Darling-Kac theorem in the semistable case

Péter Kevei

University of Szeged

Joint work with Dalia Terhesiu (Exeter).

Outline

Darling–Kac theorem in the usual setting
Renewal chain
Darling–Kac theorem

Semistable laws

Definition and properties Possible limits

Semistable Darling-Kac result

Limit distribution
On the distribution function

Outline

Darling–Kac theorem in the usual setting Renewal chain

Darling-Kac theorem

Semistable laws

Definition and properties
Possible limits

Semistable Darling-Kac result

Limit distribution

Markov renewal chain

 $(f_k)_{k\geq 0}$ probability distribution $\sum_{k=0}^{\infty} f_k = 1$. Markov renewal chain $(X_n)_{n\geq 0}, X_n\in\mathbb{N}_0=\mathbb{N}\cup\{0\}$

$$p_{\ell,k} := \mathbf{P}(X_{n+1} = k | X_n = \ell) = egin{cases} f_k, & \ell = 0, \\ 1, & k = \ell - 1, \ \ell \geq 1, \\ 0, & ext{otherwise.} \end{cases}$$

 X_n recurrent, with unique invariant measure

$$\pi_n = \pi_0 \sum_{i=n}^{\infty} f_i, \quad n \ge 1, \quad \text{and } \pi_0 > 0.$$

X is null recurrent (i.e. the invariant measure is infinite) iff $\sum_{k=1}^{\infty} kf_k = \infty$.

0000000

Return times and occupation times

 $X_0 = 0$, and $0 = S_0 < S_1 < S_2 < \dots$ consecutive return times to 0.

$$S_n = \tau_1 + \tau_2 + \ldots + \tau_n, \quad n \geq 1,$$

where $\tau, \tau_1, \tau_2, \dots$ are iid random variables, with distribution $P(\tau = k) = f_{k-1}, k \ge 1.$

Occupation time of 0, i.e. the number of visits to 0 up to time n - 1:

$$T_n = \sum_{j=0}^{n-1} I_{X_j=0}, \quad n \ge 1.$$

Duality

$$T_n \geq m \iff S_{m-1} \leq n-1,$$

Semistable laws

number of visits to the state 0 before time n is at least m if and only if the (m-1)st return takes place before time n.

Stable laws, domain of attraction

V is *stable*, if there exist X, X_1, X_2, \ldots iid, $a_n > 0, c_n \in \mathbb{R}$, such that

$$\frac{1}{a_n}\sum_{i=1}^n X_i \stackrel{\mathcal{D}}{\longrightarrow} V.$$

$$F \in D(\alpha)$$
 iff $1 - F(x) = \ell(x)x^{-\alpha}$.

Regular variation

$$\ell:(0,\infty)\to(0,\infty)$$
 is slowly varying if for every $\lambda>0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

Regular variation

$$\ell:(0,\infty)\to(0,\infty)$$
 is slowly varying if for every $\lambda>0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

$$f$$
 is regularly varying with parameter $-\alpha$, $f \in \mathcal{RV}_{-\alpha}$ if $f(x) = \ell(x)x^{-\alpha}$.

Domain of attraction

$$(f_j)_{j\geq 0}\in D(\alpha),\, \alpha<1;$$
 that is,

$$\sum_{j\geq n} f_j = \ell(n) n^{-\alpha},$$

for a slowly varying ℓ . Then

$$\frac{\sum_{i=1}^{n} X_i}{n^{1/\alpha} \ell_1(n)} \stackrel{\mathcal{D}}{\to} Z_{\alpha},$$

where $n^{1/\alpha}\ell_1(n)$ is the asymptotic inverse of $n^{\alpha}/\ell(n)$, Z_{α} is α -stable.

Darling-Kac theorem

Outline

Darling-Kac theorem in the usual setting

Renewal chair

Darling-Kac theorem

Semistable laws

Definition and properties

Semistable Darling-Kac result

Limit distribution

On the distribution function

Darling-Kac theorem

0

Darling-Kac theorem

$$b(n) = n^{1/\alpha} \ell_1(n)$$
, and $a(n) = n^{\alpha}/\ell(n)$ its asymptotic inverse.

