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Let t be a positive real number. A graph is called t-tough if the removal of any vertex
set S that disconnects the graph leaves at most | S|/t components. The toughness of
a graph is the largest ¢ for which the graph is t-tough. We prove that toughness is
fixed-parameter tractable parameterized with the treewidth. More precisely, we give
an algorithm to compute the toughness of a graph G' with running time O(|V(G)|? -
tw(G)?™(@)) where tw(G) is the treewidth. If the treewidth is bounded by a constant,
then this is a polynomial algorithm. There are quite a few results on the computational
aspects of toughness.

In [2| Bauer et al. proved that, For any positive rational number ¢, the problem
t-TOUGH is coNP-complete. On the other hand, for some graph classes, we do have
polynomial algorithms. For example the class of claw-free graphs [4], class of split
graphs [5] and the class of 2K,-free graphs |[6].

There are many decision problems on graphs that are NP-complete in general but
can be solved in polynomial time for graphs with bounded treewidth using dynamic
programming [7].

Computing the treewidth of an arbitrary graph is an NP-hard problem [1]. However,
if the treewidth is bounded, it can be computed in polynomial time |[3].

We use a dynamic programming approach to solve this modified problem, assuming
that very nice tree decomposition of G is also given.
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