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Notations

Z: set of integers,

N: set of positive integers,

Z+: set of nonnegative integers,

R: set of real numbers,

R+: set of nonnegative real numbers,

C: set of complex numbers.

If Ω is a nonempty set and A is a subset of Ω, then we will denote it
by A ⊂ Ω (where ⊂ is not necessarily for strict inclusion, i.e.,
if A ⊂ Ω, then A = Ω can occur as well).
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Required knowledge of measure theory

Algebra, σ-algebra

Let Ω ̸= ∅ be a non-empty set. A set H ⊂ 2Ω consisting of certain
subsets of Ω is called an algebra if

(i) Ω ∈ H,
(ii) closed under the union of pairs of sets, i.e., for any A,B ∈ H, we

have A ∪ B ∈ H,
(iii) closed under the complements of individual sets, i.e., for any

A ∈ H, we have A := Ω \ A ∈ H.
An algebra A ⊂ 2Ω is called a σ-algebra if the following stricter
version of (ii) holds:
(ii’) closed under countable unions, i.e., for any A1,A2, · · · ∈ A, we

have
∞⋃

n=1

An ∈ A.

Then the pair (Ω,A) is called a measurable space.
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Required knowledge of measure theory

Measure
Let Ω ̸= ∅ be a nonempty set and H ⊂ 2Ω be an algebra.
A function µ : H → [0,∞] is called

finitely additive, if for any disjoint sets A,B ∈ H, we have
µ(A ∪ B) = µ(A) + µ(B).
a measure, if µ(∅) = 0 and it is σ-additive, i.e.,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

for any pairwise disjoint sets A1,A2, · · · ∈ H satisfying
∞⋃

n=1

An ∈ H.

If µ : H → [0,∞] is finitely additive, then, by induction, one can show
that for any n ∈ N and any pairwise disjoint sets {Ak}n

k=1 ⊂ H, we
have µ(

⋃n
k=1 Ak ) =

∑n
k=1 µ(Ak ).

5



Required knowledge of measure theory
Measure
Let Ω ̸= ∅ be a nonempty set, and H ⊂ 2Ω be an algebra.
A measure µ : H → [0,∞] is called

finite, if µ(Ω) <∞.
a probability measure, if µ(Ω) = 1.
σ-finite, if there exist sets Ω1,Ω2, · · · ∈ H such that Ω =

⋃∞
k=1 Ωk ,

and µ(Ωk ) <∞, k ∈ N.
A function µ : H → [−∞,∞] is called

a signed measure, if it can be written in the form µ = µ1 − µ2,
where µ1, µ2 are measures, and at least one of them is finite.

Let Ω be a nonempty set. For each n ∈ N, let An ⊂ Ω.

If A1 ⊂ A2 ⊂ . . . and A :=
∞⋃

n=1

An, then we write that An ↑ A.

If A1 ⊃ A2 ⊃ . . . and A :=
∞⋂

n=1

An, then we write that An ↓ A.
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Properties of a measure (e.g., continuity of a measure)

Let Ω ̸= ∅ be a nonempty set, and H ⊂ 2Ω be an algebra.
Let P : H → [0,∞] be a finitely additive function such that P(Ω) = 1.
Then

1 P(∅) = 0;
2 for each A ∈ H, we have 0 ⩽ P(A) ⩽ 1;
3 P is monotone, i.e., for each A,B ∈ H, A ⊂ B, we have

P(A) ⩽ P(B), and we also have P(B \ A) = P(B)− P(A);
4 for each A ∈ H, we have P(A) = 1 − P(A);
5 the following assertions are equivalent:

(a) P is σ-additive.
(b) P is continuous from below, i.e., for each A1,A2, · · · ∈ H, An ↑ A

and A ∈ H, we have lim
n→∞

P(An) = P(A).
(c) P is continuous from above, i.e., for each A1,A2, · · · ∈ H, An ↓ A

and A ∈ H, we have lim
n→∞

P(An) = P(A).
(d) P is „continuous from above on the emptyset”, i.e., for each

A1,A2, · · · ∈ H and An ↓ ∅, we have lim
n→∞

P(An) = 0.
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Required knowledge of measure theory
Additivity, subadditivity of a measure
Let (Ω,A) be a measurable space and P : A → [0,1] be a probability
measure. Then

1 P is finitely additive;
2 P is σ-subadditive, i.e., for each A1,A2, · · · ∈ A, we have

P

( ∞⋃
n=1

An

)
⩽

∞∑
n=1

P(An).

One can check that the intersection of any nonempty family of σ-algebras is a
σ-algebra.

Generated σ-algebra by a family of sets
Let Ω ̸= ∅ be a nonempty set, and H ⊂ 2Ω be an algebra. Let Γ ̸= ∅ and for each
γ ∈ Γ, let Aγ ∈ H. The intersection of all the σ-algebras containing the sets Aγ ,
γ ∈ Γ, is called the σ-algebra generated by the family of sets Aγ , γ ∈ Γ. In
notation: σ(Aγ : γ ∈ Γ).

The definition of a generated σ-algebra can be also given for an arbitrary family of
sets Aγ ⊂ Ω, γ ∈ Γ (not necessarily belonging to an algebra).
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Required knowledge of measure theory

In fact, σ(Aγ : γ ∈ Γ) is the smallest σ-algebra, which contains the
sets Aγ , γ ∈ Γ.

Carathéodory extension theorem
Let Ω ̸= ∅ be a nonempty set, and H ⊂ 2Ω be an algebra.
Let µ : H → [0,∞] be a σ-finite measure.
Then there exists a uniquely determined σ-finite measure
ν : σ(H) → [0,∞] such that for each A ∈ H, we have ν(A) = µ(A).

Probability space
By a probability space, we mean a triplet (Ω,A,P), where (Ω,A) is
a measurable space, and P : A → [0,1] is a probability measure.

The elements of Ω are called elementary (atomic) events, and the
elements of A are called events. The set Ω is called the sure
(certain) event, and the emptyset ∅ is called the impossible event.
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Required knowledge of measure theory

Random variable, and its distribution
Let (Ω,A,P) be a probability space, (X ,X ) be a measurable space.
A function ξ : Ω → X is called a random variable, if it is measurable,
i.e., for each B ∈ X , we have

ξ−1(B) := {ξ ∈ B} := {ω ∈ Ω : ξ(ω) ∈ B} ∈ A.

The distribution of a random variable ξ : Ω → X is the function
Pξ : X → R,

Pξ(B) := P(ξ ∈ B) = P(ξ−1(B)), B ∈ X ,

which is a probability measure on the measurable space (X ,X ) (can
be checked easily).
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Required knowledge of measure theory

Discrete and simple random vectors
A random variable ξ : Ω → X is called discrete, if its range, the set
ξ(Ω), is countable. A random variable ξ : Ω → X is called simple, if
its range is a finite set.
If ξ : Ω → X and η : Ω → X are random variables and P(ξ = η) = 1,
then we write that ξ = η P-a.s. (equality P–almost surely).

If X = R, or X = Rd , then we always choose X := B(R), and
X := B(Rd), respectively. So in this lecture a function f : R → R is
called measurable if f−1(B) ∈ B(R) for each B ∈ B(R) (in measure
theory it is calld Borel measurability). If ξ : Ω → Rd is a random
variable, then we call it a random vector as well.
If (E , ϱ) is a metric space, then we always furnish it with the
Borel–σ–algebra B(E) (i.e., with the σ–algebra generated by the
open sets).
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Required knowledge of measure theory

Simple random vector

If ξ : Ω → Rd is a simple random vector and its range
ξ(Ω) = {x1, . . . , xk}, where x1, . . . , xk ∈ Rd are pairwise distinct, then

ξ =
k∑

j=1

xj1Aj ,

where Aj := {ω ∈ Ω : ξ(ω) = xj} ∈ A, j = 1, . . . , k , are pairwise

disjoint events and
k⋃

j=1
Aj = Ω, i.e., A1, . . . ,Ak is a so-called partition

of Ω.
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Required knowledge of measure theory

Generated σ–algebra
Let Γ be a nonempty set, and for each γ ∈ Γ let (Xγ ,Xγ) be a
measurable space, and let ξγ : Ω → Xγ be a random variable.
The σ–algebra generated by the random variables {ξγ : γ ∈ Γ} :

σ(ξγ : γ ∈ Γ) := σ(ξ−1
γ (B) : γ ∈ Γ, B ∈ Xγ).

The σ–algebra generated by the random variables {ξγ : γ ∈ Γ} is the
smallest σ–algebra with respect to all the random variables
{ξγ : γ ∈ Γ} are measurable.

σ–algebra generated by a single random variable
The σ–algebra generated by the (single) random variable ξ : Ω → X :

σ(ξ) = ξ−1(X ) := {ξ−1(B) : B ∈ X}.

