STOCHASTIC COMPACTNESS OF TWO SIDED-EXIT TIMES DAVID M. MASON UNIVERSITY OF DELAWARE

Dedicated to the memory of Sándor Csörgő.

ABSTRACT

We characterize stochastic compactness of the two sided exit times of partial sums and Lévy processes at "large times", i.e., as $t \to \infty$, and "small times", i.e., as $t \searrow$ 0, as well as examine the continuity properties of the subsequential distributions of the two sided exit times.

This talk is based on work in progress.

PARTIAL SUMS

Let $\xi, \xi_1, \xi_2, \ldots$, be i.i.d. nondegenerate random variables (rvs) with cumulative distribution function (cdf) F and for each integer $n \ge 1$ denote their partial sum by

$$S_n = \sum_{i=1}^n \xi_i.$$

LEVY PROCESS

Consider a Lévy process $(X_t)_{t\geq 0}$, having nondegenerate infinitely divisible (inf. div.) characteristic function (cf)

$$Ee^{\mathrm{i}\theta X_t} = e^{t\Psi(\theta)}, \quad \theta \in \mathbb{R},$$

where $\Psi(\theta) =$

$$-\frac{1}{2}\sigma^{2}\theta^{2} + \mathrm{i}\gamma\theta + \int_{\mathbb{R}\setminus\{0\}} \left(e^{\mathrm{i}\theta x} - 1 - \mathrm{i}\theta x \mathbf{1}_{\{|x|\leq 1\}}\right) \Pi(\mathrm{d}x),$$

 $\gamma \in R, \, \sigma^2 \geq 0$, and Π is a measure on \mathbb{R} with

$$\int_{\mathbb{R}\setminus\{0\}} (x^2 \wedge 1) \Pi(\mathrm{d}x) < \infty.$$

We say that X_t has canonical triplet (γ, σ^2, Π) .

LEVY TAIL FUNCTIONS

Introduce the Lévy tail functions for x > 0

$$\overline{\Pi}^+(x) = \Pi\{(x,\infty)\}, \ \overline{\Pi}^-(x) = \Pi\{(-\infty,-x)\},$$

and
$$\overline{\Pi}(x) = \overline{\Pi}^+(x) + \overline{\Pi}^-(x),$$

and the truncated mean and variance functions defined for x > 0 by

$$\nu(x) = \gamma + \int_{1 < |y| \le x} y \Pi(\mathrm{d}y)$$

and
$$V(x) = \sigma^2 + \int_{0 < |y| \le x} y^2 \Pi(\mathrm{d}y).$$

FELLER CLASS FOR RVs

We shall say that a sequence of partial sums $\{S_n\}_{n\geq 1}$ of i.i.d. ξ rv with cdf F is in the *Feller class* (stochastically compact) if there exist norming and centering constants B(n) > 0, A(n) such that every subsequence $\{n_k\}$ of $\{n\}$ contains a further subsequence $n_{k'} \to \infty$ with

$$\frac{S_{n_{k'}} - A(n_{k'})}{B(n_{k'})} \stackrel{\mathrm{D}}{\longrightarrow} Y',$$

where Y' is a finite nondegenerate rv, a.s. (The prime on Y' signifies that in general it depends on the choice of the subsequence.) We shall write this as " $S_n \in FC$ ", also written " $F \in FC$ ".

If the centering function A(n) can be chosen to be identically equal to zero, we shall say that S_n is in the centered Feller class at infinity, written " $S_n \in FC_0$ ", also written " $F \in FC_0$ ".

FELLER CLASS AT INFINITY

We shall say that a Lévy process X_t , $t \ge 0$, is in the *Feller class* at infinity (*stochastically compact* at infinity) if there exist nonstochastic functions B(t) >0, A(t) such that every sequence $t_k \to \infty$ contains a subsequence $t_{k'} \to \infty$ with

$$\frac{X_{t_{k'}} - A(t_{k'})}{B(t_{k'})} \xrightarrow{\mathrm{D}} Y', \tag{F}$$

where Y' is a finite nondegenerate rv, a.s. We shall write this as " $X_t \in FC$ at ∞ ".