Darling-Kac theorem

Darling-Kac theorem

$$b(n) = n^{1/\alpha} \ell_1(n)$$
, and $a(n) = n^{\alpha} / \ell(n)$ its asymptotic inverse.

$$\begin{aligned} \mathbf{P}(T_n \geq a(n)x) &= \mathbf{P}(S_{a(n)x-1} \leq n-1) \\ &= \mathbf{P}\Big(\frac{S_{a(n)x-1}}{b(a(n)x-1)} \leq \frac{n-1}{b(a(n)x-1)}\Big) \\ &\to \mathbf{P}(Z_\alpha \leq x^{-1/\alpha}) \\ &= \mathbf{P}(M_\alpha \geq x). \end{aligned}$$

$$M_{\alpha} \stackrel{\mathcal{D}}{=} (Z_{\alpha})^{-\alpha}$$
 Mittag-Leffler distribution. Hence

$$\frac{T_n}{a(n)}\stackrel{\mathcal{D}}{\to} M_{\alpha}.$$

Outline

Darling–Kac theorem in the usual setting
Renewal chain
Darling–Kac theorem

Semistable laws
Definition and properties

Semistable Darling–Kac result
Limit distribution
On the distribution function

Semistable laws

Paul Lévy 1935 (István Berkes: Some forgotten results of Paul Lévy)

Semistable laws

Paul Lévy 1935 (István Berkes: Some forgotten results of Paul Lévy)

Martin-Löf 1985: Clarification of the St.Petersburg paradox

⇒ Sándor Csörgő

Semistable laws

Paul Lévy 1935 (István Berkes: Some forgotten results of Paul Lévy)

Martin-Löf 1985: Clarification of the St.Petersburg paradox

⇒ Sándor Csörgő

Kruglov, Mejzler, Pillai, Shimizu, Grinevich, Khokhlov

Dodunekova, Berkes, Csáki, Megyesi, Györfi, K

Meerschaert, Scheffler, Kern, Wedrich

Sato, Watanabe, Yamamuro

Semistable laws

V is *stable*, if there exist X, X_1, X_2, \dots iid, $a_n > 0$, such that

$$\frac{1}{a_n}\sum_{i=1}^n X_i \stackrel{\mathcal{D}}{\longrightarrow} V.$$

W is semistable, if there exist $X, X_1, X_2, ...$ iid, $a_n > 0$, n_k geometrically increasing $(= c^k)$, such that

$$\frac{1}{a_{n_k}}\sum_{i=1}^{n_k}X_i\stackrel{\mathcal{D}}{\longrightarrow}W.$$

Characteristic function

Characteristic function of a nonnegative semistable random variable *V*:

$$\mathbf{E}e^{\mathrm{i}tV}=\exp\left\{\mathrm{i}ta+\int_0^\infty(e^{\mathrm{i}tx}-1)\mathrm{d}R(x)\right\},$$

where $a \ge 0$

$$M: (0,\infty) \to (0,\infty)$$
 logarithmically periodic $M(c^{1/\alpha}x) = M(x) - R(x) := M(x)/x^{\alpha}$ is nonincreasing for $x > 0$, $\alpha \in (0,1)$.

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000)

$$X, X_1, X_2, \dots$$
 iid $F(x) = \mathbf{P}(X \le x)$. $V = V(R)$ semistable

$$\mathbf{E}e^{\mathrm{i}tV}=\exp\left\{\int_0^\infty(e^{\mathrm{i}tx}-1)\mathrm{d}R(x)\right\},\quad -R(x)=\frac{M(x)}{x^\alpha}.$$

$$X \in D_{gp}(G)$$
 if $\exists k_n, A_n$

$$\frac{\sum_{i=1}^{k_n} X_i}{A_{k_n}} \stackrel{\mathcal{D}}{\longrightarrow} V.$$

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000)

$$X, X_1, X_2, \dots$$
 iid $F(x) = \mathbf{P}(X \le x)$. $V = V(R)$ semistable

$$\mathbf{E}e^{\mathrm{i}tV}=\exp\left\{\int_0^\infty(e^{\mathrm{i}tx}-1)\mathrm{d}R(x)\right\},\quad -R(x)=\frac{M(x)}{x^\alpha}.$$

$$X \in D_{gp}(G)$$
 if $\exists k_n, A_n$

$$\frac{\sum_{i=1}^{k_n} X_i}{A_{k_n}} \stackrel{\mathcal{D}}{\longrightarrow} V.$$

$$F \in D_g(V)$$
 iff $1 - F(x) = \ell(x)M(x)x^{-\alpha}$.

