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Renewal chain

Markov renewal chain
(f)k>0 probability distribution >~} ; fx = 1. Markov renewal
chain (Xp)n>0, Xn € Ng = NU {0}

fr, £=0,
Pk =PXnp1 =kl Xn=0)=31, k=0—-1,0>1,
0, otherwise.

Xn recurrent, with unique invariant measure
o
ﬂn:WOZf;, n>1, and my > 0.
i=n

X is null recurrent (i.e. the invariant measure is infinite) iff
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Renewal chain

Return times and occupation times

Xo=0,and 0 = 5y < Sy < S»> < ... consecutive return times
to 0.

Sn:’r1+7'2+...+7'n, n>1,

where 7,1, 1o, ... are iid random variables, with distribution
P(r=k)=fq, k>1.

Occupation time of 0, i.e. the number of visits to 0 up to time
n—1:

n—1
Th=> Ix—0, n=>1.
j=0
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Renewal chain

Duality

T, >m < Sp,_1<n-1,

number of visits to the state 0 before time n is at least m if and
only if the (m — 1)st return takes place before time n.
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Renewal chain

Stable laws, domain of attraction

V is stable, if there exist X, X, Xo, ... lid, a, > 0, ¢, € R, such
that .

15 x 2 v

an i

F e D(a)iff 1 — F(x) = £(x)x™ 2.
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Renewal chain

Regular variation

£:(0,00) — (0, 00) is slowly varying if for every A > 0

. l(Ax)
Xll—>moo f(X) =1
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:
Renewal chain

Regular variation

£:(0,00) — (0, 00) is slowly varying if for every A > 0

. l(Ax)
Xll—>moo f(X) =1

f is regularly varying with parameter —«, f € RV_,, if
f(x) = £(x)x~“.
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Renewal chain

Domain of attraction
(6')1'20 € D(a), a < 1;that is,

> fi=enne,

j=n

for a slowly varying ¢. Then

Z?:1 )(l 2} Zaa
n'/e¢y(n)

where n'/®¢4(n) is the asymptotic inverse of n®/¢(n), Z, is
a-stable.
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Darling—Kac theorem

Darling—Kac theorem
b(n) = n'/*¢4(n), and a(n) = n®/4(n) its asymptotic inverse.
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Darling—Kac theorem

Darling—Kac theorem
b(n) = n'/*¢4(n), and a(n) = n®/¢(n) its asymptotic inverse.

P(Tn > a(n)x) = P(Synyx_1 < n—1)

. Sa(n)x—1 n—1

B (b(a(n)x —1) = b(a(n)x — 1))
—P(Z, < x7 1)

— P(M, > X).

M, 2 (Z,)~* Mittag-Leffler distribution. Hence

T
a(n) v
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Definition and properties

Semistable laws

Paul Lévy 1935 (Istvan Berkes: Some forgotten results of Paul
Lévy)
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Definition and properties

Semistable laws

Paul Lévy 1935 (Istvan Berkes: Some forgotten results of Paul
Lévy)

Martin-L6f 1985: Clarification of the St.Petersburg paradox

= Sandor Csoérgd
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Definition and properties

Semistable laws

Paul Lévy 1935 (Istvan Berkes: Some forgotten results of Paul
Lévy)

Martin-L6f 1985: Clarification of the St.Petersburg paradox

= Sandor Csoérgd

Kruglov, Mejzler, Pillai, Shimizu, Grinevich, Khokhlov
Dodunekova, Berkes, Cséaki, Megyesi, Gyorfi, K

Meerschaert, Scheffler, Kern, Wedrich

Sato, Watanabe, Yamamuro
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Definition and properties

Semistable laws

V is stable, if there exist X, Xj, Xo, .. . iid, a, > 0, such that

1<, »

— Xi— V.

an 4
i=1

W is semistable, if there exist X, X1, Xo, .. . iid, a5 > 0, ng

geometrically increasing (= c¥), such that

13X 2w
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Definition and properties

Characteristic function

Characteristic function of a nonnegative semistable random
variable V:

Ee'!V = exp {ita + / (e™ — 1)dFt’(x)} ,
0
where a > 0

M : (0, 00) — (0, 00) logarithmically periodic M(c'/“x) = M(x)
—R(x) := M(x)/x“ is nonincreasing for x > 0, a € (0, 1).
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Definition and properties

