Admissible Extensions of Clifford Semigroups by Inverse Semigroups

Ádám Budai, Mária B. Szendrei

University of Szeged, Szeged, Hungary

Motivated by the desire to interpret the second partial cohomology groups in terms of normal extensions, Dokuchaev and Khrypchenko [1] introduced the notion of an admissible extension of a Clifford semigroup K by a group, and established an equivalencepreserving one-to-one correspondence between twisted partial actions of groups on Kand Sieben twisted module structures on K over E-unitary inverse semigroups. We generalize the notion of admissibility to normal extensions where any inverse semigroup is allowed to appear instead of a group, and apply fundamental concepts of the structure theory of inverse semigroups (see [2]) to characterize admissible extensions of Clifford semigroups by inverse semigoups.

It is well known that each normal extension is equivalent to a normal extension associated to a pair (U, ρ) where U is an inverse semigroup and ρ is a congruence on U. We call a normal extension (U, ρ) admissible if $K = \text{Ker } \rho$ is a Clifford semigroup, and the congruence $\rho^{\min} = \rho \cap \mu$ (where μ is the greatest idempotent-separating congruence on U) has an order preserving transversal, i.e., there exists a map $\tau: U/\rho^{\min} \to U$ such that $u \ \rho^{\min} \tau(\rho^{\min}(u))$ for every $u \in U$, and $x \leq y$ implies $\tau(x) \leq \tau(y)$ for every $x, y \in U/\rho^{\min}$.

In our characterization of admissible extensions, we use the inverse semigroup C(U) of all permissible subsets of U. We associate a normal extension $(C(U, \rho), C(\rho))$ to any normal extension (U, ρ) where $C(U, \rho)$ is an inverse subsemigroup of C(U) and $C(\rho)$ is a congruence on $C(U, \rho)$, and establish the following result.

Theorem 1. A normal extension (U, ρ) is admissible if and only if the congruence $C(\rho)$ in the normal extension $(C(U, \rho), C(\rho))$ has an order preserving Billhardt transversal.

- M. DOKUCHAEV, M. KHRYPCHENKO, Twisted partial actions and extensions of semilattices of groups by groups, *International Journal of Algebra and Computation* 27 (2017), 887–933.
- [2] M. V. LAWSON, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific, Singapore, 1998.