Outline

Darling–Kac theorem in the usual setting
Renewal chain
Darling–Kac theorem

Semistable laws

Definition and properties

Possible limits

Semistable Darling-Kac result

Limit distribution

On the distribution function

Circular convergence

 u_n converges circularly to $u \in (c^{-1}, 1]$, $u_n \stackrel{cir}{\to} u$, if $u \in (c^{-1}, 1)$ and $u_n \to u$ in the usual sense, or u = 1 and u_n has limit points 1, or c^{-1} , or both.

Circular convergence

 u_n converges circularly to $u \in (c^{-1}, 1]$, $u_n \stackrel{cir}{\to} u$, if $u \in (c^{-1}, 1)$ and $u_n \to u$ in the usual sense, or u = 1 and u_n has limit points 1, or c^{-1} , or both.

For x > 0 (large) we define the position parameter as

$$\gamma_x = \gamma(x) = \frac{x}{c^n}$$
, where $c^{n-1} < x \le c^n$.

$$c^{-1} = \liminf_{x \to \infty} \gamma_x < \limsup_{x \to \infty} \gamma_x = 1.$$

Limits on subsequences

$$\mathbf{E}e^{\mathrm{i}tV} = \exp\left\{\int_0^\infty (e^{\mathrm{i}tx} - 1)\mathrm{d}R(x)\right\}, \quad -R(x) = \frac{M(x)}{x^\alpha}$$

Limits on subsequences

$$\mathbf{E}e^{\mathrm{i}tV}=\exp\left\{\int_0^\infty(e^{\mathrm{i}tx}-1)\mathrm{d}R(x)
ight\},\quad -R(x)=rac{M(x)}{x^lpha}$$

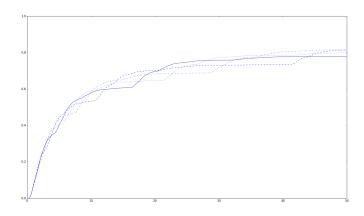
Theorem (Csörgő & Megyesi (2002))

$$\frac{\sum_{i=1}^{n_r} X_i}{n_r^{1/\alpha} \ell_1(n_r)} \xrightarrow{\mathcal{D}} V_{\lambda} \quad \text{as } r \to \infty,$$

whenever $\gamma_{n_r} \stackrel{cir}{\rightarrow} \lambda$. Here

$$\mathbf{E}e^{\mathrm{i}tV_{\lambda}}=\exp\left\{\int_{0}^{\infty}(e^{\mathrm{i}tx}-1)\mathrm{d}R_{\lambda}(x)\right\},\quad R_{\lambda}(x)=-\frac{M(\lambda^{1/\alpha}x)}{x^{\alpha}}.$$

$$G_{\lambda}(x) = \mathbf{P}(V_{\lambda} \leq x)$$



Merging

$$\begin{split} \mathbf{E}e^{\mathrm{i}tV} &= \exp\left\{\int_0^\infty (e^{\mathrm{i}tx}-1)\mathrm{d}R(x)\right\}, \quad -R(x) = \frac{M(x)}{x^\alpha} \\ \mathbf{E}e^{\mathrm{i}tV_\lambda} &= \exp\left\{\int_0^\infty (e^{\mathrm{i}tx}-1)\mathrm{d}R_\lambda(x)\right\}, \quad R_\lambda(x) = -\frac{M(\lambda^{1/\alpha}x)}{x^\alpha}. \\ \gamma_x &= \gamma(x) = \frac{x}{c^n}, \quad \text{where } c^{n-1} < x \le c^n. \end{split}$$

Theorem (Csörgő & Megyesi (2002))

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}}\left|\mathbf{P}\left(\frac{S_n}{n^{1/\alpha}\ell_1(n)}\leq x\right)-\mathbf{P}(V_{\gamma_n}\leq x)\right|=0.$$

