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Előszó

A disszertáció első két fejezetének eredményeit szegedi tanulmányaim alatt bi-

zonýıtottam, mı́g a 3. fejezet 2010 tavaszán született. 2006 és 2009 között a University

College London doktorandusz hallgatójaként időm jelentős részét külföldön töltöttem,

ahol 2009 novemberében szereztem doktori fokozatot. Jelen disszertáció a UCL-en

ı́rottal közös eredményeket nem tartalmaz.

A disszertáció szakmai része – a magyar összefoglalót kivéve – angol nyelven

ı́ródott. Mivel az elmúlt 50 évben ez a nyelv gyakorlatilag egyeduralkodóvá vált a

matematikában, és túlzás nélkül álĺıthatjuk, hogy minden matematikus legalább szak-

mai szinten beszéli, ez remélhetőleg nem jelent korlátozó tényezőt.
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Chapter 1

Transversals of unit balls

In the present chapter we prove the following statement, which belongs to geometric

transversal theory.

Theorem 1.1. Let d > 2, and F be a family of unit balls in Rd with the property that

the mutual distances of the centres are at least 2
È

2 +
√

2 . If every at most d2 members

of F have a common line transversal, then all members do.

This is a joint result with András Bezdek and Ferenc Fodor, which was published in

[ABF06]. Progress did not halt then, and there have been further developments related

to Theorem 1.1 since the publication of [ABF06]. These, along with the detailed history

of the subject, are presented in Section 1.1.

The proof of Theorem 1.1 is based on the following fact. For a given collection

of unit balls in Rd satisfying the above distance condition on the pairwise distances

of the centres, consider the set of direction vectors of the common transversals which

intersect the balls in a fixed order. The resulting set, which is a subset of Sd−1, is

strictly spherically convex. This property is proved in Section 1.2. Then, in Section 1.3,

orderings of the balls induced by common transversals are considered; these are called

geometric permutations. Using properties of them, Theorem 1.1 is proved in Section 1.4

by invoking a version of Helly’s theorem.

1.1 History

First, we give a short account of the quite extended history of the problem. For

further details, consult the survey articles [Eck93], [DGK63], [GPW91] and [Wen99].

A line l is a transversal to a family F of sets if l intersects every element of F . If

there is a line that intersects every member of the family F , then we say that F has the

property T . If every k or fewer members of F have a transversal then F has property

T (k).

In 1958, Grünbaum [Grü58] conjectured that for a family of pairwise disjoint trans-

lates of a convex disk T (5) ⇒ T . The special case of circular disks was settled by Danzer

[Dan57]. The conjecture was proved in full generality by Tverberg [Tve89] in 1989.
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Higher dimensional generalisations for families of balls were initiated by Hadwiger

[Had56]. He stated that for any family of thinly distributed balls in Rd the property

T (d2) implies T . A family of balls is thinly distributed if the distance between the

centers of any two balls is at least twice the the sum of their radii. In 1960, Grünbaum

[Grü60] improved the d2 in Hadwiger’s statement to 2d− 1 using the Topological Helly

Theorem.

Imposing such a condition on the distances between the centres is natural. To

see this, consider the following example. Take a regular n-gon of unit side length in

the plane and place circular disks of diameter 1/2 centred at the vertices. Enlarge

the disks from their centres with the same factor λ. There is a minimal λ for which

every n − 1 enlarged disks have a common transversal but there is no transversal to

all n disks. It is easy to see that this minimal λ is equal to the minimal width of an

(n − 1)-gon obtained by dropping a vertex of a regular n-gon of unit side length. In

this configuration, T (n− 1) holds, but T does not. Therefore, the minimal k for which

T (k) ⇒ T , is not independent of the minimum pairwise distance of the centres of the

disks. Investigations in this direction were initiated by Heppes. Recently, K. Bezdek,

Bisztriczky, Csikós, and Heppes [BBCH06] proved new results in this direction.

In 2003, Holmsen, Katchalski and Lewis [HKL03] proved that there exists a positive

integer n0 6 46 such that T (n0) implies T for any family of pairwise disjoint unit balls

in R3. This bound was improved by Cheong, Goaoc and Holmsen [CGH05] to 11. On

the other hand, a result of Holmsen and Matoušek [HM04] states that there is no such

Helly-number if one considers families of pairwise disjoint translates of an arbitrary

convex body in R3.

Our result works with a condition on the distances between the centres of the balls,

which is weaker than Hadwiger’s thin distribution condition. Theorem 1.1 generalises

the main result of [HKL03], and it also strengthens Hadwiger’s theorem [Had56] for

congruent balls. The main tool of the proof is the convexity of the cone of transversal

directions, that is shown in Section 1.2.

The method presented here has been pushed further in [CGHP08], where the

convexity of the cone of transversal directions was showed without the extra distance

condition - in fact, this property was established under a condition which is even weaker

than disjointness. Thus, the authors of [CGHP08] derived that the components of

the set of transversal directions are contractible. Moreover, in [CGN05] it has been

shown that any family of at least 9 disjoint unit balls admits at most two geometric
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permutations. Using these facts and the Topological Helly theorem, a linear bound can

be obtained instead of the quadratic one. This has been accomplished in [CGHP08],

where the authors proved that for any system of disjoint unit balls in Rd, T (4d − 1)

implies T . This is currently the strongest result regarding this problem. For the latest

developments, see the surveys of Goaoc [Goa09] and Holmsen [Hol08].

Throughout the chapter, Fd will denote a family of d-dimensional unit balls with

the property that the distances of the centres of any two of them are at least 2
È

2 +
√

2

(we shall abbreviate this property as the “distance condition”).

1.2 Convexity of the cone of transversal directions

Let B1, . . . , Bm be disjoint unit balls in Rd. Consider the set of all directed lines

intersecting B1, . . . , Bm in this order, and denote the set of unit direction vectors of

these lines by K(B1, . . . , Bm). Then K(B1, . . . , Bm) ⊂ Sd−1. The goal of the section is

to verify the following statement, which is based upon Lemma 2.1 in [HKL03].

Theorem 1.2. Let Fd = {B1, . . . , Bm} be a family of unit balls satisfying the distance

condition. Then K(B1, . . . , Bm) is convex.

Before starting the proof, we present an auxiliary lemma, that also serves as a

motivation for Theorem 1.2.

Lemma 1.3. Let {K1, . . . , Km} be a family of disjoint disks in the plane. If there exists a

direction α such that for every two disks Ki, Kj , 1 6 i < j 6 m, there is a transversal

of direction α which intersects Ki first and Kj second, then there is a transversal of

direction α that intersects K1, . . . , Km in this order.

Proof. Let l be a line perpendicular to the direction α, and take the orthogonal

projection of the family {K1, . . . ,Km} to l. The images of the disks will be segments,

and from the assumptions we know that they are pairwise intersecting. Therefore we

can apply the Helly theorem in dimension 1 and obtain that the intersection of all of

the segments is not empty, say, it contains the point N . Then the line of direction α

through N is a suitable transversal.

We note that Lemma 1.3 proves the assertion of Theorem 1.2 in dimension 2. It

is obvious that

K(B1, . . . , Bm) ⊆
\

16i<j6m

K(Bi, Bj)
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and the Lemma shows that equality holds. It is clear that no K(Bi, Bj) can contain

antipodal points of S1. If we pick two points of K(B1, . . . , Bm), then all of the sets

K(Bi, Bj) must contain one of the two arcs between them in S1, and our previous

statement implies that this arc can only be the shorter one. Therefore, K(B1, . . . , Bm)

contains the small arc between any of its two points, hence it is convex.

Proof of Theorem 1.2. First we prove the statement for the case m = 2. By def-

inition of convexity we have to show that for any two directions α1, α2 ∈ K(B1, B2),

every normed linear combination of the form

α(λ)
||α(λ)|| , where α(λ) = λα1 + (1− λ)α2 , 0 6 λ 6 1 (1.1)

is in K(B1, B2) as well. Let P denote the plane generated by α1 and α2, and let P⊥

denote the orthogonal complement of P in Rd. Let H(z) = P + z where z ∈ P⊥. Then

for every α ∈ P ∩K(B1, B2) there exists an appropriate transversal to B1, B2 parallel to

α, therefore there exists a z(α) ∈ P⊥ such that we can find an appropriate transversal

in H(z(α)) with direction α (of course, z(α) is not necessarily unique). Fix such a z(α)

for every α ∈ P ∩ K(B1, B2).

We consider two cases depending on z(α1) and z(α2). First, assume that they are

equal. Then there exists a plane G and two transversals l1 and l2 in G such that the

direction of l1 is α1 and the direction of l2 is α2. We show that for every direction

determined by a combination of the form (1.1) there exists a transversal l in G. Let

K1 = B1 ∩G, K2 = B2 ∩G. Then K1,K2 are circular disks in G and the transversals

to B1 and B2 in G are exactly the transversals to K1 and K2 in the plane G and it is

clear that K(K1, K2) is convex.

Second, suppose that z(α1) 6= z(α2). Let m be the segment z(α1)z(α2). Since

m ⊂ P⊥, m is orthogonal to P , and the subspace T generated by m and P is of

dimension 3. We prove that for every combination of the form (1.1), there exists a

z ∈ m such that in H(z) we can find an appropriate transversal. Let G1 = B1 ∩ T ,

G2 = B2∩T be 3-dimensional balls. Note that G1 and G2 cannot degenerate to points.

Then for every z ∈ m the transversals in H(z) which intersect B1 and B2 in this order

are exactly the transversals which intersect G1 and G2 in this order, therefore we have

to handle a 3-dimensional problem.

By scaling and symmetry we may suppose that the radius of G1 is 1 and the radius

of G2 is r 6 1. Note that since the unscaled radii of G1 and G2 are at most 1, the scaled
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distances are at least as large as the unscaled ones. Choose the coordinate system in T

such that the z-axis contains m, and the centres of G1 and G2 are (0, 0, 0) and (d, 0, b),

respectively, with d > 0 and b > 0. For b − r 6 z 6 min(b + r, 1) the intersections

H(z) ∩ G1 and H(z) ∩ G2 are two, possibly degenerated, disks of radius R1(z) and

R2(z), respectively, where

R1(z) =
È

1− z2 , R2(z) =
È

r2 − (b− z)2.

1

G1

1R (z)

Q2

G2

R (z)2

Q

b

z

y

z

d

r

H(z)

x

Figure 1.1: The intersection of the d-dimensional balls and T

Consider the transversals l in H(z) for b − r 6 z 6 min(b + r, 1) intersecting G1

before G2. To each l we assign the angle −π
2 < ϕ < π

2 between the x-axis and l.

For every z we get a possible minimal and maximal angle between the x-axis and an

appropriate transversal in H(z), say ϕmin(z) and ϕmax(z), respectively. By symmetry,

ϕmax(z) = −ϕmin(z). Denote ϕmax(z) by simply ϕ(z). If z traverses from b − r to

min(b + r, 1), then the possible (z, ϕ) belonging to the order respecting transversals to

G1 and G2 form a bounded region W (B1, B2) in the (z, ϕ) plane. It suffices to show

that this region is convex. We shall prove that the upper boundary of W (B1, B2) is

concave:

The function ϕ(z) is concave for b− r 6 z 6 min(b + r, 1). (*)

For a given z, we easily obtain that

ϕ(z) = arcsin(f(z)), where f(z) =
R1(z) + R2(z)

d
.
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We shall compute the second derivative of ϕ(z), and verify that ϕ′′(z) 6 0 for b− r 6
z 6 min(b + r, 1). Easy computations show that

f ′(z) = −1
d

�
z

R1(z)
+

z − b

R2(z)

�
,

f ′′(z) = −1
d

�
1

(R1(z))3
+

r2

(R2(z))3

�
,

ϕ′′(z) =
f ′′(z)

�
1− (f(z))2

�
+ f(z)(f ′(z))2

(1− (f(z))2)3/2
.

Hence it suffices to show that in the given interval

g(z) = f ′′(z)
�
1− (f(z))2

�
+ f(z)(f ′(z))2 6 0

holds.

By substituting the formulae for f(z), f ′(z), and f ′′(z) in g(z), the desired inequal-

ity turns into

−1
d

�
1

(R1(z))3
+

r2

(R2(z))3

��
1− (R1(z) + R2(z))2

d2

�
6 −R1(z) + R2(z)

d
· 1
d2
·
�

z

R1(z)
+

z − b

R2(z)

�2

.

Multiplying both sides by −d3R3
1(z)R3

2(z) we obtain�
R3

2(z) + r2R3
1(z)

� �
d2 − (R1(z) + R2(z))2

�
> R1(z)R2(z)·

· (R1(z) + R2(z))
�
z2R2

2(z) + 2z(z − b)R1(z)R2(z) + (z − b)2R2
1(z)

�
. (1.2)

Since r 6 1, we have that

R3
2(z) + r2R3

1(z) > (R2(z) + rR1(z))
�
R2

2(z)− rR1(z)R2(z) + r2R2
1(z)

�
. (1.3)

Furthermore, |z| 6 1 and |z − b| 6 r yield�
z2R2

2(z) + 2z(z − b)R1(z)R2(z) + (z − b)2R2
1(z)

�
6
�
R2

2(z) + 2rR1(z)R2(z) + r2R2
1(z)

�
. (1.4)
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We shall use the following elementary inequality : if a, b ∈ R then

a2 + 2ab + b2 6 4(a2 − ab + b2). (1.5)

With (1.3), (1.4) and (1.5), we obtain that the following inequality implies (1.2):

(R2(z) + rR1(z))
�
d2 − (R1(z) + R2(z))2

�
> 4R1(z)R2(z) (R1(z) + R2(z)) . (1.6)

Using r 6 1 and dividing both sides of (1.6) by r(R1(z)+R2(z)) yield that the following

inequality implies (1.6):

d2 > 4
R1(z)R2(z)

r
+ (R1(z) + R2(z))2. (1.7)

Since R1(z) 6 1 and R2(z) 6 r, the right hand side of (1.7) is at most 8. We will use

the following proposition to finish the proof of (*).

The Euclidean distance between the centres of G1 and G2 is at least 2
È

1 +
√

2. (**)

Clearly, (**) is true in 2 and 3 dimensions. Consider the case n > 4. Let O1, O2, Q1,

Q2 denote the centres of B1, B2, G1, G2, respectively. The segments O1Q1 and O2Q2

are orthogonal to T , hence they are perpendicular to the segment Q1Q2. Furthermore,

|O1Q1| 6 1, |O2Q2| 6 1, and |O1O2| > 2
È

2 +
√

2. Therefore we obtain that |Q1Q2| >
2
È

1 +
√

2.

Notice that the scaled distance of the centres in T is at least as big as the Euclidean

distance.

We divide the rest of argument proving (*) into two cases.

Case 1. b 6 1.

Since the distance between the centres of G1 and G2 is t =
√

b2 + d2, we obtain

that d2 > 3 + 4
√

2 > 8.6. It has already been shown that the right hand side of (1.7)

is at most 8, which yields that the inequality (1.7) holds.

Case 2. b > 1.

Now, we are going to estimate R1(z) and R2(z). Since [b− r, 1] is contained in [b−
1, 1], the following inequalities hold: R1(z) 6

È
1− (b− 1)2 and R2(z) 6

È
1− (b− 1)2.

Furthermore, R2(z) 6 r. Using this information, we may estimate the right hand side

of (1.7) by

4
È

1− (b− 1)2 + 4(1− (b− 1)2) > 4
R1(z)R2(z)

r
+ (R1(z) + R2(z))2. (1.8)
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Using d2 = t2 − b2, proposition (**) and formula (1.8), we obtain that it suffices

to show the following inequality.

4(1 +
√

2) > b2 + 4
È

1− (b− 1)2 + 4(1− (b− 1)2). (1.9)

Easy computation shows that the maximum of the right hand side of (1.9) is

smaller than 9.3 in the interval 1 < b 6 2. Therefore the inequality (1.9) holds, and

this finishes the proof of (*) and proves Theorem 1.2 for m = 2.

Next, we prove Theorem 1.2 for m > 3. Let α1, α2 ∈ K(B1, . . . , Bm), and again,

consider a combination of the form (1.1). We shall use the same notations as in the

proof of the case m = 2. Suppose first that z(α1) = z(α2) = z. Then in the plane H(z)

the transversals to the family B1, . . . , Bm will be exactly the transversals to the family

K1, . . . , Km, the family of the intersections of the balls and the plane H(z). Lemma 1.3

implies that Theorem 1.2 holds in the plane, and thus it verifies the statement in the

case z(α1) = z(α2) = z.

Assume now that z(α1) 6= z(α2). Notice that for every pair of balls Bi, Bj we use

a different coordinate system and metric in T . However, the z axis is the same because

it is determined by the segment m. Changing the directions of the x and y axes results

in a translation parallel to the α axis of W (Bi, Bj) in the (z, ϕ)-plane, and changing

the position of the origin on z results in a translation in the z direction. Reversing

the direction of any of the axes results in an axial symmetry of W (Bi, Bj). Scaling

by a positive factor scales W (Bi, Bj) along the z axis. None of these transformations

changes the convexity of W (Bi, Bj).

Now, fix a coordinate system in T among the given ones, and consider all W (Bi, Bj)

regions in this frame. Lemma 1.3 implies that

W (B1, . . . , Bm) =
\

16i<j6m

W (Bi, Bj).

We show that K(Bi, Bj) cannot contain antipodal points of Sd−1. On the contrary,

assume that there exists a direction α ∈ Sd−1 with the property that there are lines l1

and l2 of direction α and −α, respectively, intersecting B1 and B2 in this order. This

means that we can translate B2 along l1 to infinity in the direction α without crossing

B1. The same is true for the direction −α with the translation along l2, hence there is

no transversal parallel to α intersecting B1 and B2 , a contradiction.
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Since K(Bi, Bj) cannot contain antipodal points, K(B1, . . . , Bm) must contain the

(unique) geodesic between any two points of it, hence it is convex.

