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1. Introduction

consider the non-autonom

For a given function a: [, % o0 s equation
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A model from mechanics

k@)

force of elasticity (Hooke): —k(t)x (k(t) > 0)

mx + k(t)x =0

m, k are given; x = x(t) =?
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Oscillations

The model equation:

X+ a%(t)x =0

\/a%(t) = a(t) > 0 — varying frequency
the equation is not integrable
We investigate two cases:

l. a(t) oo (t — o0)
[I. a(t) is periodic
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| X + a(t)x = 0, a(t) /oo (t — o0)

the amplitudes of the deviation x(t) are decreasing
the amplitudes of the velocity x’(t) are increasing
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| X + a(t)x = 0, a(t) /oo (t — o0)

M. Biernacki (1933): What conditions guarantee
A x(8) =0

for all solutions x?
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| X + a(t)x = 0, a(t) /oo (t — o0)

M. Biernacki (1933): What conditions guarantee
A x(8) =0

for all solutions x?

G. Armellini, L. Tonelli, G. Sansone (1936): If a is smooth and In a(t)
tends to oo "regularly" (t — o0), then (Vsol.x ):

lim x(t) =0.

t—00

(regularly ~ the increase of a(t) to oo cannot be localized to a set of small
measure)

L. Hatvani (Bolyai Institute) 2'nd order ODE's with random coeff.



| X + a(t)x = 0, a(t) /oo (t — o0)

M. Biernacki (1933): What conditions guarantee
A x(8) =0

for all solutions x?7
G. Armellini, L. Tonelli, G. Sansone (1936): If a is smooth and In a(t)
tends to oo "regularly" (t — o0), then (Vsol.x ):

tILrgO x(t) =0.

(regularly ~ the increase of a(t) to oo cannot be localized to a set of small
measure)

The condition of regularity cannot be dropped; the first counterexample:
A. S. Galbright, E. J. McShane, G. B. Parish, Proc. Natl. Acad. Sci. USA,
53(1965).
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| X + a(t)x = 0, a(t) /oo (t — o0)

Conjecture:

It is true "generically" that ¥V x

lim x(t) =0.

t—00

"generically"~ apart from exceptional cases
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a(t) /oo (t — o0) a(t) step function

a
o —
a, @ 0
—_—0
o—
——o0
>t
t, t, t, t, A

X+aix=0 (ty_y <t<ty keN).

The A-T-S Theorem cannot be applied.
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

PROBABILISTIC APPROACH
Let 7 = tx — txy—1 (k =1,2,...) be independent, not necessarily
identically distributed random variables.
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

PROBABILISTIC APPROACH
Let 7 = tx — txy—1 (k =1,2,...) be independent, not necessarily
identically distributed random variables.

Probblem:

What is the probability of the event that for every solution x of the
equation

X+aix=0 (tyy <t<ty keEN)

the property fIi}m x(t) = 0 holds?
(e}

Kolmogorov's 0 — 1 law implies that this probability equals either 0 or 1.

Conjecture:
The probability above equals 1. (generically=almost sure)
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

Theorem 1. (L.H.—L. Stach¢, 1998). Suppose that 7y = ty — ty_1 are

independent identically distributed random variables of the uniform
distribution on interval [0, 1].

Then it is almost sure that every solution x has the property

lim x(t) =0.

t—00

L. H., Acta Sci. Math. 68(2002): the monotony of {ax} can be weakened.
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X+aix=0(ty 1 <t<ty), ax S o0

Example: pendulum with varying length
1

A1) .

£
Uk
Problem: Let the sequence (¢,)?°; be given. Suppose that the deviation
©(t) cannot be observed, so the sequence {tx} is chosen "at random".
What is the probability that one can lift the weight, i.e., lim;_ o ©(t) =0
is satisfied for all motions?

Corollary: If 7, = ti — ti_1 are independent random variables uniformly
distributed on the same interval [0, 1], then this probability equals 1.

p+-p=0 (txi1 <t<ty keN)
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

X+aix=0 (ty_y <t<ty, keN)
{Tk = tk — tk_1}32, independent r.v.
Fi(x) = P(1x < x): the distribution function of 7
or(s) == [;° e dFi(x): the characteristic function of 7
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

X+aix=0 (ty_y <t<ty, keN)
{Tk = tk — tk_1}32, independent r.v.
Fi(x) = P(1x < x): the distribution function of 7
or(s) == [;° e dFi(x): the characteristic function of 7

Theorem 2 (S. Csorgd, L. H.). Suppose that ax /oo (k — o0). If
limsup |ox(2ak)| < 1,
k—00

then the property
lim x(t) =0
t—00

holds almost surely (i.e., with probability 1) for all solutions of the
equation.
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

Corollary. Suppose that 74, k = 1,2,... are independent, identically
distributed random variables with characteristic function ¢. If

(¥) lim sup [¢(s)[ < 1,
S—00

then for arbitrary (ax)32, the property
g5, X8 =0

holds almost surely for all solutions of the equation.
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X+aix=0 (tp1<t<ty keN),

ax /oo (k — o0)

Corollary. Suppose that 74, k = 1,2,... are independent, identically
distributed random variables with characteristic function ¢. If

(¥) lim sup [¢(s)[ < 1,
S—00
then for arbitrary (ax)32, the property
g5, X8 =0

holds almost surely for all solutions of the equation.