If the centering function A(t) can be chosen to be identically equal to zero, we shall say that X_t is in the centered Feller class at infinity, written " $X_t \in FC_0$ at ∞ ".

FELLER CLASS AT ZERO

We shall say that a Lévy process X_t , $t \ge 0$, is in the *Feller class* at zero if there exist nonstochastic functions B(t) > 0, A(t) such that every sequence $t_k \downarrow 0$ contains a subsequence $t_{k'} \downarrow 0$ for which (F) holds.

We shall write this as " $X_t \in FC$ at 0".

In this situation it is assumed that whenever $\sigma^2 = 0$

$$\overline{\Pi}\left(0+\right) = \infty.$$

If the centering function A(t) can be chosen to be identically equal to zero, we shall say that X_t is in the centered Feller class at zero, written " $X_t \in FC_0$ at 0".

OBSERVATION

The rv Y' in (F) is infinitely divisible, having a cf of the form $E \exp(i\theta Y') =$

$$\begin{split} &\exp\left[-\frac{1}{2}A\theta^2 + \mathrm{i}\gamma\theta\right] \\ &\times \exp\left[\int_{\mathbb{R}\setminus\{0\}} \left(e^{\mathrm{i}x\theta} - 1 - \mathrm{i}\theta x \mathbf{1}\left\{|x| \le 1\right\}\right) \pi\left(\mathrm{d}x\right)\right], \\ &\text{where } A \ge 0, \, \theta, \, \gamma \in \mathbb{R} \text{ and} \\ &\int_{\mathbb{R}\setminus\{0\}} \left(|x|^2 \wedge 1\right) \pi\left(\mathrm{d}x\right) < \infty. \end{split}$$

It turns out that Y' has an infinity differentiable density.

PRUITT (1983) RESULT

By applying a result of Pruitt (1983), one can show that whenever $S_n \in FC$, respectively, $S_n \in FC_0$, then each of its subsequential limit rv Y' defines a Lévy process X_t such that

$$X_1 \stackrel{\mathrm{D}}{=} Y'$$

and X_t is both in FC (at infinity) and in FC (at zero), respectively, in FC_0 (at infinity) and FC_0 (at zero).

In fact each of the subsequential limit rvs Y' has an infinity differentiable density.

FELLER CONDITION

The classic Feller (1966) condition for $S_n \in FC$ is

$$\limsup_{y \to \infty} \frac{y^2 P\left(|\xi| > y\right)}{E\left(\xi^2 \mathbf{1}_{\{|\xi| \le y\}}\right)} < \infty.$$
 (FC)

Here is an additional useful characterization of $S_n \in FC$.

QUANTILE CONDITION

In the course of developing their quantile-empirical process approach to the asymptotic distribution of partial sums of i.i.d. rvs, Csörgő, Haeusler and Mason (1988) show that $S_n \in FC$ (namely the Feller condition (FC) holds) if and only if for all $\lambda > 0$

$$\limsup_{s\searrow 0}\frac{\sqrt{s}\left\{\left|F^{-1}\left(\lambda s\right)\right|+\left|F^{-1}\left(1-\lambda s\right)\right|\right\}}{\sigma\left(s\right)}<\infty,$$

where F^{-1} is the *inverse* or *quantile function* of F defined to be, for each 0 < s < 1,

$$F^{-1}(s) = \inf \{ x : F(x) \ge s \},\$$

and for 0 < s < 1/2,

$$\sigma^{2}(s) = \int_{s}^{1-s} \int_{s}^{1-s} (u \wedge v - uv) F^{-1}(\mathrm{d}u) F^{-1}(\mathrm{d}v).$$

CENTERED FELLER CLASS FOR RVs

Clearly $S_n \in FC_0$ if and only if $S_n \in FC$ and $\limsup_{n \to \infty} |A(n) / B(n)| < \infty.$

Maller (1979) (see also Giné and Mason (1998) and Griffin and Maller (1999) proved that $S_n \in FC_0$ if and only if

$$\limsup_{y \to \infty} \frac{y^2 P\left(|\xi| > y\right) + y \left| E\left(\xi \mathbf{1}_{\{|\xi| \le y\}}\right) \right|}{E\left(\xi^2 \mathbf{1}_{\{|\xi| \le y\}}\right)} < \infty.$$

There is also a quantile version of this condition.

