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ABSTRACT

We characterize stochastic compactness of the two sided
exit times of partial sums and Lévy processes at “large
times”, i.e., as t → ∞, and “small times”, i.e., as t ↘
0, as well as examine the continuity properties of the
subsequential distributions of the two sided exit times.

This talk is based on work in progress.
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PARTIAL SUMS

Let ξ, ξ1, ξ2, . . . , be i.i.d. nondegenerate random vari-
ables (rvs) with cumulative distribution function (cdf)
F and for each integer n ≥ 1 denote their partial sum
by

Sn =

n∑
i=1

ξi.
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LEVY PROCESS

Consider a Lévy process (Xt)t≥0, having nondegenerate
infinitely divisible (inf. div.) characteristic function (cf)

EeiθXt = etΨ(θ), θ ∈ R,

where Ψ(θ) =

−1

2
σ2θ2 + iγθ +

∫
R\{0}

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx),

γ ∈ R, σ2 ≥ 0, and Π is a measure on R with∫
R\{0}

(x2 ∧ 1)Π(dx) <∞.

We say that Xt has canonical triplet (γ, σ2,Π).
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LEVY TAIL FUNCTIONS

Introduce the Lévy tail functions for x > 0

Π
+

(x) = Π{(x,∞)}, Π
−

(x) = Π{(−∞,−x)},

and Π(x) = Π
+

(x) + Π
−

(x),

and the truncated mean and variance functions defined
for x > 0 by

ν(x) = γ +

∫
1<|y|≤x

yΠ(dy)

and V (x) = σ2 +

∫
0<|y|≤x

y2Π(dy).
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FELLER CLASS FOR RVs

We shall say that a sequence of partial sums {Sn}n≥1

of i.i.d. ξ rv with cdf F is in the Feller class (stochas-
tically compact) if there exist norming and centering
constants B (n) > 0, A (n) such that every subse-
quence {nk} of {n} contains a further subsequence
nk′→∞with

Snk′ − A(nk′)

B(nk′)

D−→ Y ′,

where Y ′ is a finite nondegenerate rv, a.s. (The prime
on Y ′ signifies that in general it depends on the choice
of the subsequence.) We shall write this as “Sn ∈ FC”,
also written “F ∈ FC”.

If the centering function A (n) can be chosen to be iden-
tically equal to zero, we shall say that Sn is in the cen-
tered Feller class at infinity, written “Sn ∈ FC0”, also
written “F ∈FC0”.
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FELLER CLASS AT INFINITY

We shall say that a Lévy process Xt, t ≥ 0, is in
the Feller class at infinity (stochastically compact at
infinity) if there exist nonstochastic functions B(t) >
0, A(t) such that every sequence tk→∞ contains a
subsequence tk′→∞ with

Xtk′
− A(tk′)

B(tk′)

D−→ Y ′, (F)

where Y ′ is a finite nondegenerate rv, a.s. We shall
write this as “Xt ∈ FC at ∞”.

If the centering function A (t) can be chosen to be iden-
tically equal to zero, we shall say that Xt is in the cen-
tered Feller class at infinity, written “Xt ∈ FC0 at∞”.
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FELLER CLASS AT ZERO

We shall say that a Lévy process Xt, t ≥ 0, is in the
Feller class at zero if there exist nonstochastic func-
tions B(t) > 0, A(t) such that every sequence tk ↓ 0
contains a subsequence tk′ ↓ 0 for which (F) holds.

We shall write this as “Xt ∈ FC at 0”.

In this situation it is assumed that whenever σ2 = 0

Π (0+) =∞.

If the centering function A (t) can be chosen to be iden-
tically equal to zero, we shall say that Xt is in the cen-
tered Feller class at zero, written “Xt ∈ FC0 at 0”.
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OBSERVATION

The rv Y ′ in (F) is infinitely divisible, having a cf of the
form E exp (iθY ′) =

exp

[
−1

2
Aθ2 + iγθ

]
× exp

[∫
R\{0}

(
eixθ − 1− iθx1 {|x| ≤ 1}

)
π (dx)

]
,

where A ≥ 0, θ, γ ∈ R and∫
R\{0}

(
|x|2∧1

)
π (dx) <∞.

