Iteration of Multiplication and Ceiling Function on the Rationals

Tamás Waldhauser, István Zalán Ruff University of Szeged, Hungary

We examine the properties of the operation $x \circ y = x\lceil y\rceil$. We present a handful of conjectures about the topic. The most important of them is that the set $\langle q \rangle_{\circ}$ generated from q by the operation \circ contains an integer. Using the sequence $\lceil q \rceil, \lceil q \lceil q \rceil \rceil, \lceil \lceil q \lceil q \rceil \rceil \rceil, \ldots$, Chen's estimate for the lowest primitive root modulo p^2 and computer-aided testing, we proved the conjecture for values of q for which the numerator and denominator are close enough. The map $\tilde{g}_q(x) = \lceil qx \rceil$ is a conjugate map of $f_q(x) = q \circ x$. We describe results of Lagarias and Sloane regarding the exceptional set of \tilde{g}_q , which is the set containing integers on which the iteration of \tilde{g}_q does not produce a number divisible by the denominator of q. We describe the exceptional set for $q = \frac{1}{l}$, which is an example for the exceptional set being infinite. Finally, we show that Lagarias's conjecture about the exceptional set being finite for |q| > 1 implies that the exact exceptional sets can be given for these values of q.

- J. C. LAGARIAS, N. J. A. SLOANE, Approximate squaring, *Experiment. Math.* 13 (2004)
- BO CHEN, Explicit upper bound on the least primitive root modulo p², Int J. Number Theory 18 (2022)