This σ–algebra consists of those events A which can be decided whether they occured or not
(ω ∈ A holds or not) by observing ξ (in the knowledge of ξ(ω)).
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Required knowledge of measure theory

Note that if σ(ξ) = σ(η), then in general it does not hold that
P(ξ = η) = 1. For example, if η := ξ + 1, then σ(ξ) = σ(η), but
P(ξ = η) = P(ξ = ξ + 1) = 0.

The definition of a generated σ-algebra can be given in case of a set
of not necessarily mesaurable functions as well.
For example, the generated σ-algebra by an arbitrary function
g : Ω → Rd :

σ(g) := σ(g−1(B) : B ∈ B(Rd)) = g−1(B(Rd)) = {g−1(B) : B ∈ B(Rd)},

and σ(g) is the smallest σ-algebra with respect to g is measurable.

Measurability with respect to a sub-σ-algebra
Let (Ω,A,P) be a probability space, (X ,X ) be a measurable space,
ξ : Ω → X be a random variable and F ⊆ A be a sub-σ-algebra. We
say that ξ is F-measurable, if ξ−1(B) ∈ F , ∀ B ∈ X , i.e., σ(ξ) ⊂ F .
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Required knowledge of measure theory
Separable metric space
A metric space is called separable, if it contains a countable, dense
subset. A subset A of a metric space is called separable, if it is
separable as a metric space by restricting the domain of the original
metric to A × A.

Approximation by simple random variables
Let (E , ϱ) be a separable metric space. For an arbitrary random
variable ξ : Ω → E , there exist simple random variables {ξn}∞n=1
such that for all ω ∈ Ω, we have lim

n→∞
ξn(ω) = ξ(ω). If (E , ∥ . ∥) is a

separable normed space, then ξn can be chosen such that
∥ξn∥ ⩽ ∥ξ∥, ∀ n ∈ N.

Approximation by simple random variables
For an arbitrary nonnegative random variable η : Ω → R, there exists
a sequence {ηn}∞n=1 of nonnegative simple random variables such
that for each ω ∈ Ω, we have ηn(ω) ↑ η(ω) as n → ∞.
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Required knowledge of measure theory

For example, one can choose the following sequences:

ηn =
n2n∑
j=1

(j − 1)2−n
1{(j−1)2−n⩽η<j2−n}, n ∈ N,

ηn =
n2n∑
j=1

(j − 1)2−n
1{(j−1)2−n⩽η<j2−n} + n1{η⩾n}, n ∈ N.

Measurable function of a random variable
Let (X ,X ) be a measurable space, ξ : Ω → X be a random variable.

1 If (Y ,Y) is a measurable space, g : X → Y is a measurable
function, then the composite function g ◦ ξ : Ω → Y is a
σ(ξ)–measurable random variable, i.e., σ(g ◦ ξ) ⊂ σ(ξ).

2 If η : Ω → Rd is a σ(ξ)–measurable random variable, then there
exists a measurable function g : X → Rd such that η = g ◦ ξ.

16



Required knowledge of measure theory

„Good sets” principle
Let (Ω,A) and (X ,X ) be measurable spaces, E ⊂ X , and ξ : Ω → X
be a mapping. Then σ(ξ−1(E)) = ξ−1(σ(E)). Further, supposing that
σ(E) = X , the mapping ξ is a random variable if and only if ξ−1(E) ⊂ A.

Measurability of vector-valued mappings

Let (Ω,A) be a measurable space. Then a mapping ξ : Ω → Rd is a
random vector if and only if {ω ∈ Ω : ξ(ω) < x} ∈ A for all x ∈ Rd .
For a mapping ξ : Ω → Rd , the σ-algebra σ(ξ) is the smallest
sub-σ-algebra with respect to ξ is measurable.

Let (Ω,A) be a measurable space, d ∈ N, and ξ1, . . . , ξd : Ω → R be
mappings. Let ξ : Ω → Rd , ξ(ω) := (ξ1(ω), . . . , ξd(ω)), ω ∈ Ω.
Then ξ is a Rd -valued random vector if and only if ξi , i = 1, . . . ,d , are
real-valued random variables.
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Required knowledge of measure theory
Distribution function of a random vector
By the distribution function of a random variable ξ : Ω → Rd ,
ξ = (ξ1, . . . , ξd), we mean the function Fξ : Rd → [0,1],

Fξ(x) := P(ξ < x) = P(ξ1 < x1, . . . , ξd < xd), x = (x1, . . . , xd)
⊤ ∈ Rd .

Let g : Rd → R, aj ,bj ∈ R, aj < bj , j ∈ {1, . . . ,d}, and
∆

(j)
[aj ,bj )

g : Rd → R,

(∆
(j)
[aj ,bj )

g)(x) := g(x1, . . . , xj−1,bj , xj+1, . . . , xd)

− g(x1, . . . , xj−1,aj , xj+1, . . . , xd), x ∈ Rd .

Then for each x ∈ Rd , we have

∆
(1)
[a1,b1)

. . .∆
(d)
[ad ,bd )

g(x) =
∑

(ε1,...,εd )∈{0,1}d

(−1)
∑d

k=1 εk g(c1, . . . , cd),

where ck := εkak + (1 − εk )bk , k = 1, . . . ,d .
Hence ∆

(1)
[a1,b1)

. . .∆
(d)
[ad ,bd )

g is a constant function.
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Required knowledge of measure theory

If a,b ∈ Rd , then a ⩽ b, and a < b means that for each
j = 1, . . . ,d , we have aj ⩽ bj , and aj < bj , respectively,
and let [a,b) := {x ∈ Rd : a ⩽ x < b}.

Characterisation of a multidimensional distribution function
A function F : Rd → R is a distribution function of some random
variable ξ : Ω → Rd if and only if
(1) F is monotone increasing in all its variables,
(2) F is left-continuous in all its variables,
(3) lim

min{x1,...,xd}→∞
F (x) = 1, and

lim
xi→−∞

F (x1, . . . , xi−1, xi , xi+1, . . . , xd) = 0

for all i ∈ {1, . . . ,d} and x1, ..., xi−1, xi+1, ..., xd ∈ R,

(4) for each a,b ∈ Rd , a < b, we have ∆
(1)
[a1,b1)

. . .∆
(d)
[ad ,bd )

F ⩾ 0.
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Required knowledge of measure theory
If d = 1, then condition (4) is implied by condition (1).

Probability of belonging to a rectangle

If ξ : Ω → Rd is a random variable, then for each a,b ∈ Rd , a < b,
we have

Pξ([a,b)) = P(ξ ∈ [a,b)) = ∆
(1)
[a1,b1)

. . .∆
(d)
[ad ,bd )

Fξ ⩾ 0,

where Fξ denotes the distribution function of ξ. Hence Pξ is nothing
else but the Lebesgue-Stieltjes measure corresponding to the distribu-
tion function Fξ.

Equality of one-dimensional distribution functions
Let F : R → [0,1] and G : R → [0,1] be one-dimensional distribution
functions. If F (x) = G(x) for all the common continuity points x ∈ R
of F and G, then F = G. More generally, if S ⊂ R is a dense
subset of R such that F (x) = G(x) for all x ∈ S, then F = G.
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Independence, Kolmogorov 0–1 law

Independence of σ-algebras, events and random vectors
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set.

For each γ ∈ Γ, let Fγ ⊂ A be a sub-σ-algebra.
We say that the sub-σ-algebras {Fγ : γ ∈ Γ} are independent,
if for each finite subset {γ1, . . . , γn} consisting of distinct
elements of Γ and for each Aγ1 ∈ Fγ1 , . . . ,Aγn ∈ Fγn , we have

P(Aγ1 ∩ . . . ∩ Aγn) = P(Aγ1) · · ·P(Aγn).

For each γ ∈ Γ, let Aγ ∈ A. We say that the events {Aγ : γ ∈ Γ}
are independent, if the corresponding generated σ-algebras{
{∅, Aγ , Ω \ Aγ , Ω} : γ ∈ Γ

}
are independent.

For each γ ∈ Γ, let (Xγ ,Xγ) and (Yγ ,Yγ) be measurable spaces
and ξγ : Ω → Xγ and ηγ : Ω → Yγ be random variables. We say
that the random variables {ξγ : γ ∈ Γ} are independent, if the
corresponding generated σ–algebras

{
σ(ξγ) : γ ∈ Γ

}
are

independent.
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Independence, Kolmogorov 0–1 law

We say that the random variables {ξγ : γ ∈ Γ} are independent
from the random variables {ηγ : γ ∈ Γ}, if the σ–algebras
σ(ξγ : γ ∈ Γ) and σ(ηγ : γ ∈ Γ) are independent.

