kupokat
(a tovabbiakban lapkipokat) specidlis kipokkal helyettesitjiik oly médon, hogy a feliilet
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és a térszOg aranya nem novekszik. Az igy kapott, szlikebb osztalyba tartozé kon-
figurdcidk kozotti optimumot analitikus eszkézokkel hatarozzuk meg.

A 2.2. alfejezetben részletezziik a helyettesitési eljarast. A hasznalt specidlis
lapkupok a kovetkezéek. A merdleges korkip (RCC) alapja egy korlap, csicsa pedig az
ennek kozéppontjan athaladod, a kor sikjara merdleges egyenesen helyezkedik el. Met-
szett kornek hivjuk egy korlemez és egy ennek a kozéppontjat tartalmazéd szabalyos
sokszog metszetét. A merdleges metszett korkip (SRCC) pedig olyan kip, melynek
alapja egy metszett kor, cstcsa pedig ismét a kor kozéppontja folott helyezkedik el.
Az eljarasban elemi helyettesitések sorozataval a lapkupokat RCC illetve SRCC tipusi
kupokkal helyettesitjiik. Ezeknek a specialis kiipoknak a felszin-térszog aranyat tovabbi,
egyszeribben kezelheto fliggvényekkel approximaljuk.

Végil, a 2.4. alfejezetben a kordbbi becslések, valamint egy technikai szamolas
segitségével meghatarozzuk az optimélis konfiguraciét. Ez 13 egybevago, valamint egy
kisebb térszogi lapbdl all. Ezek a lapok azonban nem illeszthet6ek 6ssze egy politoppa;

ez okozza a becslésiink és a sejtett érték kozotti eltérést.
Véletlen szimplexek térfogatara vonatkozé egyenl6tlenségek stabilitasa

A 3. Fejezet motivéacidjaként a kovetkezd kérdés szolgal. Legyen K egy Re-beli
konvex test. Mi a varhaté értéke egy K-beli véletlen szimplex térfogatanak? Hérom
modellt vizsgalunk: az elsénél, a szimplex csicsait fiiggetleniil, egyenletes eloszlassal
vélasztjuk K-bdl; a masodik modellnél, egy csics rogzitett helyzetben van; mig a har-
madikndl, a rogzitett csics a K silypontja, v(K). A varhat6 érték mellett mas mo-

mentumokat is vizsgalunk, és a mennyiségeket affin invaridns médon mérjiik.

3.1. DEFINICIO.  Legyen K C R? konvez test. Tetszbleges n > d+ 1 és p > 0 esetén,

vezessiik be a kovetkezd jelolést:

EP (K) = V(K)_”_p/K.../[(V([xl,...,xn})pdxl...dxn.

Tovdbbd, valamely régzitett x € R-re, legyen

EP(K) = V(K)—d—P/K.../KV([x,xl,...,xd])del...dxd.

Abban a specidlis esetben, amikor x = v(K), EP(K) helyett EL(K)-t frunk.
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A fent bevezetett mennyiségek szamos kapcsolattal rendelkeznek; ezek kozé tar-
tozik Sylvester kérdése, a centroid test és a metszési test térfogata, a Legendre-ellipszoid
térfogata, a Busemann véletlen szimplex egyenlGtlenség, a Busemann-Petty centroid
egyenlotlenség, s 1.t. Ezeket az Osszefiiggéseket a 3.1. alfejezetben targyaljuk.

A legérdekesebb kérdés az, hogy mely K konvex test esetén vétetik fel a fenti
mennyiségek minimuma ill. maximuma. Ez a probléma a 20. szazad elejérdl szarmazik,

1d. Blaschke [Blal7], [Bla23]. A minimumok esete teljesen megoldott.

3.2. TETEL. (Blaschke [Bla23], Busemann [Bus53|, Groemer|Gro74]) Tetszdleges K C
R? konvex test, p>1, ésn > d+ 1 esetén,

ER(K) > E2(BY) |, EY(K) > EE(BY) |, és EP

e} ]

Tovdbbd, E2(K) = E2(BY) teljesiil pontosan akkor, ha K egy o-szimmetrikus ellipszoid,
valamint BY(K) = EL(B?) illetve EP (K) = EP(B?) pontosan akkor, ha K ellipszoid.