Outline

Darling–Kac theorem in the usual setting
Renewal chain
Darling–Kac theorem

Semistable laws

Definition and properties Possible limits

Semistable Darling–Kac result
Limit distribution

Markov renewal chain

$$(f_k)_{k\geq 0}$$
 probability distribution $\sum_{k=0}^{\infty}f_k=1$. Markov renewal chain $(X_n)_{n\geq 0},\, X_n\in\mathbb{N}_0=\mathbb{N}\cup\{0\}$

$$p_{\ell,k} := \mathbf{P}(X_{n+1} = k | X_n = \ell) = \begin{cases} f_k, & \ell = 0, \\ 1, & k = \ell - 1, \ \ell \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Return times and occupation times

$$X_0 = 0$$
, and $0 = S_0 < S_1 < S_2 < \dots$ return times to 0.

$$S_n = \tau_1 + \tau_2 + \ldots + \tau_n, \quad n \geq 1,$$

 $\tau, \tau_1, \tau_2, \dots$ are iid random variables, with distribution

$$P(\tau = k) = f_{k-1}, k \ge 1.$$

Occupation time of 0:

$$T_n = \sum_{j=0}^{n-1} I_{X_j=0}, \quad n \ge 1.$$

$$T_n \geq m \iff S_{m-1} \leq n-1,$$

$$a_n^{1/\alpha}\ell_1(a_n)\sim n$$

Theorem (K & Terhesiu (2018))

If
$$\gamma(a_{n_r}) \stackrel{cir}{\to} \lambda \in (c^{-1}, 1]$$
, then for any $x > 0$

$$\lim_{r\to\infty} \mathbf{P}(S_{n_r}/a_{n_r}\leq x) = \mathbf{P}\left((V_{h_{\lambda}(x)})^{-\alpha}\leq x\right) =: H_{\lambda}(x),$$

where

$$h_{\lambda}(x) = \frac{\lambda x}{c^{\lceil \log_c(\lambda x) \rceil}}.$$

More generally, the following merging result holds

$$\lim_{n\to\infty}\sup_{x>0}|\mathbf{P}(S_n\geq a_nx)-\mathbf{P}(V_{\gamma(a_nx)}\leq x^{-1/\alpha})|=0.$$

Proof

$$\begin{aligned} \mathbf{P}(T_n \geq a_n x) &= \mathbf{P}(S_{\lceil a_n x \rceil - 1} \leq n - 1) \\ &= \mathbf{P}\left(\frac{S_{\lceil a_n x \rceil - 1}}{(a_n x)^{1/\alpha} \ell_1(a_n x)} \leq \frac{n - 1}{(a_n x)^{1/\alpha} \ell_1(a_n x)}\right) \\ &\sim \mathbf{P}(V_{\gamma(a_n x)} \leq x^{-1/\alpha}) \end{aligned}$$

Outline

Darling–Kac theorem in the usual setting
Renewal chain
Darling–Kac theorem

Semistable laws

Definition and properties Possible limits

Semistable Darling-Kac result

Limit distribution

On the distribution function

Behavior at infinity

$$\mathbf{P}\left((V_{h_{\lambda}(x)})^{-\alpha} \leq x\right) =: H_{\lambda}(x),$$

Theorem (K – Terhesiu)

For x large enough, there exist $\kappa_1 > \kappa_2 > 0$ (independent of x) such that

$$\exp\left\{-\kappa_1 x^{\frac{1}{1-\alpha}}\right\} \leq \overline{H}_{\lambda}(x) = 1 - H_{\lambda}(x) \leq \exp\left\{-\kappa_2 x^{\frac{1}{1-\alpha}}\right\}.$$

If M is continuous, then for any $\lambda \in (c^{-1}, 1]$

$$H'_{\lambda}(0) = \lim_{x \downarrow 0} \frac{H_{\lambda}(x)}{x} = M\left(\lambda^{1/\alpha}\right).$$

Darling–Kac theorem in the usual setting	Semistable laws	Semistable Darling–Kac result
On the distribution function		
Darling-Kac theorem in the semistable case		University of Szeged

H function