We say that the random variables {ξγ : γ ∈ Γ} are independent
from the events {Aγ : γ ∈ Γ}, if the random variables {ξγ : γ ∈ Γ}
are independent from the random variables {1Aγ : γ ∈ Γ}.

The random variables ξ : Ω → R and η : Ω → R are independent if
and only if Fξ,η(x , y) = Fξ(x)Fη(y), x , y ∈ R, where Fξ,η, Fξ and Fη

denotes the distribution function of (ξ, η), ξ, and η, respectively.
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Independence, Kolmogorov 0–1 law

Functions of independent random vectors are independent

Let (Ω,A,P) be a probability space. If the random vectors ξ : Ω → Rk

and η : Ω → Rℓ are independent, than for all measurable functions
g : Rk → Rr and h : Rℓ → Rp, we have the random vectors
g ◦ ξ : Ω → Rr and h ◦ η : Ω → Rp are independent as well.
Furthermore, if ξn : Ω → R, n ∈ N, are independent random variables
and gn : R → R, n ∈ N, are measurable functions, then the random
variables gn ◦ ξn : Ω → R, n ∈ N, are independent as well.

σ-algebras generated by independent algebras are independent
Let (Ω,A,P) be a probability space. If the sub-algebras F0 ⊂ A and
G0 ⊂ A are independent in the sense that for each A ∈ F0 and
B ∈ G0, we have

P(A ∩ B) = P(A)P(B),

then the generated sub–σ–algebras F := σ(F0) and G := σ(G0) are
independent as well.
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Independence, Kolmogorov 0–1 law
Notation for σ-algebra generated by sub-σ-algebras
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set. For
each γ ∈ Γ, let Fγ be a sub–σ–algebra of A.
Let F∅ := {∅,Ω} (i.e., the trivial σ–algebra).
If Λ ⊂ Γ, Λ ̸= ∅, then let

FΛ :=
∨
γ∈Λ

Fγ := σ (Fγ : γ ∈ Λ) := σ

⋃
γ∈Λ

Fγ

 .

σ-algebras generated by independent σ-algebras are
independent
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set. If
{Fγ : γ ∈ Γ} are independent sub–σ–algebras of A, and F1,F2 are
finite, disjoint subsets of Γ, then FF1 and FF2 are independent.

Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set. If
{Fγ : γ ∈ Γ} are independent sub–σ–algebras of A, and F1,F2 are
disjoint subsets of Γ, then FF1 and FF2 are independent.

24



Independence, Kolmogorov 0–1 law

Tail–σ–algebra
Let (Ω,A) be a measurable space, Γ ̸= ∅ be a nonempty set. For
each γ ∈ Γ, let Fγ be a sub–σ–algebra of A. The tail–σ–algebra
corresponding to the σ–algebras {Fγ : γ ∈ Γ} is defined by

T :=
⋂

{F : F ⊂ Γ, F finite}

FΓ\F .

1. If Γ is finite, then T = {∅,Ω}, and hence P(A) ∈ {0,1}, A ∈ T .
2. For a sequence of sub–σ–algebras {Fn}∞n=1, the tail–σ–algebra

is
T =

∞⋂
n=1

σ(Fk : k ⩾ n),

where σ(Fk : k ⩾ n) ↓ T as n → ∞.
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Independence, Kolmogorov 0–1 law
3. If (Ω,A,P) is a probability space, ξn, n ∈ N, are random
variables, then the following events belong to the tail–σ–algebra
corresponding to the sub–σ–algebras σ(ξn), n ∈ N:{

ω ∈ Ω : lim
n→∞

ξn(ω) exists
}
,{

ω ∈ Ω : lim sup
n→∞

ξn(ω) ⩽ x
}
, x ∈ R,{

ω ∈ Ω : lim
n→∞

ξn(ω) exists and lim
n→∞

ξn(ω) ⩽ x
}
, x ∈ R,{

ω ∈ Ω : lim
n→∞

ξ1(ω) + · · ·+ ξn(ω)

n
exists

}
.

An event belongs to the tail–σ–algebra in question if and only if its
occurrence does not depend on changing the values of finite number
of ξn. Indeed, for each N ∈ N,

T =
∞⋂

n=1

σ(ξn, ξn+1, . . .) =
∞⋂

n=N

σ(ξn, ξn+1, . . .).
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Independence, Kolmogorov 0–1 law

However, the event {
ω ∈ Ω : ξn(ω) = 0, ∀ n ∈ N

}
does not belong to the tail–σ–algebra corresponding to the
sub–σ–algebras σ(ξn), n ∈ N.

Tail–σ–algebra for countably infinite Γ

Let Γ be a countably infinite set. For each γ ∈ Γ, let Fγ be a
sub–σ–algebra of A. Further, let Fn ⊂ Γ, n ∈ N, be finite subsets of
Γ such that Fn ↑ Γ as n → ∞. Then the tail–σ–algebra
corresponding to the σ–algebras {Fγ : γ ∈ Γ} takes the form

T =
∞⋂

n=1

FΓ\Fn .

In particular, in case of Γ = N, we have T =
⋂∞

n=1 σ(Fk : k ⩾ n) (as
we already saw).
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Independence, Kolmogorov 0–1 law

Kolmogorov 0–1 law
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set. For
each γ ∈ Γ, let Fγ be a sub–σ–algebra of A, and denote by T the
corresponding tail–σ–algebra.
If the sub–σ–algebras {Fγ : γ ∈ Γ} are independent, then for each
A ∈ T , we have P(A) = 0 or P(A) = 1.

Kolmogorov 0–1 law
Let {ξn}∞n=1 be independent random variables and
let T =

⋂∞
n=1 σ(ξk : k ⩾ n) denote the tail–σ–algebra corresponding

to the sub–σ–algebras {σ(ξn)}∞n=1.
Then for each A ∈ T , we have P(A) = 0 or P(A) = 1.
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Independence, Kolmogorov 0–1 law

Example: If ξ1, ξ2, . . . are independent random variables and

Sn :=
ξ1 + · · ·+ ξn

n
, n ∈ N,

then
P
(
{Sn}∞n=1 converges

)
∈ {0,1},

and there exist −∞ ⩽ a ⩽ b ⩽ ∞ such that

P
(
lim inf
n→∞

Sn = a
)
= 1, P

(
lim sup

n→∞
Sn = b

)
= 1.

So, if P
(
{Sn}∞n=1 converges

)
= 1, then there exits c ∈ R such that

P
(
lim

n→∞
Sn = c

)
= 1.
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Independence, Kolmogorov 0–1 law

lim sup and lim inf of countably many sets
If Ω ̸= ∅ is a nonempty set, and for each n ∈ N, An ⊂ Ω, then let

lim sup
n→∞

An :=
∞⋂

n=1

∞⋃
k=n

Ak = {ω ∈ Ω : ω ∈ An for infinitely many n ∈ N},

lim inf
n→∞

An :=
∞⋃

n=1

∞⋂
k=n

Ak = {ω ∈ Ω : ω ∈ An except finitely many n ∈ N}.

Let {An}∞n=1 be events in a probability space (Ω,A,P). Then the
events lim supn→∞ An and lim infn→∞ An are in the tail–σ–algebra
corresponding to the σ–algebras {∅, An, Ω \ An, Ω}, n ∈ N.

If An, n ∈ N, are independent as well, then, by Kolmogorov 0–1 law,
P(lim supn→∞ An) ∈ {0,1}, i.e., either infinitely many of these events
occur with probability 1 or at most finitely of them occur with probability
1.
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Independence, Kolmogorov 0–1 law

Borel–Cantelli lemmas (1909, 1917)
Let (Ω,A,P) be a probability space, and A1,A2, · · · ∈ A be events.

1 If
∞∑

n=1

P(An) <∞, then P

(
lim sup

n→∞
An

)
= 0

(i.e., at most finitely many of these events occur with probability 1).

2 If the events {An}∞n=1 are independent and
∞∑

n=1

P(An) = ∞, then

P

(
lim sup

n→∞
An

)
= 1 (i.e., infinitely many of these events occur with

probability 1).
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Independence, Kolmogorov 0–1 law

For each ω ∈ Ω, let N (ω) be the number of events An, n ∈ N, for
which ω ∈ An holds.
Then N (ω) ∈ {0,1,2, . . .} ∪ {∞}, N =

∑∞
n=1 1An , N is an (extended

real valued) random variable, and using the properties of expectation
(presented later on), we have

E(N ) = E

( ∞∑
n=1

1An

)
=

∞∑
n=1

P(An).

Part 1 of Borel-Cantelli lemma states that if the expectation of the
number of events occuring is finite, then the number of events occuring
is finite with probability one.

Further, since lim supn→∞ An = {N = ∞}, by part 2 of Borel-Cantelli
lemma, in case of independent events, if the expectation of the number
of events occuring is infinite, then N , the number of events occuring,
is infinite with probability 1.