It turns out that Y ′ has an infinity differentiable density.
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PRUITT (1983) RESULT

By applying a result of Pruitt (1983), one can show that
whenever Sn ∈ FC, respectively, Sn ∈ FC0, then each
of its subsequential limit rv Y ′ defines a Lévy process
Xt such that

X1
D
= Y ′

and Xt is both in FC (at infinity) and in FC (at zero),
respectively, in FC0 (at infinity) and FC0 (at zero).

In fact each of the subsequential limit rvs Y ′ has an
infinity differentiable density.
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FELLER CONDITION

The classic Feller (1966) condition for Sn ∈ FC is

lim sup
y→∞

y2P (|ξ| > y)

E
(
ξ21{|ξ|≤y}

) <∞. (FC)

Here is an additional useful characterization of Sn ∈
FC.
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QUANTILE CONDITION

In the course of developing their quantile-empirical pro-
cess approach to the asymptotic distribution of partial
sums of i.i.d. rvs, Csörgő, Haeusler and Mason (1988)
show that Sn ∈ FC (namely the Feller condition (FC)
holds) if and only if for all λ > 0

lim sup
s↘0

√
s
{∣∣F−1 (λs)

∣∣ +
∣∣F−1 (1− λs)

∣∣}
σ (s)

<∞,

where F−1 is the inverse or quantile function of F
defined to be, for each 0 < s < 1,

F−1 (s) = inf {x : F (x) ≥ s} ,

and for 0 < s < 1/2,

σ2 (s) =

∫ 1−s

s

∫ 1−s

s

(u ∧ v − uv)F−1 (du)F−1 (dv) .
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CENTERED FELLER CLASS FOR RVs

Clearly Sn ∈ FC0 if and only if Sn ∈ FC and

lim sup
n→∞

|A (n) /B (n)| <∞.

Maller (1979) (see also Giné and Mason (1998) and Grif-
fin and Maller (1999) proved that Sn ∈ FC0 if and only
if

lim sup
y→∞

y2P (|ξ| > y) + y
∣∣E (ξ1{|ξ|≤y})∣∣

E
(
ξ21{|ξ|≤y}

) <∞.

There is also a quantile version of this condition.
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FELLER CLASS AT LARGE TIME

The following theorem is from Maller and Mason (2009).

Theorem 1 Let X be a nondegenerate inf. div. rv
having cf eΨ(θ), where Ψ is defined as above, and let

Xt be a Lévy process with X1
D
= X.

(i) We have Xt ∈ FC at infinity if and only if

lim sup
y→∞

y2Π (y) /V (y) <∞.

(ii) We have Xt ∈ FC0 at infinity if and only if

lim sup
y→∞

(
y2Π (y) + y |ν(y)|

)
/V (y) <∞.
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FELLER CLASS AT SMALL TIME

Here is the corresponding result at small time proved in
Maller and Mason (2010).

Theorem 2 Let Xt be a Lévy process having cf etΨ(θ),
where Ψ is defined in above, and whenever σ2 = 0,
assume that Π (0+) =∞.

(i) We have Xt ∈ FC at zero if and only if

lim sup
y↘0

y2Π (y) /V (y) <∞.

(ii) We have Xt ∈ FC0 at zero if and only if

lim sup
y↘0

(
y2Π (y) + y |ν(y)|

)
/V (y) <∞.
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TWO SIDED EXIT TIME

In the random walk case, let for 0 ≤ t <∞

X(t) =
∑

0≤i≤t
ξi

and in the Lévy process case let X(t) = Xt. Define for
any r > 0 the two sided exit time

T (r) = inf {t > 0 : |X(t)| > r} .

From results in Pruitt (1981) and Doney and Maller
(2002) we can infer that for a suitable function h and
constants a1 > 0 and a2 > 0 for all r > 0

a1

h (r)
≤ ET (r) ≤ a2

h (r)
, (T)
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THE FUNCTION h

In the Lévy process case

h (x) =
x |ν(x)| + U(x)

x2
,

where
U(x) = x2Π (x) + V (x).
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STOCHASTIC COMPACTNESS OF∣∣XT (r)/r
∣∣

From now on for ease of presentation we shall restrict
ourselves to the Lévy process at 0 case and write

XT (r) = X (T (r)) .