FELLER CLASS AT LARGE TIME

The following theorem is from Maller and Mason (2009).

Theorem 1 Let X be a nondegenerate inf. div. rv having cf $e^{\Psi(\theta)}$, where Ψ is defined as above, and let X_t be a Lévy process with $X_1 \stackrel{D}{=} X$. (i) We have $X_t \in FC$ at infinity if and only if $\limsup_{y \to \infty} y^2 \overline{\Pi}(y) / V(y) < \infty$. (ii) We have $X_t \in FC_0$ at infinity if and only if

 $\limsup_{y \to \infty} \left(y^2 \overline{\Pi} \left(y \right) + y \left| \nu(y) \right| \right) / V(y) < \infty.$

FELLER CLASS AT SMALL TIME

Here is the corresponding result at small time proved in Maller and Mason (2010).

Theorem 2 Let X_t be a Lévy process having $cf e^{t\Psi(\theta)}$, where Ψ is defined in above, and whenever $\sigma^2 = 0$, assume that $\overline{\Pi}(0+) = \infty$. (i) We have $X_t \in FC$ at zero if and only if $\limsup_{y \searrow 0} y^2 \overline{\Pi}(y) / V(y) < \infty$. (ii) We have $X_t \in FC_0$ at zero if and only if $\limsup_{y \searrow 0} (y^2 \overline{\Pi}(y) + y |\nu(y)|) / V(y) < \infty$.

TWO SIDED EXIT TIME

In the random walk case, let for $0 \le t < \infty$

$$X(t) = \sum_{0 \le i \le t} \xi_i$$

and in the Lévy process case let $X(t) = X_t$. Define for any r > 0 the two sided exit time

$$T(r) = \inf \{t > 0 : |X(t)| > r\}.$$

From results in Pruitt (1981) and Doney and Maller (2002) we can infer that for a suitable function h and constants $a_1 > 0$ and $a_2 > 0$ for all r > 0

$$\frac{a_1}{h\left(r\right)} \le ET\left(r\right) \le \frac{a_2}{h\left(r\right)},\tag{T}$$

THE FUNCTION h

In the Lévy process case

$$h(x) = \frac{x |\nu(x)| + U(x)}{x^2},$$

where

$$U(x) = x^2 \overline{\Pi} (x) + V(x).$$

STOCHASTIC COMPACTNESS OF $|X_{T(r)}/r|$

From now on for ease of presentation we shall restrict ourselves to the Lévy process at 0 case and write

$$X_{T(r)} = X\left(T\left(r\right)\right).$$

We shall say that

$$\left|X_{T(r)}/r\right|$$

is stochastically compact (SC) at zero if for every positive sequence $r_k \searrow 0$ there exists a subsequence of $\{s_j\}$ of $\{r_k\}$ such that $|X_{T(s_j)}/s_j|$ converges in distribution to a nondegenerate rv.

NECESSARY & SUFFICIENT CONDITION

A clean necessary and sufficient condition for this due to Maller unpublished notes is that $X_t \in FC_0$ at zero and X_t is not in the domain of partial attraction of the normal distribution.

The latter means that there does not exist a sequence $t_k \searrow 0$ and positive norming sequence $B(t_k) > 0$ such that $X_{t_k}/B(t_k)$ converges in distribution to a standard normal rv.

For the random walk version of this necessary and sufficient condition see Griffin and Maller (1999).