1.3 Geometric permutations

Let F be a family of pairwise disjoint convex bodies in Rd, and let l be a transversal

to F . Then l induces two opposite orderings of the members of F . These orders are

essentially the same, and together they are called a geometric permutation of F . We will

consider the possible geometric permutations of the family Fd. We may suppose that

in Fn = {B1, . . . , Bm} the balls B′ and B′′ have the largest distance. Every geometric

permutation is induced by the family D of directed transversals to Fd intersecting B′

and B′′ in this order. We say that a pair of balls Bi, Bj (where 1 6 i < j 6 m) forms

a switched pair in Fd if there exist l, l′ ∈ D that meet Bi, Bj in different orders. If Fd

admits at least one geometric permutation and there are no switched pairs in Fd, then

clearly Fd admits exactly one geometric permutation. We will show that this is indeed

the case.

Lemma 1.4. Let Fd be a family of unit balls satisfying the distance condition. Then Fd

admits at most one geometric permutation.

Proof. Assume that there is a switched pair in Fd, say, the pair B1, B2. Let O1 and

O2 denote the centres of B1 and B2, respectively. There exist directed transversals l1

and l2 in D with the property that l1 meets B1 first and then B2, while l2 intersects B2

first and B1 second. Let P be a (two-dimensional) plane parallel to l1 and l2 in Rd. We

use the same notation as in the proof of Theorem 1.2. P⊥ will denote the orthogonal

complement of P in Rd, and H(z) = P +z, where z ∈ P⊥. For k = 1, 2 the intersection

of Bk and H(z) is a disk Kk(z) with centre Ck(z). Choose the directed line s in Rd

such that the segments C1(z)C2(z) are all parallel to it. Hence the angle between

lk and the directed line determined by C1(z), C2(z) is equal to the angle between lk

and s. Proposition (**) yields that the distance between C1(z) and C2(z) is at least

2 4
√

2 (this quantity was denoted by d in the proof of Theorem 1.2). Since the radii

of K1(z) and K2(z) are at most 1, the angle between the directed lines l1 and s is at

most arcsin(2/(2 4
√

2)). We obtain in the same way that the same holds for the angle

between the directed lines l2 and −s. Thus, the angle between the two transversals l1

and l2 is at least π − 2 arcsin(1/ 4
√

2).
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On the other hand, both the transversals l1 and l2 intersect B′ and B′′ in this

order. Since the distance of the centres of B′ and B′′ is at least 2
È

2 +
√

2, and their

radius is 1, the angle between l1 and l2 is at most 2 arcsin(2/(2
È

2 +
√

2)) ∼ 1.1437.

It is easy to see that the upper and lower bounds for the angle between l1 and l2

cannot be sharp at the same time. Furthermore,

arcsin(1/ 4
√

2) + arcsin(1/
È

2 +
√

2) = π/2,

since 1/
√

2 + 1/(2 +
√

2) = 1. Thus, π − 2 arcsin(1/ 4
√

2) > 2 arcsin(1/
È

2 +
√

2), a

contradiction.

The following lemma will directly lead to Theorem 1.1.

Lemma 1.5. Suppose that the family Fn = {B1, . . . , Bm} has the property T (d), where

d > 4. Then there exists a linear ordering ≺ of {B1, . . . , Bm} with the property that for

every d–element subset G ⊆ Fn there exists a transversal to G intersecting the elements

of G compatible with the linear ordering ≺.

Proof. We will prove that there exists a geometric permutation of Fd with the desired

property by induction on m .

If m = d then there exists a transversal to Fd, and we can choose the geometric

permutation induced by it.

Suppose now that the claim holds for m = k, and we shall prove it for m = k + 1.

For every 2 6 i 6 k the set {B1, . . . , Bk+1}\{Bi} has a geometric permutation with the

desired property. For every such set consider the induced linear ordering ≺i for which

B1 ≺i Bk+1 holds. If for any pair of balls Br, Bs with 2 6 r < s 6 k the orderings

≺i, 2 6 i 6 k , i 6= r, s agree, then we can uniquely extend the orderings to the

whole family {B1, . . . , Bk+1}, and clearly, the extended ordering will have the desired

property. To check this, suppose that there is a pair of balls Bi, Bj with 2 6 i < j 6 k

and a pair of orderings ≺r, ≺s with 2 6 r < s 6 k, {r, s} ∩ {i, j} = ∅ such that

Bi ≺r Bj and Bj ≺s Bj . Then the family {B1, Bi, Bj , Bk+1} admits two different

geometric permutations, which is in contradiction to Lemma 1.4. Hence we obtained a

suitable linear ordering on {B1, . . . , Bk+1}, and this induces a geometric permutation

on {B1, . . . , Bk+1}, too.
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1.4 Existence of common transversals

Finally, we turn to the proof of the main theorem.

Proof of Theorem 1.1. Suppose that Fd has the property T (d2), where d > 2.

Because of Lemma 1.5, there exists an ordering ≺ on Fd such that for every d2-element

subset G ⊆ Fd, there is a transversal to G that intersects the unit balls in the order

compatible with ≺. Label the elements of Fd such that B1 ≺ B2 ≺ · · · ≺ Bm. Consider

the family C of all the sets K(Bi1 , . . . , Bid) with 1 6 i1 < · · · < id 6 m. Theorem 1.2

states that the elements of C are convex sets of Sd−1, and we know from the proof that

they are also strongly convex. Lemma 1.5 yields that the intersection of any d elements

of C is not empty.

We show that
S C 6= Sd−1. On the contrary, suppose that x and (−x) are antipodal

points of Sd−1 covered by
S C, say, x ∈ K(Bi1 , . . . , Bid) and (−x) ∈ K(Bj1 , . . . , Bjd

).

Then there exists a transversal l to the family

{Bi1 , . . . , Bid , Bj1 , . . . , Bjd
},

and its direction α is in the intersection of the two cones. At the end of the proof of

Lemma 1.4 we showed that the angle between x and α and the angle between (−x) and

α are less than 1.144, hence the angle between x and (−x) is smaller than 2 ·1.144 < π,

a contradiction.

Using this, we can apply the strong version of the Spherical Helly Theorem, see

[Deb70], and obtain that
T C 6= ∅. So there is a direction α ∈ Sd−1 such that for any d

balls in Fd, there is a transversal parallel to α. Let H be a hyperplane in Rd orthogonal

to α, and consider the orthogonal projection of Fd onto H. The images of the balls

will be (d − 1)–dimensional balls in H, and from the above argument we know that

every d of them are intersecting. Hence we are able to apply again Helly’s theorem in

H and obtain that the intersection of the images contains a point, say, Q. Then the

line through Q of direction α is a transversal to the whole family F .

We remark that there exists a configuration of 3-dimensional unit balls with mutual

distances of the centres at least 2
È

2 +
√

2, for which T (3) holds but T does not.

To see this, place the balls centred at the points with the following coordinates:

(0, 0,−(1 + ε)), (4, 0, 1 + ε), (8, 1 + ε, 0), and (12,−(1 + ε), 0). We show that there

exists an ε for which the example works. If ε = 0, then the four balls have a common
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transversal. Hence there exists a maximal ε0 such that this property holds. At this

point there exists exactly one transversal for the four balls. If for any three of the four

balls, this transversal is not the only common one, then by the strict convexity of the

transversal direction cone, a slightly greater ε is appropriate for the example. Hence

it suffices to show that at ε0, the common transversal is not contained in any of the

planes determined by three ball centres. This is implied by the fact that for any such

plane, the fourth ball centre is of distance > 1 from the plane, therefore the transversal

cannot be contained in it.

y

z

x

Figure 1.2: Four balls satisfying T (3) with no common transversal
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Chapter 2

A lower bound for the Strong Dodecahedral

Conjecture

In this chapter, we show that the minimum surface area of a Voronoi cell in a

unit ball packing in R3 is at least 16.1977 . . .. This result, which is joint with F. Fodor

[AF06], provides further support for the Strong Dodecahedral Conjecture according to

which the minimum surface area of a Voronoi cell in a 3-dimensional unit ball packing

is at least as large as the surface area of a regular dodecahedron of inradius 1, which is

about 16.6508 . . .. In the proof, the cones suspended by the faces of the Voronoi cell are

replaced with cones of special types in such a way, that the surface to solid angle ratio

does not increase. The obtained configurations belong to a restricted class, in which

the minimiser of the surface area is found by standard analytic methods. The minimal

configuration has 13 identical faces and one face of a smaller solid angle. However,

these faces cannot be joined to form a polytope, which accounts for the error between

our estimate and the conjectured extremal value.

2.1 History

One of the most important topics of Discrete Geometry is the theory of packings

and coverings. A family B of unit balls in R3 forms a packing if no two members of B
have a common interior point. We are mostly interested in how dense a packing of unit

balls may be, where the density of a packing is the proportion of the space covered by

the balls. We define this as the limit of the proportion of the volume of the covered part

of a ball, where the centre of the ball is fixed and its radius tends to infinity (of course,

the limit may not exist). According to a conjecture formulated by Kepler [Kep66],

the packing density of unit balls in R3 is π/
√

18 ≈ 0.74078 . . . , which is attained by a

lattice packing. Among lattice packings, this is indeed the best possible, as was shown

by Gauss [Gau40].

The quest for proving Kepler’s conjecture has been a long saga. Concentrating on

relatively new achievements, Rogers [Rog58] showed that the packing density is at most

0.77963 . . . . This bound was improved by Lindsey [Lin86], and then Muder [Mud88],
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[Mud93] to 0.773055 . . . . L. Fejes Tóth sketched a strategy for a proof, which reduces

the problem to finitely many cases. Along these lines, the final proof was given by

Hales ( [Hal05], and 7 other papers).

A central concept in the theory of packing and covering is the Voronoi cell of

B ∈ B: this is the set of points x ∈ R3 with the property that x is closer to the centre

of B than to any other centre in B. It is well known that Voronoi cells are convex

polyhedra. Since we are interested in the minimum surface area that a Voronoi cell can

have in such a ball packing, we may assume that the packing is reasonably dense, so

the Voronoi cell in question is a polytope.

One of the most beautiful problems related to 3-dimensional unit ball packings is

the Dodecahedral Conjecture formulated by L. Fejes Tóth [FT43] in 1943. It states

that the minimal volume of a Voronoi cell in a 3-dimensional unit ball packing is at

least as large as the volume of a regular dodecahedron of inradius 1. This problem

has been recently settled in the affirmative by Hales and McLaughlin [HM]. K. Bezdek

[Bez00] phrased the following generalised version of the Dodecahedral Conjecture in

2000.

Conjecture 2.1 (Strong Dodecahedral Conjecture). The minimum surface area of a

Voronoi cell in a unit ball packing in R3 is at least as large as the surface area of the

regular dodecahedron circumscribed about the unit ball, that is 16.6508 . . ..

K. Bezdek [Bez00] proved that 16.143 . . . is a lower bound for the minimum surface

area of the Voronoi cell. To achieve this estimate he used a generalised version of Roger’s

lemma. Muder [Mud88], [Mud93] developed powerful techniques for estimating the

volume of a Voronoi polyhedron in a 3-dimensional sphere packing. K. Bezdek and E.

Daróczy-Kiss [BDK05] discovered that Muder’s ideas in [Mud88] and [Mud93], after

modification, are applicable to the Strong Dodecahedral Conjecture, and thus they

improved the lower bound to 16.1445 . . . . We follow a line of reasoning similar to

that of K. Bezdek and E. Daróczy-Kiss [BDK05], combined with ideas formulated by

Muder [Mud93].

We shall prove the following statement.

Theorem 2.2. The surface area of a Voronoi cell in a unit ball packing in R3 is at

least 16.1977 . . ..

The geometric idea of the estimate is the following. First, we replace each facecone

of the Voronoi cell with a right circular cone or with a shaved right circular cone. During
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the replacement the solid angle remains the same while the area of the face decreases,

and therefore the surface-to-solid angle ratio also decreases. After the replacement, we

determine the surface areas of the new cones as a function of the solid angle. Finally,

standard analytic tools are applied to find the minimal configuration with respect to

this function. The optimal configuration has 13 faces of the same solid angle, and one

face with a smaller solid angle. The sum of these solid angles is 4π but the given faces

do not form a polytope, hence there is a difference between our lower bound and the

conjectured minimal surface area.

2.2 Replacements

First, we define the special cones used in the reduction procedure. A right circular

cone (RCC) is a cone whose base is a circular disk and its apex lies on the line per-

pendicular to the disk passing through its center. The radius of the RCC is the radius

of its base, while the height is the distance between the apex and the disk. A shaved

circle is the intersection of a disk and a convex polygon that contains the center of

the disk. The order of a shaved circle is the number of the segments of its boundary.

A shaved circle is vertex-free if there is no vertex of the intersecting polygon in the

interior of the circle, and it is regular of order n if the segments of its boundary are n

non-intersecting chords of equal length. A shaved right circular cone (SRCC) is a cone

whose base is a shaved circle and its apex lies on the line perpendicular to the disk and

passing through its center. An SRCC is vertex-free or regular if its base has the same

property. The inner radius of an SRCC is the distance from the center of the disk to

the closest side of the shaved circle. The radius of the base circle is the outer radius of

the SRCC.

The notion of an SRCC is motivated by the fact that a face of a Voronoi polyhedron

cannot have vertices and edges ‘too close’ to its center, moreover, most of the edges

must be ‘far’ from the center: These facts are formulated in the following lemma, whose

proof can be found in Muder [Mud93] TL4 and TL5.

Lemma 2.3 ([Mud93]). Let F be a face of a Voronoi polyhedron with center A. Suppose

that the distance h between F and A is at most
√

2. Then no vertex of F is closer thanÈ
3/2 to A, no edge of F is closer than 2/

√
4− h2 to A and at most five edges of F

are less than
È

3/2 from A.

18



We say that a facecone of a Voronoi cell is replaceable with a second cone with the

same apex if the solid angles of the two cones are the same and the area of the base of

the second cone is not greater than that of the first one.

In our argument, the facecones are replaced by four types of SRCCs depending on

the solid angle. The following important angles separate the different possibilities:

0 < ψ̂1 < ψ̂2 < ψ̂3 < 2π,

with

ψ̂1 =
2
3
(3−

√
8) = 0.3593 . . . ,

ψ̂2 = 10
r

2
3

arctan
�

1√
2

�
= 0.9423 . . . ,

ψ̂3 =
2√
3
(
√

3−
√

2)π = 1.1529 . . . .

Next, we describe the several opportunities used for the reduction steps:

Proposition 2.4. Any facecone of solid angle ψ is replaceable by an SRCC, having the

same solid angle, of the form:

1. An RCC of height h ∈ [2/
√

3,
√

2] and radius (2− h2)/
√

4− h2 for

ψ ∈ [0, ψ̂1],

2. A regular, vertex-free, order-5 SRCC of height h ∈ [1, 2/
√

3], outer radius
È

3
2 − h2,

and inner radius (2− h2)/
√

4− h2 for ψ ∈ [ψ̂1, ψ̂2],

3. A regular, vertex-free, order-5 SRCC of height 1, outer radius 1/
√

2, and inner

radius r ∈ [1/
√

3, 1/
√

2] for ψ ∈ [ψ̂2, ψ̂3],

4. An RCC of height 1 and radius R > 1/
√

2 for ψ ∈ [ψ̂2, 2π].

Proof. Throughout the proof we will use the following notations. The point A is the

center of the Voronoi cell, and for a planar region R not containing A, C(R) denotes

the cone with base R and apex A.

First, we state the following:

Let H be a plane not containing A, M the orthogonal projection of A onto H,

and P and Q two distinct points in H such that |MP | > |MQ|. Let SP and SQ two
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infinitesimal rectangles in H centered at P and Q, respectively, which are translates of

each other. Then the solid angle of SP is smaller than that of SQ. (*)

For the proof of (*), suppose that the distance between A and H is h, and P has

distance % from A. A simple computation leads to the fact that the area-to-solid angle

ratio of the infinitesimal rectangle centered at P is %3/h, which is strictly monotonically

increasing in % if h is fixed. Since h is the same for P and Q, this implies (*).

Next, we list two basic types of the replacement cones.

Basic replacement schemes. Let F be a face of the Voronoi polyhedron with center

A, H the plane of F , and M the orthogonal projection of A onto H.

(R1) Consider a disk D in H centered at M such that the solid angle of D is not smaller

than the solid angle of F . Let G be a region of D containing D ∩ F and having

the same solid angle as F . Then C(F) is replaceable with C(G).

(R2) Consider a plane H ′ parallel to H such that H ′ separates H and A. Then C(F)

is replaceable with the cone whose base is H ′ ∩ C(F).

The proof of (R1) is straightforward from (*), while (R2) follows from the fact

that the area of H ′ ∩ C(F) is smaller than the area of F .

In the rest of the proof, we will simply refer to the above schemes as replacements

(R1) and (R2).

We divide the proof into three steps. First, if a facecone has height at least 2/
√

3,

then we replace it with an RCC. For facecones with a smaller height we use either an

RCC or a regular, vertex-free, order-5 SRCC with a specified outer radius. In the third

step we replace those SRCCs by more specific ones.

Step 1. Any facecone C(F) of height h0 > 2/
√

3 is replaceable by either

1. an RCC of height h ∈ [2/
√

3, min(h0,
√

2)] and radius (2− h2)/
√

4− h2, or

2. an RCC of height 2/
√

3 and radius R > 1/
√

6.

Proof of Step 1. Let S be a disk in the plane of F centered at M having the same

solid angle as F . Let R denote the radius of S. Notice that Lemma 2.3 yields that if

h0 6
√

2 then R > (2− h2)/
√

4− h2 = ρ(h).