We shall say that ∣∣XT (r)/r
∣∣

is stochastically compact (SC) at zero if for every posi-
tive sequence rk ↘ 0 there exists a subsequence of {sj}
of {rk} such that

∣∣∣XT (sj)/sj

∣∣∣ converges in distribution

to a nondegenerate rv.
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NECESSARY & SUFFICIENT
CONDITION

A clean necessary and sufficient condition for this due
to Maller unpublished notes is that Xt ∈ FC0 at zero
and Xt is not in the domain of partial attraction of the
normal distribution.

The latter means that there does not exist a sequence
tk ↘ 0 and positive norming sequence B(tk) > 0 such
that Xtk/B(tk) converges in distribution to a standard
normal rv.

For the random walk version of this necessary and suf-
ficient condition see Griffin and Maller (1999).
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QUESTION

Suppose for a sequence rk ↘ 0∣∣XT (rk)

∣∣ /rk D−→ Y . (Y)

When does Y have a cdf F that is absolutely continuous
on [a,∞) for any a > 1?
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STABLE EXAMPLE

Whenever (Xt)t>0 is a subordinator in the domain of
attraction of a stable law of index 0 < α < 1, as t↘ 0,
then ∣∣XT (r)

∣∣ /r →d Y, as r →∞,
where for y > 1

F (y) = P {Y ≤ y}

=
sin (απ)

π

∫ y

1

(x− 1)−α x−1dx.

This can be deduced from the arguments on page 361
of Bingham, Goldie and Teugels (1987).
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A USEFUL BOUND

If we can show that when (Y) holds, that for each 1 < a
there is a 0 < C (a) <∞ such that for any d > a > 0,
uniformly in a ≤ c < d

lim sup
k→∞

P

{∣∣∣∣XT (rk)

rk

∣∣∣∣ ∈ (c, d]

}
/ (d− c) ≤ C (a) ,

we are done.

Write for u > 0 and |v| < u

∆ (u, v) = Π
+

(u− v) + Π
−

(u + v) .

Using results in Pruitt (1981) and Doney and Maller
(2002) one can show that

P

{∣∣∣∣XT (rk)

rk

∣∣∣∣ ∈ (c, d]

}
≤ sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))ET (rk) ,

which by using (T) is

≤ a2

h (rk)
sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))

=
a2r

2
k sup|y|≤1 (∆ (rkc, rky)−∆ (rkd, rky))

rk |ν(rk)| + U(rk)
.
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ASSUMPTIONS

Suppose that (Y ) holds, then there exist positive con-
tinuous decreasing functions π+and π− on (0,∞) and
a sequence of positive constants {tk}k≥1 such that for
all u > 0

tkΠ
+

(rku)→ π+ (u) and tkΠ
−

(rku)→ π− (u) (A1)

and
lim sup
k→∞

(tkh (rk))
−1 =: γ <∞. (A2)

Further assume that for each a > 1, π+ and π−are Lips-
chitz on [a− 1,∞) with Lipschitz constantsD+ (a) and
D− (a), respectively. In particular this holds whenever
−π+and −π− have strictly decreasing positive deriva-
tives on (0,∞), say ϕ+ and ϕ−.

In this case one can choose D+ (a) = ϕ+ (a− 1) and
D− (a) = ϕ− (a− 1).
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CONCLUSION

The convergence in (A1) is uniform on [a− 1,∞) for
any a > 1. Thus by (A2) for all a ≤ c < d

lim sup
k→∞

(
tk

tkh (rk)

)
sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))

≤ γ sup
|y|≤1

[
π+ (c− y)− π+ (d− y)

]
+γ sup

|y|≤1

[
π− (c + y)− π− (d + y)

]
,

which by the Lipschitz assumption is

≤ γ
(
D+ (a) + D− (a)

)
(d− c) =: D (a) (d− c) .
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CONJECTURE

Whenever Xt ∈ FC0 at 0 then for each 1 < a there is
a constant D (a) > 0 such that for all a ≤ c < d

lim sup
r↘0

r2 sup|y|≤1 (∆ (rc, ry)−∆ (rd, ry))

r |ν(r)| + U(r)

≤ D (a) (d− c) .
In this case we can choose in (A2)

tk = r2
k/U (rk) .
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ST. PETERSBURG GAME PROCESS

Consider the St. Petersburg game type Lévy tail func-
tions for x > 0

R
+

(x) = R{(x,∞)} = 2−blog2(x)c,

R
−

(x) = R{(−∞,−x)} = 2−blog2(x)c,

and
R(x) = R

+
(x) + R

−
(x).