(F): Cramér’s Continuity Condition

It is satisfied for all continuous random variables and for "overwhelming
majority" of singular distributions, which means that our Conjecture is
considerably established by the last Corollary.
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Pp+Ep=0 (txi-1<t<t; keEN)

Example 1. Let 74 = t, — t,_1 be an independent r.v. uniformly
distributed on the interval [0, Ty] (k =1,2,...).

V/2+/1 — cos Tys

ch. £ [d(s)] = Tos (s 2 0)
ag = 0 = 500 (k— o0)
The stability condition:
lim sup |¢x(2ak)| = lim sup M <1,
k—00 koo Tkak

Corollary. Ha

k—o0

lim mf{ 2 } = liminf{E(r)} > 0,

then lim¢_, o x(t) = 0 almost surely holds for all solutions.
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Pp+Ep=0 (txi-1<t<t; keEN)

Example 1. Let 74 = t, — t,_1 be an independent r.v. uniformly
distributed on the interval [0, Ty] (k =1,2,...).

V/2+/1 — cos Tys

ch. £ [d(s)] = Tos (s 2 0)
ag = 0 = 500 (k— o0)
The stability condition:
lim sup |¢x(2ak)| = lim sup M <1,
k—00 koo Tkak

Corollary. Ha

k—o0

lim mf{ 2 } = liminf{E(r)} > 0,

then lim¢_, o x(t) = 0 almost surely holds for all solutions.

Application to the problem of lifting a weight by the use of a rope and a

pulley: DO NOT HURRY!
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. a(t) is periodic (parametric resonance)

O—¢€ y

\/%:w—l—e \/;:w—e \/%:w—l—e
X+ a*(t)x =0 (a(t) periodikus)
Hill-Meissner’s equation [G. W. Hill (1886), E. Meissner (1918)]
X+a%(t)x =0

(1) [@te ha2KT << (kDT
N =l woe ha(k+1)T<t<2k+1)T

L. Hatvani (Bolyai Institute) 2'nd order ODE's with random coeff.



. a(t) is periodic (parametric resonance)

INSTABILITY - PARAMETRIC RESONANCE
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Stochastic Hill-Meissner equation (random swinging)

X+ a%(t)x =0

a(t) . m+e if g1 <t<to
|l m—e if oy <t < tok+1

a
m+€ |——0 o— ——oO0 o—
T—€ ——0 —0 ——0
1 1 1 1 1 1 1 t
ly l‘, Loy L

(Tk =t — tk—1)32, are independent, identically distributed random
variables with expected value T. (In Meissner Equation: 7, = T (k € N).)
¢: the characteristic function of 7
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Stochastic Hill-Meissner equation (random swinging)

Problem: Let ¢ > 0 be given. For which distributions and for which values
of T does the property

almost surely (Vsin.x) limsup [x(t)] = oo
t—o00

hold?
(stochastic parametric resonance)
What is the map of the almost sure instability on the plain ¢ — T7?

Theorem 3 (S. Csorgg, L. H.). If
B=pB(T,9)
= —(n* + ) {|o(2m + &) + |o(2(m — )1}
+2em{l + |9(2(m + €))ll¢(2(m —€))[} > O,

then




X+ a*(t)x =0

if o1 <t <t
a(t):{ﬂ—i-& It b1 < t < toy

. Tk =ty — ty—
m—e ifto <t<toprr k k k=1

Theorem 3. If
/8 = 5(57 Tv ¢)

= (1 + ) {|o(2( + )| + [6(2m —€))[}
+2em{l + |¢(2(m + €))l|o(2(m — €))[} > O,

lim E {xz(tn) + M} = o0

n—o0 an—i-l

then

Stochastic Parametric Resonance
Problem of random swinging: Which r.v.'s 7, (i.e., which ¢'s) and
which T's satisfy the condition of this Theorem for e — 0 + 07

A necessary condition is: ¢(2mr) = 0.
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Stochastic instability, example

1. 7% = Uniform ([0,2T]), E(7x) =T
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Stochastic instability, example

1. 7% = Uniform ([0,2T]), E(7x) =T

B |sin(sT)|
|sin(27 T)| 1
2 = = T = | —
ol =22 o T (e

2'nd order ODE's with random coeff.
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Stochastic instability, computer simulation

x piros: det. k@k: v@l.
AT WAWA A A | |
\VAAUAAY/ \/: v 5 2
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Stochastic instability, computer simulation




Stochastic instability, computer simulation

X tau=unif ([0,1])
100+

501

MAALARAA AR A ARAAAAANANN

VWWWMWWWWMWWNW%E A8 t

_50,

-100¢t
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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