Using replacement (R1), C(F) is replaceable by C(S). Moreover, (R2) yields that

for any h ∈ [2/
√

3, h], C(S) is replaceable by the RCC of height h and radius Rh =

Rh/h0.
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Note that the function Rh decreases as h decreases. On the other hand, ρ(h)

increases as h decreases. Therefore there either exists an h ∈ [2/
√

3, min(h0,
√

2)] for

which Rh = ρ(h), or Rh > ρ(2/
√

3) = 1/
√

6. These possibilities provide cases (1) and

(2) of the statement.

Step 2. Any facecone C(F) of height h ∈ [1, 2/
√

3] is replaceable by either

1. an RCC of height h and radius R >
È

3/2− h2, or

2. a regular, vertex-free, order-5 SRCC of height h, outer radius
È

3/2− h2 and

inner radius r > (2− h2)/
√

4− h2.

Proof of Step 2. Consider a disk D of radius
È

3/2− h2 centered at M in the plane

of F . If the solid angle of F is greater than that of D, then we can replace C(F) with

an RCC of the same solid angle by replacement (R1), thus obtaining case (1) of Step

2.

Otherwise, Lemma 2.3 yields that D∩F is a vertex-free shaved circle with at most

5 edges. Replacement (R1) allows us to replace C(F) with an order-5 vertex-free SRCC

of outer radius
È

3/2− h2 by moving the chords of D ∩ F away from M .

The only thing that remains to be shown is that this SRCC can be replaced by a

regular one of the same solid angle.

For this, consider a circular disk in the plane H centered at M and two infinitesi-

mally narrow parallel chordal bands (regions of the circle bounded by parallel chords)

of the same area. Suppose that for the two bands it also holds that they can be rotated

around M such that M does not separate them, there bounding chords are parallel,

and they are disjoint. Divide both bands into n small pieces, each of them of the same

area, by segments perpendicular to the bounding chords, and enumerate these pieces

from one end of the bands to the other end. An easy computation shows that the center

of the kth such piece is closer to the center of the disk for the chordal band which is

closer to M . Moreover, if n is sufficiently large, then the same inequality holds for

any two points of the kth pieces. Hence, integrating with the help of (*) yields that

the solid angle of the chordal band further from M is smaller. Therefore, if we move

infinitesimal chordal bands of the base of the SRCC closer to its center such that the

solid angle remains unchanged, than the area of the base decreases. In this way we can

transform the SRCC into a regular one, while we do not increase the base area-to-solid
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angle ratio. Moreover, this operation does not decrease the inner radius of the SRCC.

This finishes the proof of Step 2.

Step 3. Any regular, vertex-free, order-5 SRCC of height h0 ∈ [1, 2/
√

3], outer radius

R >
È

3/2− h0
2, and inner radius r > (2− h0

2)/
È

4− h0
2 is replaceable by either

1. a regular, vertex-free, order-5 SRCC of height h ∈ (1, h0], outer radius
È

3/2− h2,

and inner radius (2− h2)/
√

4− h2, or

2. a regular, vertex-free, order-5 SRCC of height 1, outer radius 1/
√

2, and inner

radius r ∈ (1/
√

3, 1/
√

2], or

3. an RCC of height 1 and radius R > 1/
√

2.

Proof of Step 3. Denote the SRCC by C(S). Let R be the radius such that the

RCC of height h0 and radius R has the same solid angle as C(S). If R 6
È

3/2− h0
2

then we can replace C(S) with an SRCC having the same properties as S, and with

outer radius
È

3/2− h0
2 using a (R1), just as in Step 2. Otherwise let

h = max

 
1, h0

s
3

2(h0
2 + R2)

!
.

Notice that h < h0. We use replacement (R2) for the plane at distance h from A

to obtain either an RCC of height 1 and radius greater than 1/
√

2 (case (3)), or an

RCC of outer radius
È

3/2− h2.

Therefore, it suffices to consider only the SRCCs with outer radius
È

3/2− h0
2

and height h0 > 1. We may also suppose that the inner radius r > (2− h0
2)/
È

4− h0
2

because otherwise we have the statement of case (1).

Hence, to obtain the statements of Step 3 the inner radius must be decreased. Let

S denote the base of the SRCC, which is a regular shaved circle of order 5. We apply

a transformation on C(S) in the following way: Let G denote the ball of radius
È

3/2

centered at A, and Hh the plane parallel to the plane of S and at a distance h from

A. Let Sh be the shaved circle homothetic to S inscribed in G ∩Hh, and consider the

SRCC that is based on Sh. Clearly, for any h ∈ [1, h0) the solid angle of Sh is greater

than that of S. Moreover, we will show that the base area-to solid angle ratio of C(Sh)

is smaller than that of C(S). Then we may decrease the inner radius of Sh to obtain an

SRCC with the same solid angle as S. There are two possibilities: either there exists
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an h for which the decreased inner radius is (2 − h2)/
√

4− h2, when we obtain the

statement of case (1), or the decreased inner radius at h = 1 is at least 1/
√

3, which

gives the statement of case (2).

Therefore, we only have to show that for any h ∈ [1, h0) the base area-to-solid

angle ratio of C(Sh) is smaller than that of C(S). Denote by S∗ the radial projection of

S onto bd G. Consider the homothety τ taking S into Sh. It suffices to show that the

surface area of S∗h is greater than the surface area of τ(S∗). It is easy to check that the

image of τ(S∗), under the projection onto G perpendicular to Hh, is contained in S∗h.

Moreover, along this projection at each point of τ(S∗), the slope of the tangent plane

increases, therefore the surface area of the infinitesimal surface element also increases.

Altogether, we obtain that the surface area of τ(S∗) is smaller than that of S∗h.

Now, we assemble Steps 1-3 and prove Proposition 2.4. If the height h0 > 2/
√

3

then we apply Step 1, yielding either possibility (1), which is the same as case (1) of

Proposition 2.4, or possibility (2), when we can apply Step 3 (note that an RCC is

also a regular, vertex-free SRCC). Notice that the three cases of Step 3 are the same

as cases (2)-(4) of Proposition 2.4.

If h0 6 2/
√

3 then we apply Step 2 and then Step 3 as before, concluding the last

three cases of Proposition 2.4.

2.3 Approximation

First, we determine the base areas and the solid angles of the regular SRCC’s

obtained in Steps 1–3. The following lemma is the result of elementary computation.

Lemma 2.5. Let h, r > 0, r 6 R, and let n be a positive integer such that

n arctan

Ê
R2 − r2

r2
6 π.

Then the vertex-free regular SRCC of order n, height h, inner radius r, and outer radius

R has base area

σn(h, r,R) = nr
È

R2 − r2 + R2

 
π − n arctan

Ê
R2 − r2

r2

!
,
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and solid angle

ψn(h, r,R) = 2

 
π − n arctan

 Ê
h2

R2 + h2

Ê
R2 − r2

r2

!!
−

2

Ê
h2

R2 + h2

 
π − n arctan

Ê
R2 − r2

r2

!
.

Thus, by Proposition 2.4, the following holds.

Proposition 2.6. A facecone of solid angle ψ has base surface area at least σ(ψ) where

σ(ψ) is defined by the following parametric equations:

σh = π
(2− h2)2

4− h2
,

ψh = π
�
2− h

È
4− h2

�
for h ∈ [2/

√
3,
√

2], in which case ψh parametrises all values in [0, ψ̂1];

σh =
5(2− h2)

√
4− 3h2

√
2(4− h2)

+
3− 2h2

2

�
π − 5 arctan

√
4− 3h2

√
2(2− h2)

�
,

ψh = 2
�

π − 5 arctan
h
√

4− 3h2

√
3(2− h2)

�
− 2

r
2
3
h

�
π − 5 arctan

√
4− 3h2

√
2(2− h2)

�
for h ∈ [1, 2/

√
3], in which case ψh parametrises all values in [ψ̂1, ψ̂2];

σr = 5r

√
1− 2r2

√
2

+
1
2

 
π − 5 arctan

Ê
1− 2r2

2r2

!
,

ψr = 2

 
π − 5 arctan

Ê
1− 2r2

3r2

!
− 2

r
2
3

 
π − 5 arctan

Ê
1− 2r2

2r2

!
for r ∈ [1/

√
3, 1/

√
2], in which case ψr parametrises all values in [ψ̂2, ψ̂3];

σR = R2π,

ψR = 2π

�
1− 1√

R2 + 1

�
.

for R > 1/
√

2, in which case ψR parametrises all values in [ψ̂3, 2π].

In the subsequent part of the article we shall use the following lemma repeatedly.
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Lemma 2.7 ([Mud93]). Suppose that the function σ(ψ) is parametrised by t in the

interval (a, b). Then σ(ψ) is convex on (a, b) if

d2σ

dt2

�
dψ

dt

�2

> dσ

dt

d2ψ

dt2
dψ

dt
,

and concave if
d2σ

dt2

�
dψ

dt

�2

6 dσ

dt

d2ψ

dt2
dψ

dt

for all t such that ψ(t) ∈ (a, b).

In what follows, we simplify the function σ(ψ) and determine a minimal configu-

ration with respect to this substitute function.

Proposition 2.8. The function σ(ψ) can be approximated from below by

B(ψ) =

8>>>>><>>>>>:
σ(ψ̂1)

ψ̂1
ψ, if ψ ∈ [0, ψ̂1]

σ(ψ̂1) + σ(ψ̂2)−σ(ψ̂1)

ψ̂2−ψ̂1
(ψ − ψ̂1), if ψ ∈ [ψ̂1, ψ̂2]

σ(ψ), if ψ ∈ [ψ̂2, ψ̂3]

σ(ψ3) + σ′+(ψ̂3)(ψ − ψ̂3), if ψ ∈ [ψ̂3, 2π]

Proof. Since B(ψ) is linear on all intervals except for [ψ̂2, ψ̂3], it suffices to show that

σ(ψ) is concave on (0, ψ̂1) and (ψ̂1, ψ̂2), and convex on (ψ̂3, 2π). We are going to look at

these intervals one by one and use the statements of Lemma 2.7 to check the convexity

of B(ψ).

In the following part of the proof we simply state the derivatives of σ and ψ with

respect to h.

First, let ψ ∈ [0, ψ̂1]. Then

dσ

dh
=

−2π(2− h2)h(6− h2)
(4− h2)2

,

d2σ

dh2
=

2π(−48 + 60h2 − 12h4 + h6)
(4− h2)3

,

dψ

dh
=

−2π(2− h2)√
4− h2

,

d2ψ

dh2
=

2πh(6− h2)
(4− h2)3/2

.
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From the above formulas it follows by simple computation that

d2σ

dh2

dψ

dh
− dσ

dh

d2ψ

dh2
=

96(2− h2)2π2

(4− h2)2(4− h2)3/2
. (2.1)

The right hand side of (2.1) is positive, while dψ/dh is negative on the whole interval

[0, ψ̂1], which implies that σ(ψ) is concave on the designated interval.

Next, let ψ ∈ [ψ̂1, ψ̂2]. Introduce the following notation.

γ(h) := π − 5 arctan
� √

4− 3h2

√
2(2− h2)

�
Note that γ(h) > 0 on the designated interval. Furthermore,

dψ

dh
=

−2
√

2√
3(4− h2)

�
5
√

2
È

4− 3h2 + (4− h2)γ(h)
�

,

d2ψ

dh2
=

20h(20− 13h2 − 3h4)√
3
√

4− 3h2(3− 2h2)(4− h2)2
,

dσ

dh
=

−h

(4− h2)2
�
5
√

2
È

4− 3h2(6− h2) + 2(4− h2)2γ(h)
�

,

d2σ

dh2
=
−10

√
2(144− 308h2 + 196h4 − 34h6 + 3h8)

(4− h2)3(3− 2h2)
√

4− 3h2
− 2γ(h).

We need to prove that the following expression is positive:

d2σ

dh2

dψ

dh
− dσ

dh

d2ψ

dh2
=

=
4√

3(4− h2)4(4− 3h2)(3− 2h2)

�
ξ0(h) + ξ1(h)γ(h) + ξ2(h)γ2(h)

�
,

where

ξ0(h) = 25
√

2(4− 3h2)(288− 496h2 + 294h4 − 73h6 + 9h8),

ξ1(h) = 20
È

4− 3h2(4− h2)(3− 2h2)(56− 62h2 + 20h4 − 3h6),

ξ2(h) =
√

2(4− h2)4(3− 2h2)(4− 3h2).

Introducing w = 4− h2, x = 4− 3h2, y = h2 − 1, z = 3− 2h2, we obtain
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ξ2(h) =
√

2w4z > 0,

ξ1(h) = 20
√

xwz(2z + 9x + 10y2 + xy2) > 0,

ξ0(h) = 25
√

2x(4 + y + 2xw + 12x2 + yw2 + 12y2x + 9y4) > 0.

Since all of these terms are positive, and dψ/dh is negative on the whole interval [ψ̂1, ψ̂2],

we obtain that σ(ψ) is concave.

Finally, let ψ ∈ [ψ̂3, 2π]. An easy computation yields that in the considered interval

σ′(ψ) =
�

dσ

dψ

�
ψ=ψR

= (R2 + 1)3/2,

which is a monotonically increasing function, therefore σ(ψ) is convex on (ψ̂3, 2π). Also

notice that the right-hand derivative of σ(ψ) at ψ̂3 is
È

27/8.

2.4 The minimal configuration

In this final section, we determine the minimal configuration with respect to the

function B(ψ), leading to the lower bound formulated in Theorem 2.2.

Proposition 2.9. Suppose ψi ∈ [0, 2π] for every i ∈ [n], and
Pn

i=0 ψi = 4π. Moreover,

let ψm = 4π − 13ψ̂2. Then

nX
i=0

B(ψi) > B(ψm) + 13B(ψ̂2).

Proof. First, we prove that B(ψ) is concave on (0, ψ̂2). To see this, it suffices to

compute that the slope of B(ψ) on (0, ψ̂1) is

σ(ψ̂1)
ψ̂1

=
1

12− 8
√

2
= 1.4571 . . . ,

and on (ψ̂1, ψ̂2) it is

σ(ψ̂2)− σ(ψ̂1)
ψ̂2 − ψ̂1

=
5
√

2 + 2π − 15 arctan(1/
√

2)
−2(5π + 2

√
6π)− 4

√
2π − 10

√
6 arctan(1/

√
2))

= 1.17834 . . . ,

which implies concaveness.
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Now we show that B(ψ) is convex on (ψ̂2, 2π). It suffices to show that σ(ψ) is

convex on (ψ̂2, ψ̂3) and that the right- and left-hand derivatives of σ(ψ) at ψ̂3 are

equal.

A straightforward computation, based on Proposition 2.6, yields that the derivative

of σ(ψ) on (ψ̂2, ψ̂3) is

σ′(ψ) =
�

dσ

dψ

�
ψ=ψr

= (1 + r2)
√

3√
2
.

Thus, σ(ψ) is indeed convex on (ψ̂2, ψ̂3), and its the left-hand derivative at ψ̂3 is

3
È

3/8 =
È

27/8, the same as the right-hand derivative.

We remark that there is an alternative way to compute σ′(ψ) on (ψ̂2, ψ̂3). The

cones that belong to this interval are regular, vertex-free, order-5 SRCC’s of height 1,

outer radius 1/
√

2, and inner radius r ∈ [1/
√

3, 1/
√

2]. As we increase r, the new part

of the SRCC is the union of five cones over chordal bands of the base circle, and the

derivative is the base area-to-solid angle ratio of these cones. This computation leads

to the same result as above.

Hence, B(ψ) is concave on (0, ψ̂2) and convex on (ψ̂2, 2π). Therefore, if we are

given two angles 0 < ψ0 < ψ1 < ψ̂2, then

B(ψ0) + B(ψ1) > B(ψ0 − t) + B(ψ1 + t),

where t = min(ψ0, ψ̂2 − ψ1). Therefore, in the sum
Pn

i=0 B(ψi), we can eliminate the

angles smaller than ψ̂2 except for at most one of them. Moreover, the convexity of

B(ψ) yields that the angles that are at least ψ̂2 can be replaced by identical angles,

and since 14ψ̂2 > 4π, we also know that there are at most 13 of these. Altogether, we

can replace any configuration of angles by another configuration consisting of at most

one angle smaller than ψ̂2 and at most 13 identical angles which are at least ψ̂2. In

summary, we obtain the following statement.

Let k 6 13 and

βk(ψ) = B(ψ) + kB

�
4π − ψ

k

�
for all ψ ∈ [0, min(ψ̂2, 4π − hψ̂2). Then

nX
i=0

B(ψi) > βk(ψ)
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for some k 6 min(n, 13) and ψ ∈ [0, min(ψ̂2, 4π − kψ̂2)). (†)

In what follows, we will find the minimal configuration with respect to β. The first

step in this process is to prove that it is sufficient to consider β13(ψ).

If k < 13, then βk(ψ) > βk+1(0). (‡)

For the proof of (‡), we introduce the following function.

g(ψ) =

8><>:σ(ψ̂2)

ψ̂2
ψ, if ψ ∈ [0, ψ̂2)

B(ψ), if ψ ∈ [ψ̂2, 2π].

The concavity of B(ψ) on [0, ψ̂2] implies that g(ψ) 6 B(ψ) everywhere in [0, 2π].

Furthermore, by definition, the right-hand derivative of g at ψ̂2 is

σ′+(ψ̂2) =
4
3

√
3√
2

=
2
√

2√
3

= 1.6329 . . . .

Since on the interval (0, ψ̂2)

g′(ψ) =
σ(ψ̂2)

ψ̂2

=
5
√

2 + 3π − 15 arctan(1/
√

2)
(2− 4

√
6π + 20

√
6 arctan(1/

√
2))

= 1.2846 . . . ,

we may conclude that g(ψ) is convex on [0, 2π). Hence

βk(ψ) > g(ψ) + k g

�
4π − ψ

k

�
> (k + 1) g

� 4π

k + 1

�
.