32



Expectation (expected value)
Expectation of simple random variables
Let ξ : Ω → R be a simple random variable, and ξ(Ω) = {x1, . . . , xℓ},
where x1, . . . , xℓ ∈ R are pairwise distinct. Then the quantity

E(ξ) :=

∫
Ω
ξ(ω) P(dω) :=

ℓ∑
j=1

xjP(ξ = xj)

is called the expectation of ξ.

One can check that the expectation is finitely additive and monotone
on the set of simple random variables.
Let ξ : Ω → R be a nonnegative random variable.

1 If ζ and {ηn}∞n=1 are nonnegative simple random variables, and
for each ω ∈ Ω, we have ηn(ω) ↑ ξ(ω) ⩾ ζ(ω), then
limn→∞ E(ηn) ⩾ E(ζ).

2 If {ηn}∞n=1 and {ζn}∞n=1 are nonnegative simple random
variables, and for each ω ∈ Ω, we have ηn(ω) ↑ ξ(ω) and
ζn(ω) ↑ ξ(ω), then limn→∞ E(ηn) = limn→∞ E(ζn).
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Expectation (expected value)

Expectation of nonnegative random variables
Let ξ : Ω → R be a nonnegative random variable. Let {ξn}∞n=1 be a
sequence of nonnegative simple random variables such that for each
ω ∈ Ω, we have ξn(ω) ↑ ξ(ω) as n → ∞.
Then the quantity

E(ξ) :=

∫
Ω
ξ(ω) P(dω) := lim

n→∞
E(ξn)

is called the expectation of ξ.

The expectation E(ξ) ∈ [0,∞] of a nonnegative random variable ξ is
uniquely defined. Further,

E(ξ) = sup {E(η) : η is a simple random variable such that 0 ⩽ η ⩽ ξ} .
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Expectation (expected value)

Decomposition of a r. v. by positive and negative parts
If ξ : Ω → R is a random variable, then ξ+ := max{ξ,0} (positive part
of ξ) and ξ− := −min{ξ,0} (negative part of ξ) are nonnegative
random variables as well, and ξ = ξ+ − ξ−, |ξ| = ξ+ + ξ−.

Expectation of a random variable
We say that there exists the expectation (integral) of a random
variable ξ : Ω → R, if the at least one of the expectations E(ξ+) and
E(ξ−) is finite, and then

E(ξ) :=

∫
Ω
ξ(ω) P(dω) := E(ξ+)− E(ξ−).

We say that the expectation of ξ is finite (ξ is integrable), if the
expectations E(ξ+) and E(ξ−) are finite.

If ξ : Ω → R is a random variable and its expectation exists, then
E(ξ) ∈ [−∞,∞].
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Expectation (expected value)
Let ξ, η, (ξn)n∈N be random variables on the prob. space (Ω,A,P).

Properties of expectation
1 ξ is integrable if and only if |ξ| is integrable.
2 If ∃ E(ξ) and c ∈ R, then ∃ E(cξ), and E(cξ) = c E(ξ).
3 If ∃ E(ξ)>−∞ and ξ⩽η P-a.s., then ∃ E(η) and E(ξ)⩽E(η).
4 If ∃ E(ξ), then |E(ξ)| ⩽ E(|ξ|).
5 If ∃ E(ξ), then for all A ∈ A, we have ∃ E(ξ1A); if ξ is

integrable, then for all A ∈ A, we have ξ1A is integrable as well.
6 If ∃ E(ξ), E(η) and the expression E(ξ) + E(η) is meaningful

(i.e., it is not of the form ∞−∞ or −∞+∞),
then ∃ E(ξ + η) and E(ξ + η) = E(ξ) + E(η).

7 If ξ = 0 P-a.s., then E(ξ) = 0.
8 If ∃ E(ξ) and ξ = η P-a.s., then ∃ E(η) and E(ξ) = E(η).
9 If ξ ⩾ 0 P-a.s. and E(ξ) = 0, then ξ = 0 P-a.s.
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Expectation (expected value)

Properties of expectation
10 Monotone convergence theorem: If for each n ∈ N, we have

ξn ⩾ η P-a.s., E(η) > −∞, and ξn ↑ ξ P-a.s., then E(ξn) ↑ E(ξ)
as n → ∞.

11 If {ξn}∞n=1 are nonnegative, then E

( ∞∑
n=1

ξn

)
=

∞∑
n=1

E(ξn).

12 Fatou-lemma:
(a) If for each n ∈ N, we have ξn ⩾ η P-a.s. and E(η) > −∞, then

E (lim infn→∞ ξn) ⩽ lim infn→∞ E(ξn).

(b) If for each n ∈ N, we have ξn ⩽ η P-a.s. and E(η) <∞, then
lim supn→∞ E(ξn) ⩽ E (lim supn→∞ ξn).

(c) If for each n ∈ N, we have |ξn| ⩽ η P-a.s. and E(η) <∞, then

E
(
lim inf
n→∞

ξn

)
⩽ lim inf

n→∞
E(ξn) ⩽ lim sup

n→∞
E(ξn) ⩽ E

(
lim sup

n→∞
ξn

)
.
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Expectation (expected value)
Properties of expectation

13 Dominated convergence theorem: If for each n ∈ N, we have
|ξn| ⩽ η P-a.s., E(η) <∞, and ξn → ξ P-a.s., then E(|ξ|) <∞,
E(ξn) → E(ξ) and E(|ξn − ξ|) → 0 as n → ∞.

14 Generalized dominated convergence theorem:
(a) If for each n ∈ N, we have |ξn| ⩽ ηn P-a.s., E(ηn) <∞, ξn → ξ

P-a.s., ηn → η P-a.s., and E(ηn) → E(η) as n → ∞,
where E(η) <∞, then E(|ξ|) <∞ and E(ξn) → E(ξ) as n → ∞.

(b) If for each n ∈ N, we have |ξn| ⩽ η P-a.s., E(η) <∞, and
ξn converges in probability to ξ as n → ∞, then E(|ξ|) <∞,
E(ξn) → E(ξ) and E(|ξn − ξ|) → 0 as n → ∞.

15 Cauchy–Schwarz inequality: If E(ξ2), E(η2) <∞, then
E(|ξη|) ⩽

√
E(ξ2) E(η2).

16 Jensen inequality:
(a) If E(|ξ|) <∞, I ⊂ R is an open (not necessarily bounded) interval

such that P(ξ ∈ I) = 1, and g : I → R is convex, then E(ξ) ∈ I
and g(E(ξ)) ⩽ E(g(ξ)). Further, if g : I → R is strictly convex, then
g(E(ξ)) = E(g(ξ)) holds if and only if P(ξ = E(ξ)) = 1.
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Expectation (expected value)

Properties of expectation
16 (b) Let C ⊂ R be a nonempty, Borel measurable, convex set,

g : C → R be a convex function, ξ : Ω → C be a random variable
such that E(|ξ|) <∞ and g ◦ ξ : Ω → R is a random variable as
well. Then E(ξ) ∈ C, the expectation E(g(ξ)) exists and
E(g(ξ)) ∈ (−∞,+∞], further g(E(ξ)) ⩽ E(g(ξ)).

17 Lyapunov inequality: If 0 < s < t , then
(E(|ξ|s))1/s ⩽

(
E(|ξ|t)

)1/t .
18 Hölder inequality: Let p,q ∈ (1,∞) be such that

p−1 + q−1 = 1. If E(|ξ|p) <∞ and E(|η|q) <∞, then
E(|ξη|) ⩽ (E(|ξ|p))1/p (E(|η|q))1/q.

19 Minkowski inequality: If p ∈ [1,∞), E(|ξ|p) <∞ and
E(|η|p) <∞, then (E |ξ + η|p)1/p ⩽ (E(|ξ|p))1/p + (E(|η|p))1/p.
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Expectation (expected value)
Properties of expectation

20 Markov inequality: If ξ ⩾ 0 P-a.s., then P(ξ ⩾ c) ⩽ E(ξ)
c for all

c > 0.
21 Chebyshev inequality: If E(ξ2) <∞, then

P(|ξ − E(ξ)| ⩾ c) ⩽ Var(ξ)
c2 for all c > 0.

22 If E(ξ) exists, then

E(ξ) =

∫ ∞

0
P(ξ ⩾ x) dx −

∫ 0

−∞
P(ξ < x) dx =

∫ ∞

0
(1 − Fξ(x)) dx −

∫ 0

−∞
Fξ(x) dx .

If ξ ⩾ 0 P-a.s., then
E(ξ) =

∫∞
0 P(ξ ⩾ x) dx =

∫∞
0 (1 − Fξ(x)) dx .

In particular, if P(ξ ∈ Z+) = 1, then
E(ξ) =

∑∞
n=1 P(ξ ⩾ n).

