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Motivated by the desire to interpret the second partial cohomology groups in terms
of normal extensions, Dokuchaev and Khrypchenko [1] introduced the notion of an ad-
missible extension of a Clifford semigroupK by a group, and established an equivalence-
preserving one-to-one correspondence between twisted partial actions of groups on K
and Sieben twisted module structures on K over E-unitary inverse semigroups. We
generalize the notion of admissibility to normal extensions where any inverse semi-
group is allowed to appear instead of a group, and apply fundamental concepts of the
structure theory of inverse semigroups (see [2]) to characterize admissible extensions
of Clifford semigroups by inverse semigoups.

It is well known that each normal extension is equivalent to a normal extension
associated to a pair (U, ρ) where U is an inverse semigroup and ρ is a congruence on U .
We call a normal extension (U, ρ) admissible if K = Ker ρ is a Clifford semigroup, and
the congruence ρmin = ρ∩µ (where µ is the greatest idempotent-separating congruence
on U) has an order preserving transversal, i.e., there exists a map τ : U/ρmin → U
such that u ρmin τ(ρmin(u)) for every u ∈ U , and x ≤ y implies τ(x) ≤ τ(y) for every
x, y ∈ U/ρmin.

In our characterization of admissible extensions, we use the inverse semigroup C(U)
of all permissible subsets of U . We associate a normal extension (C(U, ρ), C(ρ)) to any
normal extension (U, ρ) where C(U, ρ) is an inverse subsemigroup of C(U) and C(ρ) is
a congruence on C(U, ρ), and establish the following result.

Theorem 1. A normal extension (U, ρ) is admissible if and only if the congruence C(ρ)
in the normal extension (C(U, ρ), C(ρ)) has an order preserving Billhardt transversal.
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