Notice that R(0+) =∞. Let (Xt)t≥0 be the symmetric
St. Petersburg Lévy process with cf, exp (tΨ (θ)), where
due to symmetry of X1,

Ψ (θ) =

∫
R\{0}

(
eiθx − 1

)
R(dx), θ ∈ R.

It is readily checked that Xt ∈ FC0 at zero.
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COUNTEREXAMPLE

The symmetric St. Petersburg process provides a coun-
terexample to the conjecture. Define the norming func-
tion

b (t) = 2blog2(t)c, t > 0.

It can be shown that each subsequential limit law of
Xt/b (t) has a cf of the form Ψ (λθ), where λ ∈ [1, 2] .

If the conjecture were true, R would be continuous on
(0,∞). However it clearly is not, even though each such
subsequential rv has an infinitely differentiable density.
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SELF–DECOMPOSIBLE
DISTRIBUTIONS

A distribution function F is said to be in the class of self-
decomposable distributions (SD), also called the class
L, if there exists a sequence of independent rvs {Zn}n≥1

and constants bn > 0 and cn such that bnZn + cn con-
verges in distribution to F and

max
1≤k≤n

|bnZn|
P→ 0.

The distribution of a rv W is SD if and only if its cf is
of the form E exp (iθW ) =

exp

[
−1

2
AWθ

2 + iγWθ

]
×

exp

[∫
R\{0}

(
eixθ − 1− iθx1 {|x| ≤ 1}

) k(x)

|x|
dx

]
,

where AW ≥ 0, θ, γ
W
∈ R, k (x) ≥ 0,∫

R\{0}

(
|x|2∧1

) k(x)

|x|
dx <∞,

and k(x) is increasing on (−∞, 0) and decreasing on
(0,∞) .
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FACTS

A Lévy process (Xt)t≥0 is said to be a SD Lévy process
if X1 has a cf of the above form.

If we also assume that Xt ∈ FC0 at 0 and Π (0+) =∞
if AW > 0 or X(t) ∈ FC0 at∞ then each subsequential
limit rv W of

Xt/b (t)

with the appropriate norming b (t), is also SD.
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A FAMILY OF EXAMPLES

Let (Xt)t≥0 be a SD Lévy process not in the domain
of partial attraction of a standard normal rv at zero.
Assume that Xt ∈ FC0 at 0 and Π (0+) =∞. Xt has
cf

EeiθXt = etΨ(θ), θ ∈ R,
where

Ψ(θ) =

∫
R\{0}

(
eixθ − 1− iθx1{|x|≤1}

) k(x)

|x|
dx,

k (x) ≥ 0,
∫
R\{0}

(
|x|2∧1

)
k(x)
|x| dx < ∞, and k(x) is

increasing on (−∞, 0) and decreasing on (0,∞) .

Here Xt has Lévy measure

Π(z) = Π
+

(z) + Π
−

(z), z > 0,

where

Π
±

(z) =

∫
(z,∞)

k(±x)

x
dx.

29



FELLER CLASS FACT

Maller and Mason (2018), assume that (Xt)t≥0 is a Lévy
process without a normal component, then whenever

lim
λ→∞

lim sup
x↘0

Π (λx)

Π (x)
< 1,

Xt ∈ FC at 0.
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SELF–DECOMPOSABLE APPLICATION

Let (Xt)t≥0 is be SD Lévy process without a normal
component. Set for x ∈ (0,∞)

m (x) = k(x) + k(−x).

We see that m is a decreasing function on (0,∞). As-
suming that

lim
λ→∞

lim sup
x↘0

m (λx)

m (x)
< 1,

we get that Xt ∈ FC at 0.
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EXAMPLE

Let (Xt)t≥0 is be SD Lévy process without a normal
component such that for some 0 < α < 2

m (x) = L (x)x−α, x > 0,

where L (x) is slowly varying at zero. Then

m (λx)

m (x)
→ λ−α, as x→∞, and as x↘ 0,

which implies that Xt ∈ FC at 0.

Whenever (Xt)t>0 is a subordinator in FC0 at 0 in the
domain of attraction of a stable law of index 0 < α <
1 as t ↘ 0, the above procedure works to verify the
absolute continuity of the distribution F of the rv Y in
the STABLE EXAMPLE.

It also works in the case when (Xt)t≥0 is symmetric
and in the domain of attraction of a stable law of index
0 < α < 2 as t↘ 0.
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