23 If E(|ξ|) <∞, E(|η|) <∞ and ξ, η are independent, then
E(|ξη|) <∞ and E(ξη) = E(ξ) E(η). If ξ and η are nonnegative
and independent, then E(ξη) = E(ξ) E(η).
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Expectation (expected value)

Properties of expectation
24 Young’s theorem: Let (ξn)n∈N, (ηn)n∈N, (ζn)n∈N, ξ, η and ζ be

random variables. Suppose that E(|ξn|) <∞, E(|ηn|) <∞,
E(|ζn|) <∞, n ∈ N, E(|ξ|) <∞, E(|ζ|) <∞,

P(ξn ⩽ ηn ⩽ ζn) = 1, n ∈ N,

and

ξn
a.s.−→ ξ P-a.s., ηn

a.s.−→ η P-a.s., ζn
a.s.−→ ζ P-a.s.

Further, suppose that

E(ξn) → E(ξ) and E(ζn) → E(ζ).

Then E(|η|) <∞ and E(ηn) → E(η).
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Expectation (expected value)

Transformation theorem
If ξ : Ω → Rd is a random vector and g : Rd → R is a measurable
function, then

E(g(ξ)) =
∫
Ω

g(ξ(ω)) P(dω) =
∫
Rd

g(x) Pξ(dx) =
∫
Rd

g(x) dFξ(x)

in the sense that, the integrals exist at the same time, and if they exist,
then they are equal.
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Expectation (expected value)

Expectation of a function of a nonnegative random variable
Let ξ be a nonnegative random variable with distribution function Fξ,
and let g : R+ → R be a monotone and absolute continuous function
(i.e., for each ε > 0, there exists δ > 0 such that if k ∈ N,
0 ⩽ a1 < b1 ⩽ a2 < b2 ⩽ . . . ⩽ ak < bk and

∑k
j=1(bj − aj) < δ, then∑k

j=1 |g(bj)− g(aj)| < ε). Then

E(g(ξ)) = g(0) +
∫ ∞

0
g′(x)(1 − Fξ(x)) dx ,

which is understood in the sense that if one of the two sides is finite,
then the other side is finite as well, and the two sides coincide.
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Expectation (expected value)

Moments and moment generating function of a nonnegative
random variable
Let ξ be a nonnegative random variable with distribution function Fξ.

(i) For each α > 0, we have

E(ξα) = α

∫ ∞

0
xα−1(1 − Fξ(x)) dx .

Further, if E(ξα) <∞ with some α > 0 (i.e., if ξ has a finite
moment of order α > 0), then

lim
x→∞

xα−1P(ξ ⩾ x) = lim
x→∞

xα−1(1 − Fξ(x)) = 0.

In particular, if n ∈ N, then a necessary condition for the
finiteness of the nth-moment of ξ is that the tail probabilities
P(ξ ⩾ x), x ⩾ 0, tend to zero at least of order xn−1 (polynomially)
at infinity.
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Expectation (expected value)s

(ii) For each r ∈ R, we have

E(erξ) = 1 + r
∫ ∞

0
erx(1 − Fξ(x)) dx .

Further, if E(erξ) <∞ with some r ∈ R (i.e., if the moment
generating function of ξ exists at some point r ∈ R), then

lim
x→∞

erxP(ξ ⩾ x) = lim
x→∞

erx(1 − Fξ(x)) = 0.

In particular, if r > 0, then a necessary condition for the
finiteness of the moment generating function of ξ at the point r
is that the tail probabilities of ξ tend to zero at least of order erx

(exponentially) at infinity.
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Expectation (expected value)
Absolute continuity
Let (X ,X ) be a measurable space. We say that a mapping
µ : X → [−∞,∞] is absolutely continuous with respect to the
mapping ν : X → [−∞,∞], if for each B ∈ X , ν(B) = 0, we have
µ(B) = 0. In notation: µ≪ ν.

Density theorem
Let (X ,X ) be a measurable space, ν : X → [0,∞] be a measure,
g : X → R+ be a nonnegative measurable function. Then the mapping
µ : X → [0,∞],

µ(B) :=

∫
B

g(x) ν(dx), B ∈ X ,
is a measure, which is finite if and only if g is integrable. Further,
µ≪ ν, and for each measurable function h : X → R, we have∫

X
h(x)µ(dx) =

∫
X

h(x)g(x) ν(dx)

in the sense that the integrals exist at the same time, and if they exist,
then they are equal. 46



Expectation (expected value)
Radon–Nikodym theorem
Let (X ,X ) be a measurable space and ν : X → [0,∞] be a σ–finite
measure. A signed measure µ : X → [−∞,∞] is absolutely
continuous with respect to the measure ν if and only if there exists a
measurable function g : X → [−∞,∞] such that for each B ∈ X , we
have

µ(B) =

∫
B

g(x) ν(dx).

The function g is ν–a.s. uniquely determined, i.e., if
h : X → [−∞,∞] is a measurable function such that

µ(B) =

∫
B

h(x) ν(dx)

for each B ∈ X , then ν({x ∈ X : g(x) ̸= h(x)}) = 0.

The (ν-a.s. uniquely determined) function g in the Radon–Nikodym
theorem is called the Radon–Nikodym derivative of the mesure µ with
respect to the measure ν. In notation: dµ

dν .
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Expectation (expected value)

Absolutely continuous random variable
Let (X ,X ) be a measurable space, and ν : X → [0,∞] be a σ–finite
measure. We say that a random variable ξ : Ω → X is absolutely
continuous with respect to the measure ν, if Pξ ≪ ν. We say that
a random vector ξ : Ω → Rd is absolutely continuous, if it is
absolutely continuous with respect to the d-dimensional Lebesgue
measure λd (more precisely, with respect to the restriction of λd to
B(Rd)), and then its Radon–Nikodym derivative fξ :=

dPξ

dλd
is called the

density function of ξ.

Absolutely continuous random variable
A random variable ξ : Ω → R is absolutely continuous if and only if its
distribution function Fξ is absolutely continuous, i.e., ∀ ε > 0 there
exists δ > 0 such that if k ∈ N, a1 < b1 ⩽ a2 < b2 ⩽ . . . ⩽ ak < bk
and

∑k
j=1(bj − aj) < δ, then

∑k
j=1(Fξ(bj)− Fξ(aj)) < ε.
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Expectation (expected value)
Characterization of density function

A function f : Rd → R is a density function of some d-dimensional
random variable if and only if it is (Borel) measurable, nonnegative
Lebesgue almost everywhere and

∫
Rd f (x) dx = 1.

Connection between density function and distribution function

If a random vector X : Ω → Rd is absolutely continuous, then
fX (x) = ∂1 . . . ∂dFX (x) λd -a.e. x ∈ Rd .

Expectation of a function of an absolutely continuous random
vector
If ξ : Ω → Rd is an absolutely continuous random vector and
g : Rd → R is a measurable function, then

E(g(ξ)) =
∫
Rd

g(x)fξ(x) dx

in the sense that the integrals exist at the same time, and if they exist,
then they are equal. (It is a consequence of Transformation and Density theorems.)
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Expectation (expected value)

Injective function of an absolutely continuous random variable
Let ξ : Ω → R be an absolutely continuous random variable with
density function fξ. Let D ⊂ R be an open set such that P(ξ ∈ D) = 1.
Let g : D → R be a continuously differentiable function, which is
injective on D, and its derivative is not zero at any point. (It is known
that in this case g(D) ⊂ R is open, and the inverse function
h : g(D) → D is continuously differentiable with nonzero derivative.)
Then the random variable g(ξ) is absolutely continuous as well, and
its density function

fg(ξ)(y) =

{
fξ(h(y))|h′(y)| = fξ(g−1(y))

|g′(g−1(y))| , if y ∈ g(D),

0, otherwise.
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Expectation (expected value)

Sum, product and ratio of independent absolutely continuous
random variables
Let ξ and η be independent, absolutely continuous random variables
with density functions fξ and fη, respectively. Then

(i) the random variable ξ + η is absolutely continuous, and

fξ+η(z) =
∫ ∞

−∞
fξ(x)fη(z−x) dx =

∫ ∞

−∞
fξ(z−y)fη(y) dy , λ1-a.e. z ∈ R.