QUESTION

Suppose for a sequence $r_k \searrow 0$

$$|X_{T(r_k)}|/r_k \xrightarrow{\mathrm{D}} Y.$$
 (Y)

When does Y have a cdf F that is absolutely continuous on $[a, \infty)$ for any a > 1?

STABLE EXAMPLE

Whenever $(X_t)_{t>0}$ is a subordinator in the domain of attraction of a stable law of index $0 < \alpha < 1$, as $t \searrow 0$, then

$$|X_{T(r)}|/r \to_d Y$$
, as $r \to \infty$,

where for y > 1

$$F(y) = P\left\{Y \le y\right\}$$
$$= \frac{\sin\left(\alpha\pi\right)}{\pi} \int_{1}^{y} (x-1)^{-\alpha} x^{-1} \mathrm{d}x.$$

This can be deduced from the arguments on page 361 of Bingham, Goldie and Teugels (1987).

A USEFUL BOUND

If we can show that when (Y) holds, that for each 1 < athere is a $0 < C(a) < \infty$ such that for any d > a > 0, uniformly in $a \le c < d$

$$\limsup_{k \to \infty} P\left\{ \left| \frac{X_{T(r_k)}}{r_k} \right| \in (c, d] \right\} / (d - c) \le C(a) ,$$

we are done.

Write for u > 0 and |v| < u

$$\Delta(u,v) = \overline{\Pi}^+(u-v) + \overline{\Pi}^-(u+v).$$

Using results in Pruitt (1981) and Doney and Maller (2002) one can show that

$$P\left\{ \left| \frac{X_{T(r_k)}}{r_k} \right| \in (c, d] \right\}$$

$$\leq \sup_{|y| \leq 1} \left(\Delta \left(r_k c, r_k y \right) - \Delta \left(r_k d, r_k y \right) \right) ET(r_k),$$

which by using (T) is

$$\leq \frac{a_2}{h(r_k)} \sup_{|y| \leq 1} \left(\Delta \left(r_k c, r_k y \right) - \Delta \left(r_k d, r_k y \right) \right)$$
$$= \frac{a_2 r_k^2 \sup_{|y| \leq 1} \left(\Delta \left(r_k c, r_k y \right) - \Delta \left(r_k d, r_k y \right) \right)}{r_k \left| \nu(r_k) \right| + U(r_k)}$$

ASSUMPTIONS

Suppose that (Y) holds, then there exist positive continuous decreasing functions $\overline{\pi}^+$ and $\overline{\pi}^-$ on $(0, \infty)$ and a sequence of positive constants $\{t_k\}_{k\geq 1}$ such that for all u > 0

$$t_k \overline{\Pi}^+(r_k u) \to \overline{\pi}^+(u) \text{ and } t_k \overline{\Pi}^-(r_k u) \to \overline{\pi}^-(u)$$
 (A1)

and

$$\limsup_{k \to \infty} \left(t_k h\left(r_k \right) \right)^{-1} =: \gamma < \infty.$$
 (A2)

Further assume that for each a > 1, $\overline{\pi}^+$ and $\overline{\pi}^-$ are Lipschitz on $[a - 1, \infty)$ with Lipschitz constants $D^+(a)$ and $D^-(a)$, respectively. In particular this holds whenever $-\overline{\pi}^+$ and $-\overline{\pi}^-$ have strictly decreasing positive derivatives on $(0, \infty)$, say φ^+ and φ^- .

In this case one can choose $D^+(a) = \varphi^+(a-1)$ and $D^-(a) = \varphi^-(a-1)$.