Moreover, k < 13 implies that 4π/(k + 1) > ψ̂2 and so

(k + 1) g
� 4π

k + 1

�
= (k + 1) B

� 4π

k + 1

�
= βk+1(0),

which proves (‡).
Thus, we obtained that if k < 13 then βk(ψ) > β13(0), and so, by (†), a lower

bound for β13(ψ) is also a lower bound for
Pn

i=0 B(ψi).

Now, we shall look for the minimum of β13(ψ).

β′13(ψ) = B′(ψ)− σ′(
4π − ψ

13
)

for ψ ∈ [0, 4π − 13ψ̂2] ⊂ [0, ψ̂1]. On this interval, B(ψ) is linear, and

B′(ψ) =
σ(ψ̂1)

ψ̂1

= 1.4571 . . . .
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On the other hand,
4π − ψ

13
∈ [ψ̂2,

4π

13
] ⊂ [ψ̂2, ψ̂3],

so σ′((4π − ψ)/13) = (1 + r2)
È

3/2. The angle ψ varies between ψ̂2 and 4π/13, so the

inner radius r is at least 1/
√

3, and

σ′
�

4π − ψ

13

�
= (1 + r2)

È
3/2 > 2

√
2/
√

3 = 1.6329 . . . .

Therefore, β′13(ψ) is negative in the entire interval. It follows that β13(ψ) is minimal

when ψ is maximal, that is, when ψ = ψm = 4π − 13ψ̂2.

Proof of Theorem 2.2. Using the exact value of ψ̂2, we obtain that

ψm = −π

3
+

26
3

√
6(π − 5 arctan(1/

√
2)) = 0.3155 . . . .

After substituting the value of ψ̂2 and ψm, the new bound for the minimum surface

area of the Voronoi cell is

β(ψm) + 13β(ψ̂2) =
σ(ψ̂1)

ψ̂1

ψm + 13σ(ψ̂2) = 16.1977 . . . .
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Chapter 3

Stability results for the volume of random simplices

It is known that for a convex body K in Rd of volume one, the expected volume of

random simplices in K is minimised if K is an ellipsoid, and for d = 2, maximised if K

is a triangle. In this chapter, we provide corresponding stability estimates in terms of

the Banach-Mazur distance of K from the ellipsoid and the triangle. In Section 3.1, the

long history and various connections of the problem are presented. The main results

are listed in Section 3.2. The core technical lemmas leading to these are proved in

Section 3.3. The next section contains the proof of the stability of the lower bound,

which is obtained first for centrally symmetric, then for general convex bodies. The

argument estimates the change of the expectation when applying one step of Steiner

symmetrisation. The stability of the upper bound in the plane is shown in Section 3.5,

using linear shadow systems. We conclude the chapter by showing that our results also

imply the stability of the Petty projection inequality. These results are a joint work

with K. J. Böröczky [AB].

3.1 The saga

Let K be a convex body in Rd. What is the expected value of the volume of

a random simplex in K? Naturally, this question needs to be clarified further. We

will work with two (or three) models: in the first, all the vertices of the simplex are

chosen uniformly and independently from K, while in the second, one vertex is at

a fixed position – in a special case, this is the centroid of K. We are interested in

other moments as well, and also, we would like the answer to be invariant under affine

transformations.

As a general reference for stochastic geometry, we refer to R. Schneider, W. Weil

[SW08], and for convexity, to T. Bonnesen, W. Fenchel [BF87], P.M. Gruber [Gru07]

and R. Schneider [Sch93]. V or Vd stands for the d-dimensional volume (if the dimen-

sion is clear, we shall omit d), the convex hull of the points x1 . . . , xn is denoted by

[x1, . . . , xn], and γ(K) is the centroid of K.
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Definition 3.1. Let K be a convex body in Rd. For any n > d + 1 and p > 0, let

Ep
n(K) = V (K)−n−p

Z
K

. . .
Z

K
V ([x1, . . . , xn])p dx1 . . . dxn.

Further, for a fixed x ∈ Rd, let

Ep
x(K) = V (K)−d−p

Z
K

. . .
Z

K
V ([x, x1, . . . , xd])p dx1 . . . dxd.

Specifically, we write Ep
∗(K) for Ep

x(K), when x = γ(K).

In particular, for integer p, Ep
d+1(K) is the expectation of the p th moment of

the relative volume of simplices in K. Clearly, Ep
n(K) and Ep

∗(K) are invariant under

non-singular affine transformations, and Ep
o(K) is invariant under non-singular linear

transformations, where o stands for the origin. We note that for fixed K and p > 1,

Ep
x(K) is a strictly convex function of x, therefore it attains its minimum at a unique

point. If K is o-symmetric, then the minimum is attained at o, and Ep
o(K) = Ep

∗(K).

In the rest of the section, we give an overview of the history of the quantities intro-

duced in Definition 3.1 and their various connections. The main results are presented

in Section 3.2, whose proofs are found in the subsequent parts. Section 3.6 contains

further corollaries.

3.1.1. Sylvester’s problem. The quantity Ep
d+1(K) arose right at the first steps of

random convex geometry. Indeed, (probably) the first question in this topic is due

to Sylvester [Syl64]: in 1864 he (vaguely) asked, what is the probability that four

randomly chosen points in a planar convex disc are in convex position, that is, none

of them is in the convex hull of the other three. Generalising to higher dimensions,

if d + 2 points are chosen randomly from a convex body K ⊂ Rd, then the sought

quantity is exactly 1 − (d + 2)E1
d+1(K). It is then natural to ask: for which convex

bodies is this probability minimal and maximal? The first steps in this direction were

taken by Blaschke ([Bla17] and [Bla23]), who showed that in the plane, the probability

in question is maximal for ellipses, and minimal for triangles. The maximisers in higher

dimensions are the ellipsoids (cf. Groemer [Gro73]), whereas the minimiser bodies in

higher dimensions are still not known. We shall state these results as theorems later.

For a thorough historical account of this problem, see Klee [Kle69], and also Bárány

[Bár08].
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3.1.2. Minimisers and affine inequalities. Let K ⊂ Rd be a convex body with γ(K) =

0. The intersection body IK of K is defined by its radial function:

ρIK(u) = Vd−1(K ∩ u⊥).

H. Busemann [Bus53] established the formula

Vd(K)d−1 =
(d− 1)!

2

Z
Sd−1

Vd−1(K ∩ u⊥)d E1
o(K ∩ u⊥)dσ(u), (3.1)

where σ is surface area measure on Sd−1. In the same paper, he proved the Busemann

random simplex inequality:

E1
o(K) > E1

o(B
d). (3.2)

Combining (3.1) and (3.2), he derived the Busemann intersection inequality, stating

that the volume of the intersection body is maximal for ellipsoids:

Vd(IK) 6
κd

d−1

κd−2
d

V (K)d−1, (3.3)

where κd = Vd(Bd).

A couple of years later, Petty [Pet61] introduced centroid bodies : the centroid

body ΓK of K is the convex body in Rd defined by the support function

hΓK(u) =
1

V (K)

Z
K
|〈u, x〉|dx.

Using an approximation argument and the volume formula for zonotopes, he obtained

the following formula for the volume of ΓK:

Vd(ΓK) = 2dVd(K)E1
o(K). (3.4)

The argument is nicely presented in [Gar06]. Using the Busemann random simplex

inequality (3.2), Petty obtained the Busemann-Petty centroid inequality, which states

that the volume of the centroid body is minimal for ellipsoids:

Vd(ΓK)
Vd(K)

>
�

2κd−1

(d + 1)κd

�d

. (3.5)
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The conjectured converse of this inequality is that the volume is maximised for sim-

plices provided that o is the centroid; this would be crucial in high dimensional convex

geometry, as we shall soon see.

The minimisers of the mean volumes of random simplices are known in full gener-

ality: they are the ellipsoids for all the quantities introduced in Definition 3.1.

Theorem 3.2 (Blaschke, Busemann, Groemer). For any convex body K in Rd, for any

p > 1, and for any n > d + 1, we have

Ep
o(K) > Ep

o(B
d) and Ep

∗(K) > Ep
∗(Bd) and Ep

n(K) > Ep
n(Bd).

Here Ep
o(K) = Ep

o(B
d) if and only if K is an o-symmetric ellipsoid, and Ep

∗(K) =

Ep
∗(Bd) or Ep

n(K) = Ep
n(Bd) if and only if K is an ellipsoid.

As we noted before, Blaschke [Bla23] handled E1
3(K) in the planar case, Groemer

[Gro73] extended his result to higher dimensions, H. Busemann [Bus53]) obtained the

estimate for Ep
o(K). Groemer [Gro74] derived the result for Ep

n(K). All the proofs

are similar and based on Steiner symmetrisation. For thorough discussions of these

inequalities and relatives, see the survey article [Lut93] by E. Lutwak, or the monograph

[Gar06] by R.J. Gardner. The minimal values in the cases of random simplices when

p > 1 is an integer, can be found as Theorems 8.2.2 and 8.2.3 in R. Schneider, W. Weil

[SW08]. Writing κd = V (Bd) = πd/2

Γ( d
2
+1)

, we have

Ep
∗(B

d) =
�

d + p

d

�−1

κ−d−p
d κd

d+p ·
κ1 . . . κd

κp+1 . . . κp+d

Ep
d+1(B

d) = (d!)−p

�
d + p

d

�−1

κ−d−p−1
d κd+1

d+p ·
κd2+dp+d

κd2+dp+d+p
· κ1 . . . κd

κp+1 . . . κp+d

3.1.3. Maximum inequalities and the slicing conjecture. As usual, let K be a convex

body in Rd, and assume that γ(K) = o. The inertia matrix of K is the d × d matrix

M given by

Mij =
Z

K
xixj dx,

where xi is the ith coordinate of x. Since for any y ∈ Rd, we have y>My =
R
K〈x, y〉2dx,

it follows that M is a positive definite, symmetric matrix, and hence it has a positive

square-root A. The inertia matrix of the convex body A−1K is then Id/detA (see

J. Bourgain, M. Meyer, V. Milman, A. Pajor [BMMP88], and for a more detailed
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discussion, see Ball [Bal88]). For a non-singular affine transformation Φ ∈ GLd, we

say that ΦK is in isotropic position with the constant of isotropy LK , if γ(K) = o,

Vd(ΦK) = 1, and the inertia matrix of ΦK is a multiple of the identity, that is,Z
ΦK
〈x, y〉2dx = L2

K‖y‖2

for every y ∈ Rd. We just have seen that every convex body has a non-singular affine

image that is in isotropic position, and it is well known that the isotropic position is

unique up to orthogonal transformations. Hence, LK is an affine invariant. Moreover,

LK = (detM)1/2dVd(K)−(d+2)/2d. (3.6)

By expanding the determinant of M , one obtains (see Blaschke [Bla18] or Giannopou-

los [Gia])

detM = d! Vd(K)d+2E2
∗(K),

and hence from (3.6),

L2d
K = d!E2

∗(K). (3.7)

The slicing conjecture, initiated by J. Bourgain [Bou86], asserts that there exists a

universal constant L, for which LK 6 L for every convex body K, regardless of the

dimension. There are various equivalent formulations of this major open problem; for

thorough surveys, consult the papers V.D. Milman and A. Pajor [MP89], and A.A.

Giannopoulos and V.D. Milman [GM04] for some later results.

By (3.7), one has to determine the maximum of E2∗(K). The most general conjec-

ture is the following, where T d stands for a d-dimensional simplex:

Conjecture 3.3 (Simplex conjecture). If K is a convex body in Rd, then for any p > 1

and for any n > d + 1,

Ep
∗(K) 6 Ep

∗(T
d) and Ep

n(K) 6 Ep
n(T d),

with equality if and only if K is a simplex.

Little is known about Conjecture 3.3. The proposed extremal values are known

explicitly only in a few cases. W.J. Reed [Ree74] proved that if p > 1 is an integer,
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then

Ep
3(T

2) =
12

(p + 1)3(p + 2)3(p + 3)(2p + 5)

"
6(p + 1)2 + (p + 2)2

pX
i=0

�
p

i

�−2
#

.

For all n, only the first moments E1
n(T 2) and E1

n(T 3) are known, see C. Buchta [Buc84]

and C. Buchta, M. Reitzner [BR01], respectively. Even explicit values of E1
d+1(T

d) for

d > 4 are missing. It is important that for any d > 2,

E2
∗(T

d) 6 1
d!

, (3.8)

see Giannopoulos [Gia]. Thus, the simplex conjecture for E2∗(K) implies the slicing

conjecture.

The method of Dalla and Larman [DL91], who considered E1
n(K), combined with

Theorem 3.9 of Campi, Colesanti, and Gronchi [CCG99] yields Conjecture 3.3 if K is

a polytope of at most d + 2 vertices. Bárány and Buchta [BB93] proved the following

asymptotic version of Conjecture 3.3 for p = 1. If K is not a simplex, there exists a

threshold nK depending on K, such that E1
n(K) < E1

n(T d) for n > nK . Conjecture 3.3

for all K and n is verified only in the plane.

Theorem 3.4 (Blaschke,Dalla-Larman,Giannopoulos). If K is a planar convex body,

then for any n > 3 and p > 1, Ep
n(K) 6 Ep

n(T 2), with equality if and only if K is a

triangle.

More precisely, it was proved by Blaschke [Bla17] for n = 3, and by Dalla and

Larman [DL91] for n > 4, that Ep
n(K) 6 Ep

n(T 2). In addition, Giannopoulos [Gia92]

verified that equality holds only if K itself is a triangle.

We shall see in Section 3.5 (compare (3.29) and Lemma 3.15) that the method

of S. Campi, A. Colesanti, P. Gronchi [CCG99], see Theorem 3.9, leads to the planar

version of the first statement of Conjecture 3.3.

Theorem 3.5. If K is a convex disc, then for any p > 1, we have Ep
∗(K) 6 Ep

∗(T 2),

with equality if and only if K is a triangle.

For centrally symmetric planar convex discs and p = 1, T. Bisztriczky and K.

Böröczky Jr. [BB01] proved the analogue of Theorem 3.5 with o-symmetric parallelo-

grams instead of triangles as maximisers. The method readily extends to all p > 1.
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3.1.4. Equivalence. Finally, we establish connections between the different quantities

measuring the mean volumes of random simplices.

For every p > 1 and for any convex body K ⊂ Rd, we have

(Ep
∗(K))1/p 6 (Ep

d+1(K))1/p 6 (d + 1)(Ep
∗(K))1/p. (3.9)

For a proof, see Proposition 1.3.1 of Giannopoulos [Gia].

Specifically, for p = 2, one obtains

(d + 1)E2
∗(K) = E2

d+1(K). (3.10)

The proof goes by assuming that γ(K) = o and K is in isotropic position. Given

x1, . . . , xd+1 ∈ Rd,

Vd([x1, . . . , xd+1]) =
1
d!

det((x1, 1), . . . , (xd+1, 1)).

Using this formula and proceeding as in Proposition 3.7. of Milman and Pajor [MP89],

one obtains (3.10).

Thus, in view of (3.7), to prove the slicing conjecture, it would suffice to estimate

E2
d+1(K).

Next, we show that all the quantities Ep
∗(K) and Ep

d+1(K) are equivalent in the

following sense: for any p, q > 0, there exist constants cp,q and Cp,q depending on p and

q only, such that if Ep(K) stands for either Ep
∗(K) or Ep

d+1(K), then

cd
p,q(Ep(K))1/p 6 (Eq(K))1/q 6 Cd

p,q(Ep(K))1/p. (3.11)

To this end, using (3.9), it suffices to show that Ep
∗(K) and Eq

∗(K) are equivalent.

Hölder’s inequality implies that for 0 < p < q,

(Ep
∗(K))1/p 6 (Eq

∗(K))1/q. (3.12)

To see the estimate in the other direction, we refer to Milman and Pajor [MP89].

Proposition 3.7 therein states that there exists an absolute constant c > 0, such that

for any convex body K ⊂ Rd, and for any 0 < p 6 2,

(E2
∗(K))1/2 6 cd(Ep

∗(K))1/p. (3.13)
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The key step is using the concentration of volume property of convex bodies (in-

deed, for log-concave functions), cf. Borell’s lemma, which then establishes that for a

fixed v ∈ Rd, all the Lp-norms (
R
K |〈x, v〉|pdx)1/p are equivalent. Then, one uses the

fact that fixing x1, . . . , xd−1, V [x1, . . . , xd] is a linear function of xd, and hence,

Ep
d+1(K) =

Z
K
|〈xd, v〉|pdxd

for some v ∈ Rd, provided Vd(K) = 1. Equation (3.13) can then be obtained by an

inductive argument, provided K is in isotropic position.

When p > 2, then we use the following Khinchine type inequality: if K ⊂ Rd is a

convex body of volume 1, then for any v ∈ Rd,�Z
K
|〈x, v〉|pdx

�1/p

6 cp
Z

K
|〈x, v〉| dx 6 cp

�Z
K
|〈x, v〉|2dx

�1/2

for some universal constant c (see Proposition 2.1.1. of Giannopoulos [Gia]). Then the

argument of Milman and Pajor works, yielding that there exists a constant C, such

that �
C

p

�d

(Ep
∗(K))1/p 6 (E2

∗(K))1/2.

Referring to (3.12) and (3.13), we arrive to (3.11).

We note that in order to prove the slicing conjecture, using formulas (3.7) and

(3.11), it would suffice to verify either the first or the second statement (with n = d+1)

of Conjecture 3.3 for any particular p > 1.