This formula is called a convolution formula as well.
(ii) the random variable ξη is absolutely continuous, and

fξη(z) =
∫ ∞

−∞
fξ(x)fη

(z
x

) dx
|x |

=

∫ ∞

−∞
fξ

(
z
y

)
fη(y)

dy
|y |
, λ1-a.e. z ∈ R,

(iii) the random variable ξ
η is absolutely continuous, and

f ξ
η
(z) =

1
z2

∫ ∞

−∞
fξ(x)fη

(x
z

)
|x | dx =

∫ ∞

−∞
fξ(zy)fη(y)|y | dy , λ1-a.e. z ∈ R.
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Expectation (expected value)
Sum, product and ratio of jointly absolutely continuous random
variables
If ξ and η are jointly absolutely continuous random variables with
density function fξ,η, then

(i) the random variable ξ + η is absolutely continuous, and

fξ+η(z) =
∫ ∞

−∞
fξ,η(x , z − x) dx =

∫ ∞

−∞
fξ,η(z − y , y) dy , λ1-a.e. z ∈ R.

(ii) the random variable ξη is absolutely continuous, and

fξη(z) =
∫ ∞

−∞
fξ,η
(

x ,
z
x

) dx
|x |

=

∫ ∞

−∞
fξ,η

(
z
y
, y
)

dy
|y |
, λ1-a.e. z ∈ R,

(iii) the random variable ξ
η is absolutely continuous, and

f ξ
η
(z) =

1
z2

∫ ∞

−∞
fξ,η
(

x ,
x
z

)
|x | dx =

∫ ∞

−∞
fξ,η(zy , y)|y | dy , λ1-a.e. z ∈ R.
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Expectation (expected value)

Concentration of a mesaure into a subset
Let (X ,X ) be a measurable space, µ : X → [−∞,∞] be a signed
measure. We say that the signed measure µ is concentrated into a
set B ∈ X , if µ(X \ B) = 0.

Support of discrete distribution

Let ξ : Ω → Rd be a discrete random vector (i.e., ξ(Ω) is a
countable set). We say that ξ is concentrated into a set B ∈ B(Rd),
if Pξ is concentrated into B, equivalently Pξ(B) = P(ξ ∈ B) = 1.
The intersection of all the sets with this property (i.e., the smallest set
with this property) is called the support of the measure Pξ.
In notation: supp(ξ).

Then

supp(ξ) =
{

x ∈ Rd : Pξ({x}) > 0
}
=
{

x ∈ Rd : P(ξ = x) > 0
}
,

of which the elements are called the atoms of the measure Pξ.
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Expectation (expected value)

Distribution and distribution function of a discrete random vector
The distribution of a discrete random variable ξ : Ω → Rd is given by

Pξ =
∑

x∈supp(ξ)

P(ξ = x)δx ,

where for each x ∈ Rd , δx denotes the Dirac mesaure concentrated
on the point x , i.e., δx(A) = 1, if x ∈ A, and δx(A) = 0, if x /∈ A.
The distribution function of ξ is given by

Fξ(x) =
∑

{y∈supp(ξ) : y<x}

P(ξ = y), x ∈ Rd .
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Expectation (expected value)

Expectation of a function of a discrete random vector

Let ξ : Ω → Rd be a discrete random vector and g : Rd → R be a
measurable function. The random variable g(ξ) is integrable if and
only if

E(|g(ξ)|) =
∑

x∈supp(ξ)

|g(x)|P(ξ = x) <∞,

and then
E(g(ξ)) =

∑
x∈supp(ξ)

g(x)P(ξ = x).

(This statement is a special case of the Transformation theorem.)
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Expectation (expected value)

Singularity
Let (X ,X ) be a measurable space. The measures µ : X → [0,∞]
and ν : X → [0,∞] are called singular with respect to each other,
if there exist disjoint sets A,B ∈ X such that µ and ν are
concentrated in the set A and in the set B, respectively.
In notation: µ ⊥ ν.

Singular random vectors

A random vector ξ : Ω → Rd is called singular, if Pξ ⊥ λd , where λd
denotes the d-dimensional Lebesgue measure, equivalently,
∃ B ∈ B(Rd) such that λd(B) = 0 and P(ξ ∈ B) = 1.

A discrete random vector is singular (can be checked easily).

Singular random variable
A random variable ξ : Ω → R is singular if and only if F ′

ξ(x) = 0
λ1-a.e. x ∈ R.

56



Expectation (expected value)

Lebesgue decomposition theorem
Let (X ,X ) be a measurable space, µ and ν be σ-finite measures
on X . Then there exist a measurable function f : X → [0,∞] and a
measure νs on X such that µ ⊥ νs and

ν(A) =
∫

A
f dµ+ νs(A), A ∈ X .

Such a function f is uniquely determined µ-almost everywhere, i.e.,
if g : X → [0,∞] is a measurable function such that
ν(A) =

∫
A g dµ+ νs(A), A ∈ X , then

µ({x ∈ X : f (x) ̸= g(x)}) = 0.

The above decomposition is called the Lebesgue decomposition of
ν with respect to µ.
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Expectation (expected value)
Decomposition theorem of distribution functions
Any distribution function F : R → [0,1] can be uniquely decomposed
in the form

F = p1Fd + p2Faf + p3Ffs,

where p1,p2,p3 ⩾ 0, p1 + p2 + p3 = 1, Fd is a discrete, Faf is an
absolutely continuous and Ffs is a continuous singular distribution
function.

Moments
Let ξ : Ω → R be a random variable.

Let α ∈ R+. The αth absolute moment of ξ: E(|ξ|α).
If k ∈ N and the k th absolute moment of ξ is finite, then
the k th moment of ξ: E(ξk ) ∈ R,
the k th central moment of ξ: E

(
(ξ − E(ξ))k) ∈ R.

If ξ has a finite second (absolute) moment, then the second
central moment of ξ is called the variance (squared deviation)
of ξ. In notation: Var(ξ) := D2(ξ) := E

[
(ξ − E(ξ))2].
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Expectation (expected value)

Expectation vector of a random vector

Let ξ = (ξ1, . . . , ξd) : Ω → Rd be a random vector.
If E(|ξ1|) <∞, . . . ,E(|ξd |) <∞, then the expectation vector of ξ is

E(ξ) := (E(ξ1), . . . ,E(ξd))
⊤ ∈ Rd .

Multidimensional Jensen inequality

Let ξ : Ω → Rd be a random vector such that E(∥ξ∥) <∞.
1 If K ⊂ Rd is nonempty, convex, closed and P(ξ ∈ K ) = 1, then

E(ξ) ∈ K .
2 If g : Rd → R is convex and E(|g(ξ)|) <∞, then

g(E(ξ)) ⩽ E(g(ξ)).
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Expectation (expected value)
Covariance matrix (variance matrix) of a random vector

Let ξ = (ξ1, . . . , ξd) : Ω → Rd be a random vector. If E(∥ξ∥2) <∞,
i.e., E(ξ2

1) <∞, . . . , E(ξ2
d) <∞, then the covariance matrix of ξ is

Cov(ξ) := E
[
(ξ − E(ξ))(ξ − E(ξ))⊤

]
∈ Rd×d ,

of which the entries are E
[
(ξi − E(ξi))(ξj − E(ξj))

]
=: Cov(ξi , ξj).

Properties of covariance matrices

Let ξ = (ξ1, . . . , ξd) : Ω → Rd be a random vector with E(∥ξ∥2) <∞.
Cov(ξ) is symmetric: Cov(ξ)⊤ = Cov(ξ).
Cov(ξ) is positive semidefinite, i.e., for all x ∈ Rd we have

x⊤ Cov(ξ)x = ⟨Cov(ξ)x , x⟩ =
d∑

i=1

d∑
j=1

Cov(ξi , ξj)xixj ⩾ 0.

If A ∈ Rr×d and b ∈ Rr , then E(Aξ + b) = AE(ξ) + b and
Cov(Aξ + b) = ACov(ξ)A⊤.
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Expectation (expected value)

Expectation of a complex valued random variable
We say that a complex valued random variable
ξ = Re ξ + i Im ξ : Ω → C has a finite expectation (it is integrable),
if the expectations E(Re ξ) and E(Im ξ) are finite, and then
E(ξ) := E(Re ξ) + iE(Im ξ).

Expectation of a complex valued random variable
Let ξ : Ω → C be a complex valued random variable.

ξ has a finite expectation if and only if E(|ξ|) <∞.
If E(|ξ|) <∞, then |E(ξ)| ⩽ E(|ξ|).
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Expectation (expected value)

Independence of complex valued random variables
Let Γ ̸= ∅ be an (index) set, and for each γ ∈ Γ let ξγ : Ω → C be a
random variable. The random variables {ξγ : γ ∈ Γ} are independent
if and only if the random variables {(Re ξγ , Im ξγ) : γ ∈ Γ} are
independent.

Independence of complex valued random variables
If ξ1, . . . , ξn : Ω → C are independent random variables such that
E(|ξi |) <∞, i = 1 . . . ,n, then E(|ξ1 · · · ξn|) <∞ and

E(ξ1 · · · ξn) = E(ξ1) · · ·E(ξn).
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Characteristic function
Characteristic function
The characteristic function φX : Rd →C of a random vector
X : Ω→Rd is defined by

φX (t) := E(ei⟨t ,X⟩) =

∫
Rd

ei⟨t ,x⟩ FX (dx) = E(cos(⟨t ,X ⟩)) + iE(sin(⟨t ,X ⟩)),

where t ∈ Rd .