CONCLUSION

The convergence in (A1) is uniform on $[a - 1, \infty)$ for any a > 1. Thus by (A2) for all $a \le c < d$

$$\begin{split} \limsup_{k \to \infty} \left(\frac{t_k}{t_k h\left(r_k\right)} \right) \sup_{|y| \le 1} \left(\Delta\left(r_k c, r_k y\right) - \Delta\left(r_k d, r_k y\right) \right) \\ & \le \gamma \sup_{|y| \le 1} \left[\overline{\pi}^+ \left(c - y\right) - \overline{\pi}^+ \left(d - y\right) \right] \\ & + \gamma \sup_{|y| \le 1} \left[\overline{\pi}^- \left(c + y\right) - \overline{\pi}^- \left(d + y\right) \right], \end{split}$$

which by the Lipschitz assumption is

$$\leq \gamma \left(D^{+}(a) + D^{-}(a) \right) (d - c) =: D(a) (d - c).$$

CONJECTURE

Whenever $X_t \in FC_0$ at 0 then for each 1 < a there is a constant D(a) > 0 such that for all $a \leq c < d$

$$\limsup_{r \searrow 0} \frac{r^2 \sup_{|y| \le 1} \left(\Delta \left(rc, ry \right) - \Delta \left(rd, ry \right) \right)}{r \left| \nu(r) \right| + U(r)} \le D(a) \left(d - c \right).$$

In this case we can choose in (A2)

$$t_k = r_k^2 / U\left(r_k\right).$$

ST. PETERSBURG GAME PROCESS

Consider the St. Petersburg game type Lévy tail functions for x > 0

$$\overline{R}^+(x) = R\{(x,\infty)\} = 2^{-\lfloor \log_2(x) \rfloor},$$
$$\overline{R}^-(x) = R\{(-\infty,-x)\} = 2^{-\lfloor \log_2(x) \rfloor},$$

and

$$\overline{R}(x) = \overline{R}^+(x) + \overline{R}^-(x).$$

Notice that $\overline{R}(0+) = \infty$. Let $(X_t)_{t\geq 0}$ be the symmetric St. Petersburg Lévy process with cf, exp $(t\Psi(\theta))$, where due to symmetry of X_1 ,

$$\Psi(\theta) = \int_{\mathbb{R}\setminus\{0\}} \left(e^{\mathrm{i}\theta x} - 1 \right) R(\mathrm{d}x), \quad \theta \in \mathbb{R}.$$

It is readily checked that $X_t \in FC_0$ at zero.

COUNTEREXAMPLE

The symmetric St. Petersburg process provides a counterexample to the conjecture. Define the norming function

$$b\left(t\right) = 2^{\lfloor \log_2(t) \rfloor}, \ t > 0.$$

It can be shown that each subsequential limit law of $X_t/b(t)$ has a cf of the form $\Psi(\lambda\theta)$, where $\lambda \in [1, 2]$. If the conjecture were true, \overline{R} would be continuous on $(0, \infty)$. However it clearly is not, even though each such subsequential rv has an infinitely differentiable density.

SELF-DECOMPOSIBLE DISTRIBUTIONS

A distribution function F is said to be in the class of selfdecomposable distributions (SD), also called the class \mathcal{L} , if there exists a sequence of independent rvs $\{Z_n\}_{n\geq 1}$ and constants $b_n > 0$ and c_n such that $b_n Z_n + c_n$ converges in distribution to F and

$$\max_{1 \le k \le n} |b_n Z_n| \xrightarrow{\mathbf{P}} 0.$$

The distribution of a rv W is SD if and only if its cf is of the form $E \exp(i\theta W) =$

$$\exp\left[-\frac{1}{2}A_{W}\theta^{2} + \mathrm{i}\gamma_{W}\theta\right] \times \\ \exp\left[\int_{\mathbb{R}\setminus\{0\}} \left(e^{\mathrm{i}x\theta} - 1 - \mathrm{i}\theta x\mathbf{1}\left\{|x| \le 1\right\}\right) \frac{k(x)}{|x|} \mathrm{d}x\right], \\ \text{where } A_{W} \ge 0, \ \theta, \ \gamma_{W} \in \mathbb{R}, \ k(x) \ge 0, \\ \int \left(-\frac{1}{2}\mathbf{A}\mathbf{1}\right) \frac{k(x)}{|x|} \mathrm{d}x = 0,$$

$$\int_{\mathbb{R}\setminus\{0\}} \left(|x|^2 \wedge \mathbf{1} \right) \frac{n(x)}{|x|} \mathrm{d}x < \infty,$$

and k(x) is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$.