3.2 Results

Our goal is to provide stability versions of Theorems 3.2, 3.4 and 3.5. We shall

use the Banach-Mazur distance δBM(K, M) of the convex bodies K and M , which is

defined by

δBM(K, M) = min{λ > 1 : K − x ⊂ Φ(M − y) ⊂ λ(K − x)

for Φ ∈ GLd, x, y ∈ Rd}.

If K and M are o-symmetric, then x = y = o can be assumed. It follows by Fritz

John’s ellipsoid theorem that δBM(K, Bd) 6 d for any d-dimensional convex body K,
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and δBM(K,Bd) 6
√

d holds if K is centrally symmetric. Moreover, J. Lagarias and G.

Ziegler verified in [LZ91] that δBM(K,T d) 6 d + 2.

First, the stability version of Theorem 3.2.

Theorem 3.6. If K is a convex body in Rd with δBM(K, Bd) = 1 + δ for δ > 0, then

for any p > 1,

Ep
∗(K) > (1 + γpδd+3)Ep

o(B
d)

Ep
d+1(K) > (1 + γpδd+3)Ep

d+1(B
d),

where the constant γ > 0 depends on d only. Moreover, if K is centrally symmetric,

then the error terms can be replaced by γpδ(d+3)/2.

Similar stability estimates preceded our work. Groemer [Gro94] showed that under

rather strict regularity conditions on the boundary of K, the above statement holds

with an error term of order δc d2
for some universal constant c. Fleury, Guédon and

Paouris [FGP07] proved a stability result for the mean width of Lp-centroid bodies,

which in the case p = 1, yields a stability estimate for E1
o(K) by (3.4). However, the

error term obtained this way is again only of order δc d2
for some universal constant c.

We remark that for p 6= 1, no such direct connection exists between Ep
o(K) and the

volume of the Lp-centroid body.

Second, the stability version of Theorems 3.4 and 3.5.

Theorem 3.7. If K is a planar convex body with δBM(K,T 2) = 1 + δ for some δ > 0,

and p > 1, then

Ep
∗(K) 6 (1− cpδ2)Ep

∗(T
2)

Ep
3(K) 6 (1− cpδ2)Ep

3(T
2),

where c is a positive absolute constant. This estimate is asymptotically sharp as δ tends

to zero.

3.3 Linear shadow systems and Steiner symmetrisation

For obtaining the stability versions of both the minimum and maximum inequal-

ities, we shall use the following notion. Given a compact set Ξ in Rd, a unit vector v,
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and for each x ∈ Ξ, a speed ϕ(x) ∈ R, the corresponding shadow system is

Ξt = {x + tϕ(x)v : x ∈ Ξ} for t ∈ R.

According to the classical work of H. Hadwiger [Had57], C.A. Rogers, G.C. Shephard

[RS58] and Shephard [She64],

Theorem 3.8 (Hadwiger,Rogers,Shephard). For a shadow system Ξt, every quermass-

integral of Ξt is a convex function of t.

We note that for any p > 1, the convexity of the pth moment of the quermassin-

tegrals follows as well.

In the last decades, shadow systems were successfully applied to various extremal

problems about convex bodies (see e.g. S. Campi, P. Gronchi [CG06], and M. Meyer, Sh.

Reisner [MR06]). For our purposes, we need a restricted class of shadow movements,

introduced in [CCG99] by S. Campi, A. Colesanti, and P. Gronchi. We say that Kt,

t ∈ [a, b], is a linear shadow system of convex bodies, if we start with a convex body K,

the speed ϕ(x) is constant along any chord of K parallel to v, and

Kt = {x + tϕ(x)v : x ∈ K} for t ∈ [a, b]

is convex for every t ∈ [a, b]. In this case, ϕ(x) is continuous on K, and it depends

only on the projection πvx of x to v⊥. Moreover, the volume of Kt is constant, and the

transformation x 7→ x + tϕ(x)v from K to Kt is measure preserving.

For any linear shadow system Kt, there also exists a linear shadow system fKt,

t ∈ [a, b], such that

γ(fKt) = o for t ∈ [a, b], and each fKt is a translate of Kt. (3.14)

To see this, note that

γ(Kt) = γ(K) + t · v · V (K)−1
Z

K
ϕ(z) dz. (3.15)

Therefore, fKt = Kt − γ(Kt) can be achieved by using the speed

ϕ̃(x) = ϕ(x + γ(K))− V (K)−1
Z

K
ϕ(z) dz for x ∈ fK.
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The main reason for restricting shadow movements is the following result of [CCG99]

(where linear shadow systems were called RS-movements).

Theorem 3.9 (Campi, Colesanti, Gronchi). If Kt, t ∈ [a, b], is a linear shadow system,

then Ep
n(Kt), Ep

o(Kt) and Ep
∗(Kt) are convex functions of t. If either of these convex

functions is linear, then any two elements of the system are affine images of each other,

and actually linear images in the case of Ep
o(Kt).

We note that although Theorem 3.9 was proved only for Ep
n(Kt) in [CCG99], the

method works for the other functionals as well (see also Lemma 1 for a direct approach).

Indeed, for handling Ep
n(Kt), the authors consider for each n-tuple Ξ = {x1, . . . , xn} ⊂

K the associated shadow system

Ξt = [x1 + tϕ(x1)v, . . . , xn + tϕ(xn)v].

Since Vd(Ξt) is a convex function of t by Theorem 3.8, we conclude Theorem 3.9 by

Ep
n(Kt) = V (K)−n−p ×Z

K
. . .
Z

K
V ([x1 + tϕ(x1)v, . . . , xn + tϕ(xn)v])p dx1 . . . dxn.

In order to obtain the convexity of Ep
o(Kt), to each d-tuple {x1, . . . , xd} ⊂ K\o one

assigns the d + 1-tuple Ξ = {o, x1, . . . , xd}, and defines the speed of o to be zero. The

convexity Ep
∗(Kt) follows from (3.14).

Finally, we have to deal with the extremal situations only. The argument is based

on ideas in [CCG99]. Let us indicate it in the case when Ep
o(Kt) is a linear function of t,

which also settles the case when Ep
∗(Kt) is a linear function of t. If for some s, t ∈ [a, b],

s < t, Kt and Ks are not images of each other by any linear transformation, then there

exist τ + µ, τ − µ ∈ [s, t], µ > 0, and d-tuple {x1, . . . , xd} ⊂ K with the property that

{x1+τϕ(x1)v, . . . , xd+τϕ(xd)v} is linearly dependent, and {x1+(τ+µ)ϕ(x1)v, . . . , xd+

(τ +µ)ϕ(xd)v} is linearly independent. It follows for Ξ = {x1, . . . , xd, o} that Vd(Ξτ ) <

1
2(Vd(Ξτ−µ) + Vd(Ξτ+µ)), which in turn yields Ep

o(Kτ ) < 1
2(Ep

o(Kτ−µ) + Ep
o(Kτ+µ)) by

Theorem 3.8 and the continuity of ϕ.

When dealing with linear shadow systems, the following simple observation is very

useful. If p > 0, σ0, . . . , σd are parallel segments, and Φ is an affine transformation that
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acts by translation along any line parallel to the σi’s, thenZ
σ1

. . .
Z

σd

V ([o, z1, . . . , zd])p dz1 . . . dzd

=
Z
Φσ1

. . .
Z
Φσd

V ([Φo, Φz1, . . . ,Φzd])p dz1 . . . dzd, (3.16)

and Z
σ0

. . .
Z

σd

V ([z0, . . . , zd])p dz0 . . . dzd

=
Z
Φσ0

. . .
Z
Φσd

V ([Φz0, . . . , Φzd])p dz0 . . . dzd. (3.17)

All the known proofs of Theorem 3.2 use the fact that the moments to be estimated

are monotone decreasing with respect to Steiner symmetrisation. This is a consequence

Theorem 3.9, due to the following connection between Steiner symmetrals and shadow

systems. Let K be a convex body, and H a hyperplane. Consider the unique linear

shadow system Kt, t ∈ [−1, 1], such that K1 = K, and K−1 is the reflected image of

K through H. Then K0 is the Steiner symmetral KH of K with respect to H. Now,

Theorem 3.2 follows by using the well-known fact that V (K)
1
d Bd can be obtained as a

limit of a sequence of Steiner symmetrals starting from K.

The behaviour of Ep
d+1(K), Ep

o(K) and Ep
∗(K) under Steiner symmetrisation can

be computed easily using basic properties of determinants. Refining the proof, we will

be able to deduce the stability estimates. It goes as follows. Assume that we take the

Steiner symmetral of K with respect to H. Let x0, . . . , xd be an arbitrary set of points

of H, and consider the integral over those simplices whose vertices project to the points

(xi) in H. By (3.16) and (3.17), we may assume that the midpoints of the chords of K

through x0, . . . , xd−1 are located in H. Then the Steiner symmetrisation moves only

σ(xd), and the situation is easily handled.

For Lemmas 3.10 and 3.11, let x0, . . . , xd be contained in a hyperplane H in Rd in

a way such that no d of them are contained in any (d − 2)-plane, and let v be a unit

vector not parallel to H. In addition, let δ > 0, α0 > 0, and αi > 0 for i = 1, . . . , d. For

Lemma 3.10, to save space, we also use the (slightly obscure) convention that
R
J0

dt0 = 1

for J0 = {x0}.
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Lemma 3.10. Let p > 1, let 0 6 βi < αi for i = 1, . . . , d, and let β0 = α0, if α0 = 0,

and 0 6 β0 < α0 if α0 > 0. For Ji = [−αi,−βi] ∪ [βi, αi], 0 = 1, . . . , d, we have

ϕ(s) =
Z

Jd +s

Z
Jd−1

. . .
Z

J0

V ([x0 + t0v, . . . , xd + tdv])p dt0 . . . dtd

is convex, and ϕ(s) > ϕ(0).

Proof. For any fixed ti ∈ Ji, i = 0, . . . , d, the function

V ([x0 + t0v, . . . , xd−1 + td−1v, xd + (td + s)v])p

of s is convex because it is the pth power of the absolute value of a linear function.

Therefore ϕ(s) is convex as well. Since ϕ(s) is even, we have ϕ(s) > ϕ(0).

Naturally, Lemma 3.10 with βi = 0, i = 0, . . . , d, directly yields Theorem 3.9 for

Ep
d+1(K), Ep

o(K) and Ep
∗(K). Now we provide a stability version under a technical (but

necessary) side condition.

Lemma 3.11. Let p > 1 and δ ∈ (0, αd/2), and assume that if |ti| 6 αi for every

i = 0, . . . , d− 1, then

aff{x0 + t0v, . . . , xd−1 + td−1v} ∩ [xd − (αd − δ)v, xd + (αd − δ)v] 6= ∅. (3.18)

Then the following inequalities hold.

(i) In the case α0 = 0:Z αd+δ

−αd+δ

Z αd−1

−αd−1

. . .
Z α1

−α1

V ([x0, x1 + t1v, . . . , xd + tdv])p dt1 . . . dtd

−
Z αd

−αd

Z αd−1

−αd−1

. . .
Z α1

−α1

V ([x0, x1 + t1v, . . . , xd + tdv])p dt1 . . . dtd

> δ2 p2d−p−1

dp
α1 . . . αd−1α

p−1
d Vd−1(πv[x0, . . . , xd−1])p.

(ii) If α0 > 0, thenZ δ+αd

δ−αd

Z αd−1

−αd−1

. . .
Z α0

−α0

V ([x0 + t0v, . . . , xd + tdv]) dt0 . . . dtd

−
Z αd

−αd

Z αd−1

−αd−1

. . .
Z α0

−α0

V ([x0 + t0v, . . . , xd + tdv])p dt0 . . . dtd

> δ2 p2d−p

dp
α0 . . . αd−1α

p−1
d Vd−1(πv[x0, . . . , xd−1])p.
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Proof. We prove only (ii); obtaining (i) by the same method is straightforward. Due

to condition (3.18) and symmetry, and by using the notation

ω(t0, t1, . . . , td) =V ([x0 + t0v, . . . , xd−1 + td−1v, xd + tdv])p

+ V ([x0 − t0v, . . . , xd−1 − td−1v, xd + tdv])p,

the following holds:

2
Z αd+δ

−αd+δ

Z αd−1

−αd−1

. . .
Z α0

−α0

V ([x0 + t0v, . . . , xd + tdv])p dt0 . . . dtd

− 2
Z αd

−αd

Z αd−1

−αd−1

. . .
Z α0

−α0

V ([x0 + t0v, . . . , xd + tdv])p dt0 . . . dtd

=
Z αd

αd−δ
. . .
Z α0

−α0

ω(t0, . . . , td−1, td + δ)− ω(t0, . . . , td−1, td) dt0 . . . dtd.

For fixed ti ∈ [−αi, αi], i = 0, . . . , d − 1 and td ∈ [αd − δ, αd], let s ∈ [−αd + δ, αd − δ]

satisfy that x0 + t0v,. . . ,xd−1 + td−1v and xd + sv are contained in a hyperplane. It

follows that

ω(t0, . . . , td−1, td + δ)− ω(t0, . . . , td−1, td) =

Vd−1(πv[x0, . . . , xd−1])p

dp
×

[(td + δ + s)p + (td + δ − s)p − (td + s)p − (td − s)p].

We claim that

(td + δ + s)p + (td + δ − s)p − (td + s)p − (td − s)p > pδαp−1
d /2p−1. (3.19)

We may assume that s > 0, and hence s ∈ [0, td]. Let ψ(s) be the left hand side of

(3.19) as a function of s, then

ψ′(s) = p(td + δ + s)p−1 − p(td + δ − s)p−1 − [p(td + s)p−1 − p(td − s)p−1].

Since pτp−1 is convex, if p > 2, and concave, if 1 6 p < 2 for τ > 0, we deduce that

ψ′ is non-negative, hence ψ is increasing, if p > 2, and ψ′ is non-positive, hence ψ is

decreasing, if 1 6 p < 2. In particular, we may assume s = 0, if p > 2, and s = td, if

1 6 p < 2 in (3.19). Therefore the estimates td > αd/2 and (τ + δ)p − τp > pδτp−1 for

τ = td or τ = 2td yield (3.19). In turn we conclude Lemma 3.11.

44



3.4 Stability of the minimum inequalities

We are going to use Vinogradov’s À notation in the following sense: f À g or

g ¿ f for non-negative functions f and g iff there exists a constant c > 0 depending

only on d, for which f > cg holds. In addition, we write h = O(f) if |h| ¿ f .

We will say that a convex body K ⊂ Rd is in John position, if its unique inscribed

ellipsoid of maximal volume is Bd. We are going to use the following simple consequence

of Fritz John’s ellipsoid theorem (see [Joh48] and [Bal97]).

Proposition 3.12. Assume that the o-symmetric convex body K ⊂ Rd is in John

position. Then for any point p ∈ Sd−1, there is a contact point q between K and Bd,

for which 〈p, q〉 > 1/
√

d.

The statement is equivalent to the well-known fact that any point in K has norm

at most
√

d.

We will use the following notations. Let K be a convex body in Rd. Let H be a

hyperplane of Rd with normal v. Let ` be the line of direction v, and for any x ∈ H,

denote by σ(x) the secant K ∩ (x + `), and by M(x) the midpoint of σ(x). Moreover,

let m(x) be the signed distance of x and M(x), that is, m(x) = 〈M(x)− x, v〉.
Now, for Theorem 3.6. First, we deal with the case when K is o-symmetric and

its Banach-Mazur distance from Bd is sufficiently small. This is the core of the proof.

Lemma 3.13. For any d > 2, there exists ε0, γ̂ > 0, such that if K ⊂ Rd is an o-

symmetric convex body in John position, and the maximal norm of the points of K is

1 + ε with ε 6 ε0, then for any p > 1,

Ep
o(K)− Ep

o(B
d) > γ̂pε(d+3)/2, and

Ep
d+1(K)− Ep

d+1(B
d) > γ̂pε(d+3)/2.

Proof. Let r be a point of K of maximal norm. By Proposition 3.12, there is a contact

point q ∈ ∂K ∩ Sd−1 with 〈−r, q〉 > ‖r‖/
√

d. Let ` be the line passing through r, q

with direction vector v = (r− q)/‖r− q‖, let H = v⊥, and choose a coordinate system

such that the dth coordinate axis is parallel to `. Taking xd = πvr = πvq, a simple

calculation shows that

‖xd‖ <
1√
2
− 1

4
√

d
. (3.20)

45



For any x ∈ H ∩ Bd, let σ(x) = K ∩ (x + `) with midpoint M(x), and define m(x) =

〈(M(x)− x), v〉. Since Bd ⊂ K ⊂ (1 + ε)Bd, if ‖x‖ 6 0.9, then m(x) can be estimated

as

|m(x)| 6
È

(1 + ε)2 − ‖x‖2 −
È

1− ‖x‖2

2
=

ε(1 + O(ε))

2
È

1− ‖x‖2
. (3.21)

Note that for x = xd, equality holds in (3.21).

The estimating function is illustrated on Figure 3.1.

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5
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1.0

1.5

Figure 3.1: Estimating the deviation

The tangent from o to the graph of f(z) = 1/
√

1− z2 has its contact point at

z = 1/
√

2. Due to the convexity of f(z), estimates (3.20) and (3.21) imply that if we

choose the points x1, . . . , xd−1 of norm about 1/
√

2 with xd ∈ [o, x1, . . . , xd−1], then

M(xd) is separated from [o, M(x1), . . . , M(xd)] by cε, where c is a constant depending

on d only. This then yields a positive error Ep
o(K) in comparison with Ep

o(B
d). This

idea is transformed to a quantitative proof as follows.