A maximumok esete sokkal kevésbé ismert. A Szimplex Sejtés szerint tetszOleges
K c R? konvex test, p > 1 ésn > d+ 1 esetén, EY(K) < EX(T?) és EP(K) < EP(T9),

ahol egyenl6ség pontosan akkor all, ha K szimplex. Ez csak a sikon bizonyitott.

3.4. TETEL. ([Blal7],[DL91],[Gia92],[CCG99]) Tetszéleges K C R? konver lemez,
n >3 ésp>1 esetén, EP(K) < ER(T?) és EL(K) < EL(T?). Egyenléség pontosan

akkor dll fenn, ha K hdromszdg.

A Szimplex Sejtés fontossaga onnan ered, hogy kovetkezne bel6le a magas di-
menziés konvex geometria egyik kozponti sejtése, a Hipersik Sejtés.

A disszertacié 3. fejezetében a 3.2. és 3.4. Tételek stabilitdsi valtozatait bi-
zonyitjuk. Eredményeinket a Banach-Mazur tdvolsdg segitségével fogalmazzuk meg: a
K és M konvex testek Banach-Mazur tévolsidga opy (K, M) = min{\A > 1: K —x C
®(M —y) C MK —z)}, ahol ® a GLg-n, mig z,y az R%n fut végig. Eredményeink a

kovetkezdek.
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3.6. TETEL. Ha a K C R? konvex testre Spy(K, BY) = 1+ 6 valamely § > 0-val,

akkor tetszdleges p > 1 esetén,

EY(K) > (14 ~4P6**)EL(BY)
EZH(K) > (1+ 7p5d+3)E§+1(Bd)»
ahol a v > 0 konstans egyediil d-tdl fiigg. Tovdbbd, ha K centrdlszimmetrikus, akkor a

hibatag A543/ 2 rq cserélhetd.

3.7.TETEL. Legyen K konver lemez, melyre gy (K, T?) = 1+ 6 valamely 6 > 0-val.
Ekkor tetszoleges p > 1-re,

EL(K) < (1-c'6*)ER(T?)
E5(K) < (1-c)E5(T?),

ahol ¢ egy pozitiv abszolit konstans. A becslések aszimptotikusan élesek, ha § — 0.

A 3.6. Tétel bizonyitdsanal el6szor feltessziik, hogy K centralszimmetrikus konvex
test, amely John poziciéban van, azaz a bele irhaté legnagyobb térfogatu ellipszoid
az egységgdmb. FO lemmank segitségével azt becsiiljik, hogy mennyit valtoznak a
kérdéses mennyiségek egy megfeleléen valasztott Steiner szimmetrizacié elvégzésekor.
Az 4ltalanos eredményt ezutdn Bordczky Kéroly [Bor] egy tételét felhasznalva kapjuk,
mely becslést ad egy K konvex test, és a bel6le Steiner szimmetrizaltak hatarértékeként
kapott szimmetrikus test Banach-Mazur tavolsdgara. Megjegyezziik, hogy a 3.6. Tétel
becslése aszimptotikusan kozel optimdlis: a 3.4. alfejezetben kozolt példa esetén a
hibatag e(¢+1)/2 nagysagrendii.

A 3.7. Tételt a linedris arnyék-rendszerek technikdjanak segitségével bizonyitjuk,
melyet Campi, Colesanti és Gronchi [CCG99] vezetett be. Ez a “shaking” technika
egyfajta altalanositdsa. Feltessziik, hogy a K-ba irhaté maximaélis teriiletii haromszog
szabdlyos, majd a problémat legfeljebb 6 csticsi poligonok esetére redukaljuk. A
f6 nehézséget ezeknek a poligonoknak a tovabbi mddositasa jelenti, amelyhez elemi
arnyék-rendszereket hasznalunk. A kivant becsléshez egy technikai jellegli szamolassal
jutunk.

A fejezetet a Petty vetitési egyenlOtlenség stabilitasi valtozatanak bizonyitasaval

zarjuk.
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