If X is a discrete random vector with values {xk , k ∈ N} and with
distribution {pk , k ∈ N}, then

φX (t) =
∞∑

k=1

ei⟨t ,xk ⟩pk , t ∈ Rd ,

and if X is absolutely continuous with density function fX , then

φX (t) =
∫
Rd

ei⟨t ,x⟩fX (x) dx , t ∈ Rd .
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Characteristic function

Properties of a characteristic function
1 |φX | ⩽ 1, and φX (0) = 1.
2 φX is uniformly continuous.
3 For each t ∈ Rd , we have φX (−t) = φX (t), i.e., φX is Hermite

symmetric.
4 Bochner theorem: A function φ : Rd → C is the characteristic

function of some random vector if and only if φ(0) = 1, it is
continuous and positive semidefinite, i.e., for each n ∈ N and
t1, . . . , tn ∈ Rd , we have that the matrix

(
φ(tj − tℓ)

)
j,ℓ=1,...,n ∈ Cn×n

is positive semidefinite, i.e., for each z1, . . . , zn ∈ C, we have

n∑
j=1

n∑
ℓ=1

φ(tj − tℓ)zjzℓ ⩾ 0.
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Characteristic function

Properties of a characteristic function
5 For each A ∈ Rr×d , b ∈ Rr and t ∈ Rr , we have

φAX+b(t) = ei⟨t ,b⟩φX (A⊤t).

6 Uniqueness theorem: PX = PY if and only if φX = φY .
7 X1 : Ω → Rd1 , . . . , Xℓ : Ω → Rdℓ are independent if and only if for

each t1 ∈ Rd1 , . . . , tℓ ∈ Rdℓ , we have

φX1,...,Xℓ
(t1, . . . , tℓ) =

ℓ∏
j=1

φXj (tj).

8 If X1, . . . ,Xℓ : Ω → Rd are independent, then for each t ∈ Rd ,
we have

φX1+···+Xℓ
(t) =

ℓ∏
j=1

φXj (t).
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Characteristic function
Properties of a characteristic function

9 If X = (X1, . . . ,Xd) : Ω → Rd is a random vector and
E(∥X∥n) <∞ for some n ∈ N, then φX is n times continuously
differentiable, and for any nonnegative integers r1, . . . , rd with
r1 + · · ·+ rd ⩽ n, we have

∂r1
1 . . . ∂

rd
d φX (t) = ir1+···+rd E(X r1

1 · · ·X rd
d ei⟨t ,X⟩), t ∈ Rd ,

E(X r1
1 · · ·X rd

d ) =
∂r1

1 . . . ∂
rd
d φX (0)

ir1+···+rd
,

moreover,

φX (t) =
∑

r1+···+rd⩽n,
r1,...,rd∈Z+

ir1+···+rd t r1
1 · · · t rd

d
r1! · · · rd !

E(X r1
1 · · ·X rd

d ) + Rn(t), t ∈ Rd ,

where Rn(t) = O(∥t∥n), t ∈ Rd , and Rn(t) = o(∥t∥n) as t → 0,
in a way that |Rn(t)| ⩽ 3∥t∥n

n! E(∥X∥n), and limt→0
Rn(t)
∥t∥n = 0.
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Characteristic function
Properties of a characteristic function

10 If X : Ω → R is a random variable and φ
(2n)
X (0) exists and finite

for some n ∈ N, i.e., φ(2n)
X (0) ∈ R, then E(X 2n) <∞.

11 If for each n ∈ N, we have E(∥X∥n) <∞, and

R :=
1

lim sup
n→∞

n
√
E(∥X∥n)/n!

∈ (0,∞],

then for each t ∈ Rd , ∥t∥ < R, we have

φX (t) =
∞∑

r1=0

. . .

∞∑
rd=0

ir1+···+rd E(X r1
1 · · ·X rd

d )

r1! · · · rd !
t r1
1 · · · t rd

d .

12 Inversion formula: If φX ∈ L1(Rd), i.e.,
∫
Rd |φX (t)| dt <∞, then

X is absolutely continuous, and its density function

fX (x) =
1

(2π)d

∫
Rd

e−i⟨t ,x⟩φX (t) dt , x ∈ Rd .

Then fX is bounded and continuous. 67



Characteristic function
Properties of a characteristic function

13 Let d = 1. Then φX (t) ∈ R, t ∈ R, if and only if X is symmetric,
i.e., X D

= −X .

Pólya theorem
If φ : R → [0,∞) is a function such that it is continuous, even,
φ(0) = 1, limt→∞ φ(t) = 0, and φ|[0,∞) is convex, then φ is the
characteristic function of some random variable X : Ω → R.

Using Pólya theorem one can easily give examples for characteristic
functions which coincide on a finite interval, but the distribution
functions corresponding uniquely to them do not coincide.

Characteristic function of a standard normally distributed
random variable

If X ∼ N (0,1), then φX (t) = e−
t2
2 , t ∈ R.
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Characteristic function

Convergence in distribution of random vectors

Let Xn : Ω → Rd , n ∈ N, and X : Ω → Rd be random vectors.
We say that the sequence (Xn)n⩾1 converges in distribution to X ,
if FXn(x) → FX (x) at every continuity point x of FX .
In notation: Xn

D−→ X .

Continuity theorem (Paul Lévy)

Let Xn : Ω → Rd , n ∈ N, be random vectors.
1 If there exists a random vector X : Ω → Rd such that Xn

D−→ X
as n → ∞, then φXn → φX as n → ∞, uniformly on each
bounded interval.

2 If for each t ∈ Rd , there exists limn→∞ φXn(t) =: φ(t), and φ is
continuous at the point 0 ∈ Rd , then there exists a random vector
X : Ω → Rd such that φX = φ, and Xn

D−→ X as n → ∞.
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Characteristic function

Generating function

If the coordinates of the random vector X : Ω → Rd are nonnegative
integers, i.e., X is concentrated in the set Zd

+, i.e., P(X ∈ Zd
+) = 1,

then the generating function of X = (X1, . . . ,Xd) is the d-variable
complex power series (where it exists):

GX (z) := GX1,...,Xd (z1, . . . , zd) := E(zX ) := E(zX1
1 · · · zXd

d )

=
∞∑

k1=0

· · ·
∞∑

kd=0

P(X1 = k1, . . . ,Xd = kd) zk1
1 · · · zkd

d .

This power series is absolutely convergent on the set

{(z1, . . . , zd) ∈ Cd : |z1| ⩽ 1, . . . , |zd | ⩽ 1},

and the characteristic function of X is the periodic function

φX (t) = φX (t1, . . . , td) = GX (eit1 , . . . , eitd ), t = (t1, . . . , td) ∈ Rd .
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Characteristic function

Properties of a generating function
1 GX (1, . . . ,1) = 1.
2 GX is analytical on the set

{(z1, . . . , zd) ∈ Cd : |z1| < 1, . . . , |zd | < 1}.
3 For each k1, . . . , kd ∈ Z+, we have

P(X1 = k1, . . . ,Xd = kd) =
∂k1

1 . . . ∂kd
d GX (0, . . . ,0)

k1! · · · kd !
.

4 Uniqueness theorem for generating functions:
PX = PY ⇐⇒ ∀ x ∈ [−1,1]d for all GX (x) = GY (x).

5 If X and Y are independent, then GX+Y (z) = GX (z)GY (z) on
the set {(z1, . . . , zd) ∈ Cd : |z1| ⩽ 1, . . . , |zd | ⩽ 1}.
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Characteristic function

Properties of a generating function
6 For each r1, . . . , rd ∈ Z+, we have

E(X r1
1 · · ·X rd

d ) <∞ ⇐⇒ ∂r1
1 . . . ∂

rd
d GX (1−, . . . ,1−) <∞,

and

∂r1
1 . . . ∂

rd
d GX (1−, . . . ,1−)

= E(X1(X1 − 1) · · · (X1 − r1 + 1) · · ·Xd(Xd − 1) · · · (Xd − rd + 1)).

Continuity theorem for generating functions

Let X : Ω → Rd and Xn : Ω → Rd , n ∈ N, be random vectors such
that P(X ∈ Zd

+) = 1 and P(Xn ∈ Zd
+) = 1, n ∈ N.

Then the following assertions are equivalent:

Xn
D−→ X as n → ∞.

P(Xn = k) → P(X = k) as n → ∞ for all k ∈ Zd
+.