First, we estimate the decay of m(x) around xd. By convexity, [Bd, r ] ⊂ K. Let

r̂ = Sd−1∩ [o , r ], and r̃ = Sd−1∩([q r ]\q). Estimate (3.20) yields that ‖r̂− r̃‖ 6 ε. For

s ∈ Sd−1, denote by T (s) be the tangent hyperplane to Sd−1 at s. It is easily obtained

that the intersection [Bd, r ] ∩ T (r̂) is a (d− 1)-dimensional ball of radius
È

ε/(2 + ε),

and thus, A = [Bd, r ]∩T (r̃) contains a ball of radius
È

ε/2.5 centred at r̃. Then, again

by (3.20), πv(A) contains a ball D of radius
√

ε/4 centred at xd. Since T (q) is a tangent

hyperplane of K, m(x) can be estimated over D linearly:

m

�
xd + t

√
ε

4
u

�
> (1− t)m(xd), ∀ u ∈ Sd−1, ∀ t ∈ [0, 1]. (3.22)

Next, we are going to estimate Ep
o(K)−Ep

o(B
d). Let x0 = o, and choose x1, . . . , xd−1

as follows. Take ỹ = xd/‖xd‖. If d = 2, then let x1 = ỹ/
√

2. If d > 3, then take

y = (1/
√

2−1/(100d))w̃, and let x1, . . . , xd−1 be of norm 1/
√

2−1/(500d), the vertices of
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a regular (d−2)-simplex in (y+y⊥)∩H with centroid y. Note that the distance between

any two of these is > 1/100
√

d. Let % = 1/(1000d) and define Xi = xi + %Bd−1 ⊂ H

for every i = 1, . . . , d− 1. Then Vd−1(Xi) À 1.

Note that by (3.20), there exists a neighbourhood U of xd of radius À √
ε in H

such that for any x′i ∈ Xi, i = 1, . . . , d − 1, we have U ⊂ [o, x′1, . . . , x′d−1]. For such a

collection of (x′i), and for any x′d ∈ U , define

D((x′i)) = D(x′1, . . . , x
′
d−1, x

′
d) = [o,M(x′1), . . . ,M(x′d−1)] ∩ σ(x′d),

and let d((x′i)) = 〈D((x′i)), v〉. Note that for any x′i ∈ Xi, 1 6 i 6 d− 1,

1√
2
− 3

500d
6 ‖x′i‖ 6 1√

2
− 1

500d
.

Thus, (3.21) yields that there exists a neighbourhood V ⊂ U of xd in H, still of area

À ε(d−1)/2, such that for any x′i ∈ Xi, i = 1, . . . , d− 1 and any x′d ∈ V , for sufficiently

small ε we have

d(x′1, . . . , x
′
d) 6 ‖xd‖ε

1− 1/(100d)
. (3.23)

Since
ε

2
È

1− ‖xd‖2
− ‖xd‖ε

1− 1/(100d)

as a function of ‖xd‖ is decreasing for ‖xd‖ < 1/
√

2, estimates (3.20), (3.21) and (3.23)

yield that for x′i ∈ Xi and x′d ∈ V ,

m(xd)− d(x′1, . . . , x
′
d) > ε

�
1√

2 + 1/(2
√

d)
− 1/

√
2− 1/(4

√
d)

1− 1/(100d)

�
> ε

20d
.

Let R =
√

2ε/(100d), and take Xd = V ∩(xd+RBd−1) ⊂ H. Then Vd−1(Xd) À ε(d−1)/2.

Moreover, since m(xd) < ε/
√

2, the above estimate and (3.22) yield that for x′i ∈ Xi,

i = 1, . . . , d,

m(x′d)− d((x′1, . . . , x
′
d)) > ε

100d
. (3.24)

Let now K ′ be the Steiner symmetral of K with respect to H. By Theorem 3.9, it

is sufficient to prove that Ep
o(K) − Ep

o(K
′) > γ̂pε(d+3)/2. We calculate the average

volume of random simplices by integrating along the d-tuples of chords of K parallel

to v. For x ∈ H, let σK(x) = σ(x) = K ∩ (x + `), and σK′(x) = K ′ ∩ (x + `). For
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x′1, . . . , x′d ∈ H ∩K, define

ω(x′1, . . . , x
′
d) =

Z
σK(x′1)

. . .
Z

σK(x′
d
)
V [o, y1, . . . , yd] dyd . . . dy1

−
Z

σK′ (x′1)
. . .
Z

σK′ (x′d)
V [o, y1, . . . , yd] dyd . . . dy1

Lemma 3.10 yields that for any (x′i)
d
1 ⊂ H ∩K, we have ω(x′1, . . . , x′d) > 0. Moreover,

by the construction of (Xi)d−1
1 , for any x′i ∈ Xi, we have Vd−1([o, x′1, . . . , x′d−1]) À 1.

Thus, by (3.24), Lemma 3.10, and part (i) of Lemma 3.11,

Ep
o(K)− Ep

o(K
′) >

Z
X1

. . .
Z

Xd

ω(x′1, . . . , x
′
d) dx′d . . . dx′1 > γp

1ε(d+3)/2

for some γ1 > 0 depending only on d.

Next, we estimate Ep
d+1(K) − Ep

d+1(K
′). We start as before. There are two cases

to be considered depending on ‖xd‖. First, assume that ‖xd‖ > 1/100 (we need only

‖xd‖ À 1). Then construct (Xi)d
1 as before. Choose R > 0 small enough such that the

following hold:

i) For any x′0 with ‖x′0‖ 6 R, and any x′i ∈ Xi, i = 1, . . . , d, we have x′d ∈
[x′0, . . . , x′d−1]

ii) For any x′0 with ‖x′0‖ 6 R and m(x′0) 6 0, and any x′i ∈ Xi, i = 1, . . . , d,

m(x′d)− 〈[M(x′0), . . . , M(x′d−1)] ∩ σ(x′d), v〉 À ε. (3.25)

Let X0 = {x ∈ H : |x| < R, m(x) 6 0}. By the symmetry of K, the measure of

X0 is at least half as large as that of RBd−1, thus, Vd−1(X0) À 1. Then, part (ii) of

Lemma 3.11 applies as before, yielding

Ep
d+1(K)− Ep

d+1(K
′) > γp

2ε(d+3)/2

for some γ2 > 0 depending only on d.

In the second case, xd is close to the origin: ‖xd‖ < 1/100. Let A be the annulus

{x ∈ H : 1/2 < ‖x‖ < 3/4}. For this instance, define the function d′ on Ad by

d′(x′0, . . . , x
′
d−1) = 〈([M(x′0), . . . , M(x′d−1)] ∩ σ(o)), v〉.
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Note that by symmetry, d′(−x′0, . . . ,−x′d−1) = −d′(x′0, . . . , x′d−1). Let C = 1/100, and

consider only those (x′i)
d−1
0 ⊂ A, for which |〈u, v〉| > C, where u is the normal vector

of [M(x′0), . . . , M(x′d−1))]. Then the (product) measure of these point sets is À 1;

moreover, at least half of them satisfies d′(x′0, . . . , x′d−1) 6 0. These also satisfy (3.25).

Thus, integrating over these sets, the argument works as before.

Remark. In the planar case, one can obtain the following quantitative result: If K

satisfies the conditions of Lemma 3.11, then for small ε > 0,

E1
o(K)− E1

o(B
2) >

ε5/2

400
.

From this, it also follows that if K is a centrally symmetric convex disc, and E1
o(K) 6

(1 + δ)E1
o(B

2), then there exists an ellipse E, for which E ⊂ K ⊂ (1 + 20δ2/5)E.

To obtain the estimate for not necessarily symmetric bodies, we cite the following

result of K. J. Böröczky, see Theorem 1.4 of [Bör].

Lemma 3.14. For any convex body K ⊂ Rd with δBM(K,Bd) > 1 + ε for some ε >

0, there exists an o-symmetric convex body C with axial rotational symmetry and a

constant γ > 0 depending only on d, such that δBM(C,Bd) > γε2, and C results from

K as a limit of subsequent Steiner symmetrisations and affine transformations.

Now, we are ready to prove the general result.

Proof of Theorem 3.6. Let δBM(K,Bd) = 1 + δ. By Lemma 3.14, we may assume

that K is an o-symmetric convex body in John position, provided we prove

Ep
o(K) > (1 + γpδ

d+3
2 )Ep

o(B
d), and (3.26)

Ep
d+1(K) > (1 + γpδ

d+3
2 )Ep

d+1(B
d) (3.27)

for γ > 0 depending only on d. Let the maximal norm of points of K be 1 + ε. Since

the volume of K \Bd is À ε(d+1)/2, it follows that

γ0ε
d+1
2 6 δ 6 ε (3.28)

for γ0 > 0 depending only on d.

Let ε0 and γ̂ come from Lemma 3.13. If δ 6 δ0 = γ0ε
d+1
2

0 then ε 6 ε0 by (3.28),

and hence we have (3.26) and (3.27) with γ = γ̂ by Lemma 3.13 and (3.28).
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Therefore we may assume that δ > δ0. Choose a sequence of Steiner symmetrals

K0,K1,K2, . . . starting with K = K0 that converge to Bd, and hence there exists Kn

such that δBM (Kn+1) 6 δ0 < δBM (Kn). Let Lt : t ∈ [−1, 1] be the linear shadow

system with L1 = Kn and L0 = Kn+1 corresponding to the Steiner symmetrisation of

Kn (see Section 3.3), thus there exists t ∈ [0, 1) such that δBM (Lt) = δ0. It follows that

Ep
∗(Lt) 6 Ep

∗(Kn) 6 Ep
∗(K) and Ep

d+1(Lt) 6 Ep
d+1(Kn) 6 Ep

d+1(K), thus we conclude

(3.26) and (3.27) by the previous case and δ <
√

d.

We made no attempt to find the best possible constants. However, the estimate

ε(d+3)/2 for centrally symmetric K is close to the truth: if K = [r,−r,Bd], where r is

of norm 1 + ε, then
Ep

o(K)
Ep

o(Bd)
− 1 ¿ ε(d+1)/2.

3.5 Stability of the maximum inequalities in the plane

Since here we work only on the plane, a convex disc means a planar convex body,

and A(K) = V2(K) is the area of K. For a polygon Π with at least four vertices

q1, . . . , qk in this order, a basic linear shadow system at q1, basic system for short, is

defined as follows. Let q′1 and q′′1 be points different from q1 such that q1 ∈ [q′1, q′′1 ],

q′1 − q′′1 is parallel to q2 − qk, and q2, . . . , qk lie on the boundary of Π′ = [q′1, q2, . . . , qk]

and Π′′ = [q′′1 , q2, . . . , qk]. The corresponding basic system is the unique linear shadow

system Πt, t ∈ [−β, α], such that α, β > 0, α+β = 1, Π−β = Π′′, Π0 = Π, and Πα = Π′.

In this case, the generating vector is parallel to q2 − qk, and the speed of any point in

[q2, . . . , qk] is zero. It follows from Theorem 3.9 that for any n > 3 and p > 1,

Ep(Π) < max{Ep(Π′),Ep(Π′′)}, (3.29)

where Ep(Π) stands either for Ep
o(Π) or Ep

n(Π). More precisely, the following holds:

Ep(Π−t) on [0, β], or Ep(Πt) on [0, α], is strictly increasing. (3.30)

For a convex disc K, let TK be a triangle of maximal area contained in K. It

follows that the triangle, the midpoints of whose sides are the vertices of TK , contains

K. In particular, A(K) < 4A(TK).

First, we reduce the case to polygons with at most 6 vertices.
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Proposition 3.15. For a convex disc K, let ÜT be the triangle, the midpoints of whose

sides are the vertices of TK . For n > 3 and p > 1, there exist polygons Π1 and Π2 with

A(Π1) = A(Π2) = A(K) such that TK ⊂ Π1, Π2, all vertices of Π1, Π2 are on ∂ÜT , and

Ep
n(K) 6 Ep

n(Π1) and Ep
∗(K) 6 Ep

∗(Π2).

Proof. We may assume that K is not a triangle, and by continuity, that K is a

polygon. However, for k > 4, suitable basic systems and (3.29) yield that among

polygons P of at most k vertices with fixed area such that TK ⊂ P ⊂ ÜT , any polygon

maximising either Ep
n(P ) or Ep

∗(P ) has all of its vertices in ∂ÜT .

The core lemma comes.

Lemma 3.16. There exist positive absolute constants ε0, ĉ such that if p > 1, and

A(K) = (1 + ε)A(TK) for a convex disc K and ε ∈ (0, ε0], then

Ep
3(K) 6 (1− ĉpε2)Ep

3(T
2) and Ep

∗(K) 6 (1− ĉpε2)Ep
∗(T

2).

Proof. We first consider Ep
∗(K). Let TK = [p1, p2, p3], and let q1, q2, q3 be the such

that pi is the midpoint of [qj , qk], {i, j, k} = {1, 2, 3}. We may assume that each side

of TK is of length one, and γ(TK) = o.

Let Π be the polygon provided by Claim 3.15, and let x be the farthest vertex of

Π from TK . We may assume that x ∈ [p1, q2]. It follows that A([x, p1, p3]) is between

εA(TK)/6 and εA(TK), and hence

ε/6 6 ‖x− p1‖ 6 ε. (3.31)

Let us number the vertices of Π in such a way that x = x3, its neighbouring vertices

are x2 ∈ [p1, q3] and x4 ∈ [p3, q2], and the other neighbours of x2 and x4 are x1 ∈ [p2, q3]

and x5, respectively; see Figure 3.2. Here possibly x5 = x1, and either x5 ∈ [p3, q1],

or x5 ∈ [p2, q1]. The definition of x = x3 yields that for any i = 1, 2, 4, 5 there exists

j ∈ {1, 2, 3} such that

‖xi − pj‖ 6 ‖x− p1‖. (3.32)

To deform Π, let l be the line parallel to x2−x4 passing through x, and let x′ and

x′′ be the intersections of l with aff{x2, x1} and aff{x4, x5}, respectively. We consider

the basic system Πt, t ∈ [−β, α], α, β > 0, α + β = 1, where Π0 = Π, x′ is a vertex
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of Πα, and x′′ is a vertex of Π−β. We write ϕ(z) to denote the speed of a z ∈ Π, and

observe that the generating vector is v = x2−x4
‖x2−x4‖ .

K

TKx2

p1

x3

p2
q3 q1

q2

x1 x5

p3 = x4

lx′

x′′

Figure 3.2: Modifying convex discs

It follows by (3.15) that γ(Π) = β γ(Πα) + α γ(Π−β). Thus for any z1, z2 ∈ Π,

Theorem 3.8 yields

A([γ(Π), z1, z2])p 6 βA([γ(Πα), z1 + αϕ(z1)v, z2 + αϕ(z2)v])p

+ αA([γ(Π−β), z1 − βϕ(z1)v, z2 − βϕ(z2)v])p. (3.33)

In order to obtain a stability statement, we improve on (3.33). As a first step, we

localise γ(Πt). The centroid γ(Π) has the property that −1/3 (Π− γ(Π)) ⊂ Π− γ(Π).

It follows by (3.31) and (3.32) that

γ(Π) ∈ 2εTK . (3.34)

We note that by (3.32), |ϕ(z)| 6 1.1 for z ∈ Π, and ϕ(z) = 0 if z is separated from

x = x3 by the diagonal [x2, x4]. Thus (3.15) yields

γ(Πt) = γ(Π) + tωv, for ω ∈ (0, 2ε) independent of t. (3.35)

As [p1, p3] is close to l (any z ∈ [p1, p2] is of distance at most 3ε from l) and [p1, p2]

is close to [x2, x1], we may choose ε0 small enough to ensure ε/12 6 ‖x − x′‖ 6 2ε.
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In addition, [x4, x5] is either contained in [q2, q1], or it is close to [p3, p2], therefore

2/3 6 ‖x− x′′‖ 6 3/2. We deduce

ε/24 6 α 6 4ε. (3.36)

We may assume that R = v⊥, oriented in a way such that πvp3 > 0. We observe

that
1

2
√

3
− ε < πvp3 6 1

2
√

3
6 πvp1 < πvx3 − ε

12
.

For y ∈ πvintΠ and t ∈ [−β, α], we write σt(y) to denote the chord of Πt parallel to

v and projecting into y, and mt(y) to denote the midpoint of σt(y). In particular,

σt(y) = σ0(y) if y 6 πvx2. If ε0 is small enough then for any s ∈ (0, 1
8),

|〈v,m(πvp3 − s)〉| 6 2s and V1(σ(y)) >
√

3
2 .

We consider the intervals

I1 = [πvp3 − 1
16 , πvp3 − 1

32 ] and I2 = [ 1
16πvp1 + 15

16πvx3,
1
32πvp1 + 31

32πvx3],

and hence (3.31) yields

V1(I1) = 1
32 and V1(I2) > ε

12·64 . (3.37)

In addition, σt(y) = σ0(y) if y ∈ I1 and t ∈ [−β, α]. To ensure the condition (3.18) in

Lemma 3.11, for y ∈ I1, we restrict our attention to

σ∗t (y) = 1
8(σt(y)−mt(y)) + mt(y).

Our main claim is that there exists an absolute constant c1 > 0, such that for any

y1 ∈ I1 and y2 ∈ I2, the integral

f(t) =
Z

σ∗t (y1)

Z
σt(y2)

A([γ(Πt), z1, z2])p dz1dz2

satisfies

αf(−β) + βf(α) > f(0) + cp
1ε. (3.38)
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It follows by (3.34) and (3.35) that if ε0 is small enough, then there exists a τ ∈
(1
4 , 3

4), such that γ(Π−τ ), m−τ (y1) and m−τ (y2) are collinear. Writing ωt to denote the

intersection point of aff{γ(Πt),mt(y1)} and affσt(y2), the function 〈v, ωt−mt(y2)〉 of t

is linear, zero at −τ , and satisfies

〈v, ωα −mα(y2)〉 > 1
8 and 〈v, ω−β −m−β(y2)〉 6 −1

8 .