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000)
X, X1, Xz,...0d F(x) = P(X < x). V= V(R) semistable

Ee'V = exp {/Oo(e”" - 1)dR(x)} , —R(x)= %
0

X € Dyy(G) if Fkn, A

:
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Definition and properties

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000)
X, X1, Xz,...0d F(x) = P(X < x). V= V(R) semistable

Ee'V = exp {/ (e — 1)dR(x)} , —R(x)= %
0
X € Dygp(G) if Fkn, A,
LN
n

F e Dg(V)iff 1 — F(x) = £(x)M(x)x.
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Possible limits

Circular convergence

up converges circularly to u € (¢~ 1], up & u, if u e (¢!, 1)

and u, — uin the usual sense, or u = 1 and u, has limit points
1, 0r ¢!, or both.
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Possible limits

Circular convergence

up, converges circularly to u € (¢=1,1], un & u, ifu e (c1,1)

and u, — v in the usual sense, or u = 1 and u, has limit points
1, or ¢!, or both.
For x > 0 (large) we define the position parameter as

X
=)= ;. where " T<x<c

¢! =liminfry, < limsupyy = 1.
X0 X—00
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Possible limits

Limits on subsequences

E6V — exp { /0 Tlet - 1)dR(X)} . —R(x)
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Possible limits

Limits on subsequences

Ee"’ = exp {/Ooo(eifx - 1)dR(X)} . _Rx) = M)

XOt
Theorem (Cs6rgd & Megyesi (2002))

nr g
i=1 )(’

D
o, 1 — V) asr— oo,
ny £1(nr)

whenever v, <% \. Here

Ee'" = exp {/Ooo(e”x — 1)dR,\(x)} . Ri(x) = —M.

XOl
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Possible limits

G\(x) =P(V), < x)
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| Possible limits I
Merging
Ee'!Y = exp {/ (et — 1)dR(X)} , —R(Xx)= /Vi(:()
0
‘ s 1/a
EettVA = exp {/0 (ettx _ 1)dR)\(X)} , R)\(X) = —w.

w =v(x) = %, where ¢! < x < .
Theorem (Csérgd & Megyesi (2002))

lim sup
n—oo XER

=0.

Sn
P(—°" < x)—P(V, <
(n1/a£1(n) _X) (Vo < X)
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Limit distribution

Markov renewal chain

(f)k>0 probability distribution >~ , fi = 1. Markov renewal
chain (Xn)nzo, X € Nyg =NU {0}

fk: l= 07
Prk =PXnp1 =kl Xn=0)=31, k=0-1,0>1,
0, otherwise.
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Limit distribution

Return times and occupation times
Xo=0,and 0 =5y < S < S < ... return times to 0.
Sn:’r1+7'2+...+7'n, n>1,
T,T1,To,... are iid random variables, with distribution

P(r=k)=fq, k>1.
Occupation time of 0:

n—1
Th=) Ix—0, n=>1.
j=0

Th>m <— Sp_1<n-1,
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Limit distribution

al,/a& (an) ~n
Theorem (K & Terhesiu (2018))

Ify(an,) % X € (c=1,1], then for any x > 0

lim P(Sy, /ap, < X) =P ((Vi,(0) ™ <) = Fh(x),

where
AX

(X)) = —fiog. o7

More generally, the following merging result holds

lim sup [P(Sp > apx) — P(V,(a,0) < x*1/a)| =0.

n—oo x>0
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Limit distribution

Proof

 \(anx)V/ly(anx) ~ (anx)1/2ty(anx)
~P(Vy(am) < x V%)

Darling—Kac theorem in the semistable case University of Szeged
00




Darling—Kac theorem in the usual setting Semistable laws Semistable Darling—Kac result

0000000 00000 00000
00 00000 00000

On the distribution function

Outline
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On the distribution function
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On the distribution function

Behavior at infinity

P ((VhA(X))_a < X) =: H)\(X),

Theorem (K — Terhesiu)

For x large enough, there exist k1 > ko > 0 (independent of x)
such that

exp { x5 | < Fy(x) = 1~ Fy(x) < exp { —mox™7
If M is continuous, then for any \ € (c*1 ]

H(0) = im HA(X) =M (V).
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On the distribution function
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On the distribution function

H function
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On the distribution function
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