FACTS

A Lévy process $(X_t)_{t\geq 0}$ is said to be a SD Lévy process if X_1 has a cf of the above form.

If we also assume that $X_t \in FC_0$ at 0 and $\overline{\Pi}(0+) = \infty$ if $A_W > 0$ or $X(t) \in FC_0$ at ∞ then each subsequential limit rv W of

 $X_{t}/b\left(t
ight)$

with the appropriate norming b(t), is also SD.

A FAMILY OF EXAMPLES

Let $(X_t)_{t\geq 0}$ be a SD Lévy process not in the domain of partial attraction of a standard normal rv at zero. Assume that $X_t \in FC_0$ at 0 and $\overline{\Pi}(0+) = \infty$. X_t has cf

$$Ee^{\mathrm{i}\theta X_t} = e^{t\Psi(\theta)}, \quad \theta \in \mathbb{R},$$

where

$$\Psi(\theta) = \int_{\mathbb{R}\setminus\{0\}} \left(e^{\mathbf{i}x\theta} - 1 - \mathbf{i}\theta x \mathbf{1}_{\{|x| \le 1\}} \right) \frac{k(x)}{|x|} dx,$$

 $k(x) \geq 0, \int_{\mathbb{R}\setminus\{0\}} \left(|x|^2 \wedge \mathbf{1} \right) \frac{k(x)}{|x|} dx < \infty, \text{ and } k(x) \text{ is}$ increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$. Here X_t has Lévy measure

$$\overline{\Pi}(z) = \overline{\Pi}^+(z) + \overline{\Pi}^-(z), \ z > 0,$$

where

$$\overline{\Pi}^{\pm}(z) = \int_{(z,\infty)} \frac{k(\pm x)}{x} \mathrm{d}x.$$

FELLER CLASS FACT

Maller and Mason (2018), assume that $(X_t)_{t\geq 0}$ is a Lévy process without a normal component, then whenever

$$\lim_{\lambda \to \infty} \limsup_{x \searrow 0} \frac{\overline{\Pi} \left(\lambda x \right)}{\overline{\Pi} \left(x \right)} < 1,$$

 $X_t \in FC$ at 0.

SELF-DECOMPOSABLE APPLICATION

Let $(X_t)_{t\geq 0}$ is be SD Lévy process without a normal component. Set for $x \in (0, \infty)$

$$m\left(x\right) = k(x) + k(-x).$$

We see that m is a decreasing function on $(0, \infty)$. Assuming that

$$\lim_{\lambda \to \infty} \limsup_{x \searrow 0} \frac{m(\lambda x)}{m(x)} < 1,$$

we get that $X_t \in FC$ at 0.

EXAMPLE

Let $(X_t)_{t\geq 0}$ is be SD Lévy process without a normal component such that for some $0 < \alpha < 2$

$$m(x) = L(x) x^{-\alpha}, x > 0,$$

where L(x) is slowly varying at zero. Then

$$\frac{m(\lambda x)}{m(x)} \to \lambda^{-\alpha}, \text{ as } x \to \infty, \text{ and as } x \searrow 0,$$

which implies that $X_t \in FC$ at 0.

Whenever $(X_t)_{t>0}$ is a subordinator in FC_0 at 0 in the domain of attraction of a stable law of index $0 < \alpha < 1$ as $t \searrow 0$, the above procedure works to verify the absolute continuity of the distribution F of the rv Y in the STABLE EXAMPLE.

It also works in the case when $(X_t)_{t\geq 0}$ is symmetric and in the domain of attraction of a stable law of index $0 < \alpha < 2$ as $t \searrow 0$.