We deduce by Lemma 3.10 and (3.16) that f(t) is convex, and has its minimum at −τ .

Thus Lemma 3.11 yields

f(α), f(−β) > f(−τ) + cp
2 for an absolute constant c2 > 0.

It follows by β = 1− α and (3.36) that

αf(−β) + βf(α)− f(0) > αf(−β) + βf(α)− α
α+τ f(−τ)− τ

α+τ f(α)

= αf(−β) + α · 1−α−τ
α+τ f(α)− α

α+τ f(−τ)

> α
α+τ · cp

2 > cp
2

24 · ε.

Therefore we have verified (3.38). In turn combining this with (3.33) and (3.37) proves

for a suitable absolute constant c3 > 0, that

Ep
∗(Π) + cp

3ε
2 6 βEp

∗(Πα) + αEp
∗(Π−β) 6 max{Ep

∗(Πα),Ep
∗(Π−β)}.

Applying subsequent basic systems to the one of Πα and Π−β with larger Ep
∗(·), we

conclude

Ep
∗(K) + cp

3ε
2 6 Ep

∗(Π) + cp
3ε

2 6 Ep
∗(T

2).

Turning to Ep
3(K), the major difference of the argument is that we need a third

interval for the third vertex of the triangle. Writing I1 = [a, b], we define eI2 = I2, andeI0 = a + 1
10(I1 − a) and eI1 = b + 1

10(I1 − b).

In addition, we shorten σ∗t (y) for y ∈ I1 to

σ̃t(y) = 1
80(σt(y)−mt(y)) + mt(y).
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We change our main claim (3.38) to the following. There exists an absolute constant

c4 > 0, such that for any y0 ∈ eI0, y1 ∈ eI1 and y2 ∈ eI2, the integral

f̃(t) =
Z

σ̃t(y0)

Z
σ̃t(y1)

Z
σt(y2)

A([z0, z1, z2])p dz0dz1dz2

satisfies

αf̃(−β) + βf̃(α) > f̃(0) + cp
4ε. (3.39)

Now the proof of Lemma 3.16 can be completed along the argument above by intro-

ducing the obvious alterations.

Corollary 3.17. There exists a positive absolute constant c̃ such that if p > 1, and

A(K) = (1 + ε)A(TK) for a convex disc K, then

Ep
3(K) 6 (1− c̃pε2)Ep

3(T
2) and Ep

∗(K) 6 (1− c̃pε2)Ep
∗(T

2).

Proof. We present the argument only for Ep
3(K). Let ĉ and ε0 come from Lemma 3.16.

We may assume that K is an m-gon for m > 4 by continuity, and that A(K) >

(1 + ε0)A(TK) by Lemma 3.16. It follows by (3.30), that there exist m− 3 consecutive

basic systems that induce a continuous deformation of K into a triangle in a way

such that Ep
3(·) is strictly increasing during the deformation. Therefore there exists a

polygon K ′ such that Ep
3(K

′) > Ep
3(K), and A(K ′) = (1 + ε0)A(TK′). Now we apply

Lemma 3.16 to K ′, and using ε < 3, we deduce

Ep
3(K) < Ep

3(K
′) 6 (1− ĉpε2

0)E
p
3(T

2) < (1− ĉpε2
0

9 · ε2)Ep
3(T

2).

Having Corollary 3.17, Theorem 3.7 is a consequence of the following.

Lemma 3.18. If δBM (K, T 2) = 1 + δ for a convex disc K, then

(1 + δ)A(TK) 6 A(K) < (1 + δ)2A(TK).

Proof. The upper bound is consequence of the fact that by the definition of the

Banach-Mazur distance, there exists a triangle T ′ ⊂ K, and x ∈ T ′, such that K ⊂
(1 + δ)(T ′ − x) + x. For the lower bound, we may assume that TK is a regular triangle

of edge length one. Let p1, p2, p3 be the vertices of TK , and let q1, q2, q3 be the such

that pi is the midpoint of [qj , qk], {i, j, k} = {1, 2, 3}. If {i, j, k} = {1, 2, 3}, then let ti
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be the maximal distance of points of K ∩ [qi, pj , pk] from [pj , pk]. On the one hand,

A(K) > A(TK) + (t1 + t2 + t3)/2 = (1 + 2√
3
(t1 + t2 + t3))A(TK).

On the other hand, K is contained in a regular triangle, that is similarly situated to

TK , and whose height is
√

3
2 + t1 + t2 + t3. It follows that

1 + δ 6 (
√

3
2 + t1 + t2 + t3)/

√
3

2 = 1 + 2√
3
(t1 + t2 + t3) 6 A(K)/A(TK).

That the exponent 2 in the error term δ2 is optimal is shown by the example of

the closure of T\δT , where T is a triangle such that o is a vertex.

3.6 Stability of Petty projection inequality

Theorem 3.2 readily implies the stability version of the Busemann-Petty centroid

inequality (3.5), using (3.4). Here we also derive the stability version of Petty’s projec-

tion inequality (cf. [Lut93]). Given a convex body K, its projection body ΠK is defined

by its support function

hΠK(u) = Vd−1(pu(K)).

The Petty projection inequality states that the quantity

Vd(K)d−1Vd(Π∗(K))

is maximised for ellipsoids. Citing formula (5.7) of [Lut93] and using (3.4), we arrive

to that if Vd(K) = 1, then

1
Vd(K)d−1Vd(Π∗K)

>
�

d + 1
2

�d Vd(Γ(Π∗K))
Vd(Π∗K)

= (d + 1)dE1
o(Π

∗K). (3.40)

Let δBM (K,Bd) = 1 + δ. Bourgain and Lindenstrauss [BL88] proved that there exists

a constant C depending on d, so that

δBM (ΠK, Bd) > 1 + Cδ(d2+5d)/2.
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Referring to δBM (ΠK, Bd) = δBM (Π∗K, Bd), Theorem 3.2 implies that there exists a

constant c depending on d only, so that

E1
o(Π

∗K) > (1 + C ′δd(d+3)(d+5)/2)E1
o(B

d).

Thus, from (3.40) we obtain that

Vd(K)d−1Vd(Π∗K) 6 (1 + cδd(d+3)(d+5)/2)−1Vd(Bd)d−1Vd(Π∗Bd).

We note that the stability version of the Busemann intersection inequality (3.3)

would also follow by verifying a statement of the following type. If K is a convex body

in Rd, and δBM (K,Bd) = 1 + δ for some δ > 0, then there exist ν, η > 0 (depending on

δ) so that δBM (K∩u⊥, Bd−1) > 1+η for a set of directions u of measure at least ν. The

enthusiast would believe in such a statement with an absolute constant ν and η = δq

for some q > 0.
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Summary

The dissertation investigates three different problems, which are connected via

the underlying, intuitive geometric motivation. The results are obtained by using ge-

ometric, combinatorial and analytic tools. We note that all the topics discussed here

originate from the first half of the 20th century, hence they are well embedded in the re-

search field of discrete and convex geometry. The dissertation is based on the following

three publications of the author.

• G. Ambrus, A. Bezdek, F. Fodor, A Helly-type transversal theorem for n-dimen-

sional unit balls, Archiv der Mathematik 86 (2006), no. 5, 470–480.

• G. Ambrus, F. Fodor, A new lower bound on the surface area of a Voronoi poly-

hedron, Periodica Mathematica Hungarica 53 (2006), no. 1-2., 45–58.

• G. Ambrus, K. J. Böröczky, Stability results for the volume of random simplices.

Submitted to American Journal of Mathematics. pp. 1–26.

Transversals of unit balls

Chapter 1 deals with the following question. Let F be a family of sets in Rd. We

say that a line ` is a transversal to F , if it intersects every member of F . If F has a

transversal, then it is said to have property T . If every k or fewer members of F have

a transversal, then F has property T (k).

The question is the following: how can we guarantee that property T holds? In

particular, we would like to derive the validity of T from T (k) with some k. Such a

setting is familiar from Helly’s classical theorem, which states that if every at most

d + 1 members of a finite family of convex sets in Rd has a common point, then all the

sets in the family intersect in a common point. Thus, such a transversal theorem can

be understood as a generalisation of Helly’s theorem.

It turns out that the above goal is too optimistic, if one considers all families of

convex bodies: there exists no such general result. Even for families that consist of

pairwise disjoint translates of an arbitrary convex body in R3, no such result exists, as

was shown by Holmsen and Matoušek [HM04].
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Our work considers the case when F consists of unit balls in Rd. We are typically

interested in large d’s. The first related result by Hadwiger [Had56] states that for any

family of thinly distributed balls in Rd, the property T (d2) implies T , where a family

of balls is thinly distributed if the distance between the centers of any two balls is at

least twice the the sum of their radii. Prior to our result, in [HKL03] and [CGH05] it

was proved that or any family of pairwise disjoint unit balls in R3, T (11) implies T .

We impose a condition on the pairwise distances of the centres, which is weaker

than Hadwiger’s condition, but stronger than disjointness. This will be referred as the

distance condition.

Theorem 1.1. Let d > 2, and F be a family of unit balls in Rd with the property

that the mutual distances of the centres are at least 2
È

2 +
√

2 . If every at most d2

members of F have a common line transversal, then all members do.

The methods used to prove Theorem 1.1 have been pushed further since the pub-

lication of [ABF06]. After a series of results, Cheong, Goaoc, Holmsen and Petitjean

[CGHP08] proved that for any system of disjoint unit balls in Rd, T (4d− 1) implies T .

The proof of Theorem 1.1 is based on the following statement. Let B1, . . . , Bm be

disjoint unit balls in Rd. Consider the set of all directed lines intersecting B1, . . . , Bm in

this order, and denote the set of unit direction vectors of these lines by K(B1, . . . , Bm).

Theorem 1.2. Let Fd = {B1, . . . , Bm} be a family of unit balls satisfying the distance

condition. Then K(B1, . . . , Bm) is strictly spherically convex.

The crucial advantage of Theorem 1.2 is that it reduces the original problem to a

3-dimensional one, which can be attacked by standard analytical tools.

After establishing the convexity of the cone of transversal directions, in Section 1.3

we prove that if a family Fd of unit balls satisfying the distance condition has a transver-

sal, then all the transversals of Fd intersect the unit balls in the same order (or its

reverse). This ordering is called a geometric permutation of Fd. Thus, the distance

condition implies that there is at most one geometric permutation of Fd.

Finally, in Section 1.4, we prove Theorem 1.1 by using the previous results and

invoking the strong version of the Spherical Helly Theorem.
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A new bound for the Strong Dodecahedral Conjecture

The contents of Chapter 2 are to give an improvement on the lower bound on the

surface area of a Voronoi cell in a unit ball packing.

A family B of unit balls in R3 forms a packing if no two members of B have a com-

mon interior point. We are mostly interested in how dense a packing of unit balls may

be, where the density of a packing is the proportion of the space covered by the balls.

We define this as the limit of the proportion of the volume of the covered part of a ball,

where the centre of the ball is fixed and its radius tends to infinity. According Kepler’s

Conjecture [Kep66], the packing density of unit balls in R3 is π/
√

18 ≈ 0.74078 . . . ,

which is attained by a lattice packing. Among lattice packings, this is indeed the best

possible, as was shown by Gauss [Gau40]. The general result was proved recently by

Hales [Hal05].

In a ball packing, the Voronoi cell of a ball B ∈ B is the set of points x ∈ R3

with the property that x is closer to the centre of B than to any other centre in B.

It is well known that Voronoi cells are convex polyhedra, and we may in fact assume

that they are polytopes. The Dodecahedral Conjecture, formulated by L. Fejes Tóth

[FT43] in 1943, states that the minimal volume of a Voronoi cell in a 3-dimensional

unit ball packing is at least as large as the volume of a regular dodecahedron of inradius

1. This problem has been recently settled in the affirmative by Hales and McLaughlin

[HM]. K. Bezdek [Bez00] phrased the following generalised version of the Dodecahedral

Conjecture in 2000.

Conjecture 2.1 (Strong Dodecahedral Conjecture). The minimum surface area of

a Voronoi cell in a unit ball packing in R3 is at least as large as the surface area of the

regular dodecahedron circumscribed about the unit ball, that is 16.6508 . . ..

In Chapter 2, we prove the following statement.

Theorem 2.2. The surface area of a Voronoi cell in a unit ball packing in R3 is at

least 16.1977 . . ..

This is currently the best estimate related to the problem. Prior to our result, the

strongest bound was given by K. Bezdek and E. Daróczy-Kiss [BDK05], who, based on

Muder’s ideas ([Mud88] and [Mud93]), established the lower bound 16.1445 . . . . Our

improvement follows these lines as well.
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In the proof, the cones suspended by the faces of the Voronoi cell are replaced

with cones of special types in such a way, that the surface to solid angle ratio does

not increase. The obtained configurations belong to a restricted class, in which the

minimiser of the surface area is found by standard analytic methods.

In Section 2.2, the replacement steps are established. The cones used for replace-

ments are the following. A right circular cone (RCC) is a cone whose base is a circular

disk and its apex lies on the line perpendicular to the disk passing through its center. A

shaved circle is the intersection of a disk and a convex polygon that contains the center

of the disk. A shaved right circular cone (SRCC) is a cone whose base is a shaved

circle and its apex lies on the line perpendicular to the disk and passing through its

center. The desired replacements with RCC’s or SRCC’s are achieved via a series of

basic replacement steps. Then, in Section 2.3, the surface to solid angle ratio of these

special cones are further approximated.

Finally, in Section 2.4, the optimal configuration is determined using the previous

approximations by a quite strenuous calculation. The minimal configuration has 13

identical faces and one face of a smaller solid angle. However, these faces cannot be

joined to form a polytope, which accounts for the error between our estimate and the

conjectured extremal value.

Stability results for the volume of random simplices

The following question serves as the motivation for Chapter 3. Given a convex

body K in Rd, what is the expected value of the volume of a random simplex in K?

We work with two (or, rather, three) models: in the first, all the vertices of the simplex

are chosen uniformly and independently from K, while in the second, one vertex is at a

fixed position – in a special case, this is γ(K), the centroid of K. We are interested in

other moments as well, and also, we would like the answer to be invariant under affine

transformations.

Definition 3.1. Let K be a convex body in Rd. For any n > d + 1 and p > 0, let

Ep
n(K) = V (K)−n−p

Z
K

. . .
Z

K
V ([x1, . . . , xn])p dx1 . . . dxn.
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Further, for a fixed x ∈ Rd, let

Ep
x(K) = V (K)−d−p

Z
K

. . .
Z

K
V ([x, x1, . . . , xd])p dx1 . . . dxd.

Specifically, we write Ep
∗(K) for Ep

x(K), when x = γ(K).

These quantities have many connections to other concepts; for example, Sylvester’s

problem, the volume of centroid bodies and intersection bodies, the volume of Legen-

dre’s ellipsoid, Busemann’s random simplex inequality, the Busemann-Petty centroid

inequality, and so on. These links are elucidated in Section 3.1.

One is mostly interested in the the minimisers and maximisers of the above expec-

tations among convex bodies. The search of these dates back to the early 20th century,

see Blaschke ([Bla17] and [Bla23]). The minimisers are known in full generality.

Theorem 3.2. (Blaschke [Bla23], Busemann [Bus53], Groemer[Gro74]) For any con-

vex body K in Rd, for any p > 1, and for any n > d + 1, we have

Ep
o(K) > Ep

o(B
d) and Ep

∗(K) > Ep
∗(Bd) and Ep

n(K) > Ep
n(Bd).

Here Ep
o(K) = Ep

o(B
d) if and only if K is an o-symmetric ellipsoid, and Ep

∗(K) =

Ep
∗(Bd) or Ep

n(K) = Ep
n(Bd) if and only if K is an ellipsoid.

As for the maximisers, the Simplex conjecture states that for any convex body K

in Rd, and for any p > 1 and n > d + 1, Ep
∗(K) 6 Ep

∗(T d) and Ep
n(K) 6 Ep

n(T d), with

equality if and only if K is a simplex. This is verified only in the plane.

Theorem 3.4. ([Bla17],[DL91],[Gia92],[CCG99]) If K ⊂ R2 is a convex disc, then

for any n > 3 and p > 1, Ep
n(K) 6 Ep

n(T 2) and Ep
∗(K) 6 Ep

∗(T 2), with equality if and

only if K is a triangle.

The importance of the Simplex conjecture stems from the fact that the affirmative

answer to it would imply the Slicing conjecture.

In Chapter 3 of the dissertation, we provide the corresponding stability estimates

for Theorems 3.2 and 3.4. The results are formulated with the use of the Banach-Mazur

distance δBM(K, M) of the convex bodies K and M , which is defined by δBM(K,M) =

min{λ > 1 : K − x ⊂ Φ(M − y) ⊂ λ(K − x)}, where Φ ∈ GLd and x, y ∈ Rd. Our

results are as follows.
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Theorem 3.6. If K is a convex body in Rd with δBM(K,Bd) = 1 + δ for δ > 0, then

for any p > 1,

Ep
∗(K) > (1 + γpδd+3)Ep

o(B
d)

Ep
d+1(K) > (1 + γpδd+3)Ep

d+1(B
d),

where the constant γ > 0 depends on d only. Moreover, if K is centrally symmetric,

then the error terms can be replaced by γpδ(d+3)/2.

Theorem 3.7. If K is a planar convex body with δBM(K,T 2) = 1 + δ for some δ > 0,

and p > 1, then

Ep
∗(K) 6 (1− cpδ2)Ep

∗(T
2)

Ep
3(K) 6 (1− cpδ2)Ep

3(T
2),

where c is a positive absolute constant. This estimate is asymptotically sharp as δ tends

to zero.

