GEOMETRIC CONSTRUCTIBILITY OF POLYGONS LYING ON A CIRCULAR ARC

Delbrin Ahmed, Gábor Czédli, Eszter K. Horváth University of Szeged, Bolyai Institute, Szeged, Hungary

For a positive integer n, an n-sided polygon lying on a circular arc or, shortly, an n-fan is a sequence of n+1 points on a circle going counterclockwise such that the "total rotation" δ from the first point to the last one is at most 2π . We prove that for $n \geq 3$, the n-fan cannot be constructed with straightedge and compass in general from its central angle δ and its central distances, which are the distances of the edges from the center of the circle. Also, we prove that for each fixed δ in the interval $(0, 2\pi]$ and for every $n \geq 5$, there exists a concrete n-fan with central angle δ that is not constructible from its central distances and δ . The present paper generalizes some earlier results published by the second author and \hat{A} . Kunos on the particular cases $\delta = 2\pi$ and $\delta = \pi$.

- [1] P. J. Cameron, *Introduction to Algebra*, 2nd edition, Oxford University Press, 2008.
- [2] G. CZÉDLI, Problem Book on Geometric Constructibility, JATEPress (Szeged) 2001, 149 pages (in Hungarian)
- [3] G. CZÉDLI, Geometric constructibility of Thalesian polygons. *Acta Sci. Math.* (Szeged) 83 (2017), 61–70.
- [4] G. CZÉDLI, Á. SZENDREI, Geometric constructibility. *Polygon* (Szeged), ix+329 pages, 1997 (in Hungarian, ISSN 1218-4071)
- [5] G. CZÉDLI, Á. KUNOS, Geometric constructibility of cyclic polygons and a limit theorem, Acta Sci. Math. (Szeged) 81, 643–683 (2015)
- [6] P. Schreiber, On the existence and constructibility of inscribed polygons. Beiträge zur Algebra und Geometrie 34, 195–199 (1993)
- [7] P. L. WANTZEL, Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec le règle et le compas. J. Math. Pures Appl. 2, 366–372 (1837)