For the proof of Theorem 3.6, we first assume that K is a symmetric convex body

in John’s position, i.e. the unique ellipsoid of maximal volume inscribed in K is the

unit ball. The core lemma estimates the change of the expectation when applying

one step of Steiner symmetrisation in a suitable changed direction. The general result

is then obtained by invoking a recent result of Böröczky [Bör], which estimates the

Banach-Mazur distance between a convex body K and a symmetric convex body which

is obtained by the limit of Steiner symmetrisations from K. We note that the bound of

Theorem 3.6 is almost asymptotically sharp in terms of δ: there is an example, where

the error is of order ε(d+1)/2.

The stability version of the maximum inequality, Theorem 3.7 in the plane is

obtained by the method of linear shadow systems, that were introduced by Campi,

Colesanti and Gronchi [CCG99]. We assume that the triangle inscribed in K of maximal

area is an equilateral triangle. With the aid of basic linear shadow systems, first we

reduce the problem to polygons with at most 6 vertices. These polygons are then

further modified in order to obtain the desired inequality.

To conclude the chapter, in Section 3.6 we derive the stability version of the Petty

projection inequality from Theorem 3.2.
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Összefoglalás

A disszertációban három problémát vizsgálunk, melyek főleg a megoldásukat in-

spiráló geometriai intúıción keresztül kapcsolódnak. Bizonýıtásaink geometriai, kombi-

natorikus és analitikus eszközöket használnak. Megjegyezzük, hogy a vizsgált területek

gyökerei a 20. század első felébe nyúlnak vissza, s ı́gy a kutatott kérdések számos szállal

kapcsolódnak a diszkrét és konvex geometria különböző területeihez.

Az értekezés az alábbi három publikáción alapszik:

• G. Ambrus, A. Bezdek, F. Fodor, A Helly-type transversal theorem for n-dimen-

sional unit balls, Archiv der Mathematik 86 (2006), no. 5, 470–480.

• G. Ambrus, F. Fodor, A new lower bound on the surface area of a Voronoi poly-

hedron, Periodica Mathematica Hungarica 53 (2006), no. 1-2., 45–58.

• G. Ambrus, K. J. Böröczky, Stability results for the volume of random simplices.

Publikálásra benyújtva, American Journal of Mathematics. pp. 1–26.

Egységgömbök transzverzálisai

Az 1. Fejezetben a következő kérdéskörrel foglalkozunk. Legyen F Rd-beli halma-

zok egy rendszere. Az ` az F rendszer transzverzálisa, ha minden benne levő halmazt

metsz. Az F rendszerre teljesül a T tulajdonság, ha van transzverzálisa, és teljesül rá a

T (k) tulajdonság, ha bármely legfeljebb k elemének van transzverzálisa (itt k > 1 egész

szám).

Az alapkérdés a következő: hogyan tudjuk garantálni a T tulajdonság teljesülését?

Speciálisan, szeretnénk belátni, hogy ha F-re teljesül T (k) (valamely k-ra), akkor van

transzverzálisa is. Ez a felállás ismerős a klasszikus Helly-tételből, mely szerint ha az

Rd-beli konvex halmazok egy véges rendszerének bármely legfeljebb d+1 tagja metsző,

akkor a rendszer összes tagjának van közös pontja. Tehát a fenti t́ıpusú transzverzális

eredmények a “0-dimenziós” Helly-tétel “1-dimenziós” általánośıtásának is tekinthetők.

Az, hogy minden további megszoŕıtás nélkül bizonýıtsunk a fenti sémának megfelelő

transzverzális eredményt, túl optimista cél. Holmsen és Matoušek eredménye [HM04]
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mutatja, hogy még olyan tétel sem adható, mely az összes olyan rendszerre igaz, ami

egy R3-beli konvex test páronként diszjunkt eltoltjaiból áll.

Az általunk vizsgált szituációban F az Rd-beli egységgömbök egy rendszere, ahol d

tetszőleges pozit́ıv egész. Az első kapcsolódó eredmény Hadwigerhez köthető [Had56],

aki belátta, hogy T (d2)-ből következik T bármely Rd-beli gömbök ritkán elosztott rend-

szerére: itt bármely két gömb középpontjának távolsága legalább 2-szer akkora, mint

sugaraik összege. Egy másik vonatkozó eredmény szerint, ld. [HKL03] és [CGH05],

T (11)-ből következik T tetszőleges R3-beli diszjunkt egységgömbökből álló rendszerre.

Az általunk használt feltétel erősebb, mint a diszjunktság, de gyengébb a Hadwiger-

féle kritériumánál; a továbbiakban csak távolságfeltételként fogunk rá hivatkozni.

1.1. Tétel. Legyen d > 2, és F Rd-beli egységgömbök egy rendszere, melyekre

teljesül, hogy bármely kettő középpontjának a távolsága legalább 2
È

2 +
√

2 . Ha F
bármely legfeljebb d2 elemének létezik közös transzverzálisa, akkor az összes gömbnek is

létezik transzverzális egyenese.

Az [ABF06] cikk publikálása óta tovább folyt a kutatás a témában. Ennek eredmé-

nyeképp, Cheong, Goaoc, Holmsen és Petitjean [CGHP08] az itt alkalmazottakhoz ha-

sonló módszerekkel bebizonýıtotta, hogy tetszőleges, diszjunkt, Rd-beli egységgömbök

rendszerére T (4d− 1) implikálja T -t.

Az 1.1. Tétel bizonýıtása a következő álĺıtáson alapszik. Legyenek B1, . . . , Bm disz-

junkt Rd-beli egységgömbök. Vegyük azon iránýıtott egyeneseket, melyek a B1, . . . , Bm

gömböket az indexüknek megfelelő sorrendben metszik, és jelölje K(B1, . . . , Bm) ezen

egyenesek (egység hosszú) irányvektorainak halmazát.

1.2. Tétel. Legyen Fd = {B1, . . . , Bm} egységgömbök egy olyan rendszere, mely

teljeśıti a távolságfeltételt. Ekkor K(B1, . . . , Bm) gömbi konvex halmaz.

Így a problémát egy 3-dimenziós kérdésre redukáljuk, amely hatékonyan kezelhető

analitikus módszerekkel. Ezután bebizonýıtjuk, hogy ha az egységgömbökből álló Fd

rendszer teljeśıti a távolságfeltételt valamint létezik transzverzálisa, akkor bármely tran-

szverzálisa ugyanabban a sorrendben (vagy a ford́ıtottjában) metszi a gömböket. Ilyen

indukált rendezést az Fd rendszer egy geometriai permutációjának nevezünk. Tehát

a távolságfeltételből következik, hogy Fd-nek legfeljebb egy geometriai permutációja

létezik. Végül, az 1.1. Tételt a fenti eredmények és a gömbi Helly-tétel seǵıtségével

igazoljuk.
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Alsó korlát az Erős Dodekahedrális Sejtésre

A 2. Fejezetben az egységgömb-pakolások Voronoi celláinak minimális felsźınmér-

tékére vonatkozó alsó korlátot jav́ıtjuk.

Az R3-beli egységgömbök egy B rendszerét pakolásnak nevezzük, ha semelyik két

gömbnek nincs közös belső pontja. A legfontosabb kapcsolódó kérdés, hogy mennyire

lehet sűrű egy gömbpakolás, ahol a sűrűség alatt a lefedett tér arányát érjtük: egy

rögźıtett középpontú gömb sugarát a végtelenbe tartatva, a kapott arányok határérté-

keként definiáljuk (már ha ez a határérték létezik). Kepler [Kep66] klasszikus sejtése

szerint, a 3-dimenziós egységgömbök pakolási sűrűsége π/
√

18 ≈ 0.74078 . . . , amelyet

egy rácsszerű elrendezéssel érhetünk el. A rácsszerű pakolásokra szoŕıtkozva, ez a korlát

valóban optimális, ahogy Gauss megmutatta [Gau40]. A Kepler-sejtést Hales igazolta

[Hal05].

Tekintsünk egy B gömbpakolást. Egy B gömb Voronoi cellája azon pontok hal-

maza, melyek közelebb vannak B középpontjához, mint bármelyik másik gömbközép-

ponthoz. Közismert, hogy a Voronoi cellák konvex poliéderek, és esetünkben feltehető,

hogy politópok. A Dodekahedrális Sejtés álĺıtása szerint, melyet Fejes Tóth László fo-

galmazott meg [FT43], egy egységgömb-pakolás tetszőleges Voronoi cellájának térfogata

legalább akkora, mint az egységgömb köré ı́rt szabályos dodekaéder térfogata. Ezt a

közelmúltban Hales és McLaughlin igazolták [HM].

Bezdek Károly [Bez00] a Dodekahedrális Sejtést a következőképpen általánośıtotta.

2.1. Sejtés. (Erős Dodekahedrális Sejtés). Egy R3-beli egységgömbpakolás tetszőleges

Voroni cellájának felsźıne legalább akkora, mint az egységgömb köré ı́rt szabályos do-

dekaéder felsźıne: 16.6508 . . ..

Mi a következő korlátot adjuk.

2.2 Tétel. Egy R3-beli egységgömbpakolás tetszőleges Voroni cellájának felsźıne le-

galább 16.1977 . . ..

Jelenleg ez a problémára vonatkozó legjobb alsó korlát. Korábban Bezdek K.

és Daróczy-Kiss E. [BDK05] adott alsó becslést D. Muder [Mud88],[Mud93] gondo-

latmenetének felhasználásával. Mi is ezt az utat követjük.

A bizonýıtás alapötlete a következő. A Voronoi cella lapjai által kifesźıtett kúpokat

(a továbbiakban lapkúpokat) speciális kúpokkal helyetteśıtjük oly módon, hogy a felület
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és a térszög aránya nem növekszik. Az ı́gy kapott, szűkebb osztályba tartozó kon-

figurációk közötti optimumot analitikus eszközökkel határozzuk meg.

A 2.2. alfejezetben részletezzük a helyetteśıtési eljárást. A használt speciális

lapkúpok a következőek. A merőleges körkúp (RCC) alapja egy körlap, csúcsa pedig az

ennek középpontján áthaladó, a kör śıkjára merőleges egyenesen helyezkedik el. Met-

szett körnek h́ıvjuk egy körlemez és egy ennek a középpontját tartalmazó szabályos

sokszög metszetét. A merőleges metszett körkúp (SRCC) pedig olyan kúp, melynek

alapja egy metszett kör, csúcsa pedig ismét a kör középpontja fölött helyezkedik el.

Az eljárásban elemi helyetteśıtések sorozatával a lapkúpokat RCC illetve SRCC t́ıpusú

kúpokkal helyetteśıtjük. Ezeknek a speciális kúpoknak a felsźın-térszög arányát további,

egyszerűbben kezelhető függvényekkel approximáljuk.

Végül, a 2.4. alfejezetben a korábbi becslések, valamint egy technikai számolás

seǵıtségével meghatározzuk az optimális konfigurációt. Ez 13 egybevágó, valamint egy

kisebb térszögű lapból áll. Ezek a lapok azonban nem illeszthetőek össze egy politóppá;

ez okozza a becslésünk és a sejtett érték közötti eltérést.

Véletlen szimplexek térfogatára vonatkozó egyenlőtlenségek stabilitása

A 3. Fejezet motivációjaként a következő kérdés szolgál. Legyen K egy Rd-beli

konvex test. Mi a várható értéke egy K-beli véletlen szimplex térfogatának? Három

modellt vizsgálunk: az elsőnél, a szimplex csúcsait függetlenül, egyenletes eloszlással

választjuk K-ból; a második modellnél, egy csúcs rögźıtett helyzetben van; mı́g a har-

madiknál, a rögźıtett csúcs a K súlypontja, γ(K). A várható érték mellett más mo-

mentumokat is vizsgálunk, és a mennyiségeket affin invariáns módon mérjük.

3.1. Defińıció. Legyen K ⊂ Rd konvex test. Tetszőleges n > d + 1 és p > 0 esetén,

vezessük be a következő jelölést:

Ep
n(K) = V (K)−n−p

Z
K

. . .
Z

K
V ([x1, . . . , xn])p dx1 . . . dxn.

Továbbá, valamely rögźıtett x ∈ Rd-re, legyen

Ep
x(K) = V (K)−d−p

Z
K

. . .
Z

K
V ([x, x1, . . . , xd])p dx1 . . . dxd.

Abban a speciális esetben, amikor x = γ(K), Ep
x(K) helyett Ep

∗(K)-t ı́runk.
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A fent bevezetett mennyiségek számos kapcsolattal rendelkeznek; ezek közé tar-

tozik Sylvester kérdése, a centroid test és a metszési test térfogata, a Legendre-ellipszoid

térfogata, a Busemann véletlen szimplex egyenlőtlenség, a Busemann-Petty centroid

egyenlőtlenség, s ı́.t. Ezeket az összefüggéseket a 3.1. alfejezetben tárgyaljuk.

A legérdekesebb kérdés az, hogy mely K konvex test esetén vétetik fel a fenti

mennyiségek minimuma ill. maximuma. Ez a probléma a 20. század elejéről származik,

ld. Blaschke [Bla17], [Bla23]. A minimumok esete teljesen megoldott.

3.2. Tétel. (Blaschke [Bla23], Busemann [Bus53], Groemer[Gro74]) Tetszőleges K ⊂
Rd konvex test, p > 1, és n > d + 1 esetén,

Ep
o(K) > Ep

o(B
d) , Ep

∗(K) > Ep
∗(Bd) , és Ep

n(K) > Ep
n(Bd).

Továbbá, Ep
o(K) = Ep

o(B
d) teljesül pontosan akkor, ha K egy o-szimmetrikus ellipszoid,

valamint Ep
∗(K) = Ep

∗(Bd) illetve Ep
n(K) = Ep

n(Bd) pontosan akkor, ha K ellipszoid.

A maximumok esete sokkal kevésbé ismert. A Szimplex Sejtés szerint tetszőleges

K ⊂ Rd konvex test, p > 1 és n > d + 1 esetén, Ep
∗(K) 6 Ep

∗(T d) és Ep
n(K) 6 Ep

n(T d),

ahol egyenlőség pontosan akkor áll, ha K szimplex. Ez csak a śıkon bizonýıtott.

3.4. Tétel. ([Bla17],[DL91],[Gia92],[CCG99]) Tetszőleges K ⊂ R2 konvex lemez,

n > 3 és p > 1 esetén, Ep
n(K) 6 Ep

n(T 2) és Ep
∗(K) 6 Ep

∗(T 2). Egyenlőség pontosan

akkor áll fenn, ha K háromszög.

A Szimplex Sejtés fontossága onnan ered, hogy következne belőle a magas di-

menziós konvex geometria egyik központi sejtése, a Hiperśık Sejtés.

A disszertáció 3. fejezetében a 3.2. és 3.4. Tételek stabilitási változatait bi-

zonýıtjuk. Eredményeinket a Banach-Mazur távolság seǵıtségével fogalmazzuk meg: a

K és M konvex testek Banach-Mazur távolsága δBM(K,M) = min{λ > 1 : K − x ⊂
Φ(M − y) ⊂ λ(K − x)}, ahol Φ a GLd-n, mı́g x, y az Rd-n fut végig. Eredményeink a

következőek.
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3.6. Tétel. Ha a K ⊂ Rd konvex testre δBM(K,Bd) = 1 + δ valamely δ > 0-val,

akkor tetszőleges p > 1 esetén,

Ep
∗(K) > (1 + γpδd+3)Ep

o(B
d)

Ep
d+1(K) > (1 + γpδd+3)Ep

d+1(B
d),

ahol a γ > 0 konstans egyedül d-től függ. Továbbá, ha K centrálszimmetrikus, akkor a

hibatag γpδ(d+3)/2-ra cserélhető.

3.7.Tétel. Legyen K konvex lemez, melyre δBM(K, T 2) = 1 + δ valamely δ > 0-val.

Ekkor tetszőleges p > 1-re,

Ep
∗(K) 6 (1− cpδ2)Ep

∗(T
2)

Ep
3(K) 6 (1− cpδ2)Ep

3(T
2),

ahol c egy pozit́ıv abszolút konstans. A becslések aszimptotikusan élesek, ha δ → 0.

A 3.6. Tétel bizonýıtásánál először feltesszük, hogy K centrálszimmetrikus konvex

test, amely John poźıcióban van, azaz a bele ı́rható legnagyobb térfogatú ellipszoid

az egységgömb. Fő lemmánk seǵıtségével azt becsüljük, hogy mennyit változnak a

kérdéses mennyiségek egy megfelelően választott Steiner szimmetrizáció elvégzésekor.

Az általános eredményt ezután Böröczky Károly [Bör] egy tételét felhasználva kapjuk,

mely becslést ad egy K konvex test, és a belőle Steiner szimmetrizáltak határértékeként

kapott szimmetrikus test Banach-Mazur távolságára. Megjegyezzük, hogy a 3.6. Tétel

becslése aszimptotikusan közel optimális: a 3.4. alfejezetben közölt példa esetén a

hibatag ε(d+1)/2 nagyságrendű.

A 3.7. Tételt a lineáris árnyék-rendszerek technikájának seǵıtségével bizonýıtjuk,

melyet Campi, Colesanti és Gronchi [CCG99] vezetett be. Ez a “shaking” technika

egyfajta általánośıtása. Feltesszük, hogy a K-ba ı́rható maximális területű háromszög

szabályos, majd a problémát legfeljebb 6 csúcsú poligonok esetére redukáljuk. A

fő nehézséget ezeknek a poligonoknak a további módośıtása jelenti, amelyhez elemi

árnyék-rendszereket használunk. A ḱıvánt becsléshez egy technikai jellegű számolással

jutunk.

A fejezetet a Petty vet́ıtési egyenlőtlenség stabilitási változatának bizonýıtásával

zárjuk.
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[BB93] Imre Bárány and Christian Buchta. Random polytopes in a convex poly-
tope, independence of shape, and concentration of vertices. Math. Ann.,
297(3):467–497, 1993.
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