GXn(x) → GX (x) as n → ∞ for each x ∈ [−1,1]d .
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Characteristic function

Laplace transform

If the coordinates of the random vector X = (X1, . . . ,Xd) : Ω → Rd

are nonnegative, i.e., X is concentrated in the set Rd
+, i.e.,

P(X ∈ Rd
+) = 1, then the Laplace transform ψX : Rd

+ → R of X is
defined by

ψX (s) := ψX1,...,Xd (s1, . . . , sd) := E(e−⟨s,X⟩)

=

∫ ∞

0
· · ·
∫ ∞

0
e−s1x1−···−sd xd dFX1,...,Xd (x1, . . . , xd),

where s ∈ Rd
+.

If P(X ∈ Zd
+) = 1, then

ψX (s1, . . . , sd) = GX (e−s1 , . . . , e−sd ), (s1, . . . , sd) ∈ Rd
+,

GX (x1, . . . , xd) = ψX (− log x1, . . . ,− log xd), (x1, . . . , xd) ∈ (0,1)d .
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Characteristic function
Properties of Laplace transform

1 0 ⩽ ψX ⩽ 1, and ψX (0) = 1.
2 ψX is analitic on the set (0,∞)d .
3 Uniqueness theorem for Laplace transforms:

PX = PY if and only if ψX = ψY .
4 If X and Y are independent, then ψX+Y = ψXψY .
5 For each r1, . . . , rd ∈ Z+, we have

E(X r1
1 · · ·X rd

d ) <∞ ⇐⇒ ∂r1
1 . . . ∂

rd
d ψX (0+, . . . ,0+) <∞,

and ∂r1
1 . . . ∂

rd
d ψX (0+, . . . ,0+) = (−1)r1+···+rd E(X r1

1 · · ·X rd
d ).

Continuity theorem for Laplace transforms

Let X : Ω → Rd and Xn : Ω → Rd , n ∈ N, be random vectors such
that P(X ∈ Rd

+) = 1 and P(Xn ∈ Rd
+) = 1, n ∈ N.

Then the following statements are equivalent:

Xn
D−→ X as n → ∞,

ψXn(s) → ψX (s) as n → ∞ for all s ∈ Rd
+.
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Notable distributions
Bernoulli distribution with parameter p
Let p ∈ [0,1]. A discrete random variable X is called Bernoulli
distributed with parameter p, if it can have values: 0 and 1, and its
distribution is

P(X = 1) = p, P(X = 0) = 1 − p.

If A ∈ A is an event, then the r. v. 1A :=

{
1 if A occurs,
0 if A does not occur,

is Bernoulli distributed with parameter P(A).
Generating function

GX (z) = 1 − p + pz = 1 + p(z − 1), z ∈ C.

Laplace transform
ψX (s) = 1 − p + p e−s = 1 − p(1 − e−s), s ∈ R+.

Characteristic function
φX (t) = 1 − p + p eit = 1 + p(eit − 1), t ∈ R.
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Notable distributions

Binomial distribution with parameter (n,p)
Let n ∈ N and p ∈ [0,1]. A discrete random variable X is called
binomial distributed with parameter (n, p), if it can have values:
0, 1, . . . , n, and its distribution is

P(X = k) =
(

n
k

)
pk (1 − p)n−k , k ∈ {0,1, . . . ,n}.

If we carry out n independent experiments related to an event A ∈ A
and

Xi :=

{
1 if A occurs at the i th repetition,
0 otherwise,

i = 1, . . . ,n,

then the random variable X = X1 + · · ·+ Xn is binomial distributed
with parameter (n,P(A)), and X1, . . . ,Xn are independent, Bernoulli
distributed with parameter P(A).
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Notable distributions

Let X be a binomial distributed random variable with parameter
(n,p), where n ∈ N and p ∈ [0,1].

Generating function

GX (z) = (1 − p + pz)n = (1 + p(z − 1))n, z ∈ C.

Laplace transform

ψX (s) = (1 − p + p e−s)n = (1 − p(1 − e−s))n, s ∈ R+.

Characteristic function

φX (t) = (1 − p + p eit)n = (1 + p(eit − 1))n, t ∈ R.
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Notable distributions

Hipergeometric distribution with parameter (n,M,N − M)

Let n,N,M ∈ N be such that M ⩽ N. A discrete random variable X
is called hipergeometric distributed with parameter (n,M,N − M),
if it can have values those integers k for which 0 ⩽ k ⩽ n, k ⩽ M
and n − k ⩽ N − M, and its distribution is

P(X = k) =

(M
k

)(N−M
n−k

)(N
n

) .

If there are M red and N −M black balls in an urn, and we choose n
balls without replacement, and X denotes the number of red balls
chosen, then X is a hipergeometric distributed random variable with
parameter (n,M,N − M).
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Notable distributions
Negative binomial distribution with parameters p and r
Let r ∈ N and p ∈ (0,1]. A discrete random variable X is called
negative binomial distributed with parameters p and r , if it can
have values: 0, 1, . . . , and its distribution is

P(X = k) =
(

k + r − 1
r − 1

)
pr (1 − p)k , k ∈ {0,1, . . . }.

A negative binomial distribution with parameters p and 1, is called a
geometric distribution with parameter p as well.

If we carry out independent experiments related to an event A ∈ A
and r + X denotes the number of repetitions needed for the r th

occurence of A, then the random variable X is negative binomial
distributed with parameters P(A) and r .
Convolution of geometric distributions
If the random variables X1, . . . ,Xr are independent and have
geometric distribution with parameter p, then the random variable
X1 + · · ·+ Xr is negative binomial distributed with parameters p and r .
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Notable distributions

Let X be a negative binomial distributed random variable with
parameters p and r , where r ∈ N and p ∈ (0,1].

Generating function

GX (z) =
(

p
1 − (1 − p)z

)r

, z ∈ C, |z| < 1
1 − p

,

where in case of p = 1, we define 1
1−p := ∞.

Characteristic function

φX (t) =
(

p
1 − (1 − p)eit

)r

, t ∈ R.

Memorylessness property of geometric distribition
If X is a random variable having geometric distribution with paramater
p, then

P(X ⩾ k + ℓ |X ⩾ k) = P(X ⩾ ℓ), k , ℓ ∈ {0,1, . . . }.
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Notable distributions
Poisson distribution with parameter λ

Let λ ∈ R+. A discrete random variable X is called Poisson
distributed with parameter λ, if it can have values: 0, 1, . . . , and its
distribution is

P(X = k) =
λk

k !
e−λ, k ∈ {0,1, . . . }.

Generating function

GX (z) = eλ(z−1), z ∈ C.

Characteristic function

φX (t) = eλ(e
it−1), t ∈ R.

Approximation of binomial distribution by Poisson distribution
If Xn, n ∈ N, are binomial distributed random variables with parame-
ter (n,pn), and npn → λ ∈ (0,∞) as n → ∞, then Xn

D−→ X as
n → ∞, where the random variable X is Poisson distributed with
parameter λ. 81



Notable distributions

Uniform distribution on the set {0,1, . . . ,N − 1}
A discrete random variable X is called uniformly distributed on the
set {0, 1, . . . ,N − 1}, if

P(X = k) =
1
N
, k ∈ {0,1, . . . ,N − 1}.

Generating function

GX (z) =
1
N
(1 + z + · · ·+ zN−1) =

{
1
N

zN−1
z−1 if z ∈ C \ {1},

1 if z = 1.

Characteristic function

φX (t) =
1
N
(1 + eit + · · ·+ eit(N−1)) =

{
1
N

eitN−1
eit−1 if eit ∈ C \ {1},

1 if eit = 1,

where t ∈ R.
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Notable distributions
Uniform distribution on the interval (a,b)
Let a,b ∈ R such that a < b. An absolutely continuous random
variable X is called uniformly distributed on the interval (a, b), if its
density function is

fX (x) =

{
1

b−a , x ∈ (a,b),
0, otherwise.

Characteristic function

φX (t) =

{
eibt−eiat

i(b−a)t , t ̸= 0,

1, t = 0.

Approximation of continuous uniform distribution
If Xn, n ∈ N, are uniformly distributed random variables on the sets
{0,1, . . . ,n − 1}, n ∈ N, then Xn

n
D−→ X as n → ∞, where the

random variable X is uniformly distributed on the interval (0,1).
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Notable distributions
Exponential distribution with parameter λ

Let λ > 0. An absolutely continuous random variable X is called
exponentially distributed with parameter λ, if its density function is

fX (x) =

{
λe−λx , x > 0,
0, otherwise.

Memorylessness property of exponential distribution
If the random variable X is exponentially distributed with parameter
λ, then

P(X ⩾ t + h |X ⩾ t) = P(X ⩾ h), t ,h ⩾ 0.

Laplace transform

ψX (s) =
λ

s + λ
, s ∈ R+.

Characteristic function

φX (t) =
(

1 − i
t
λ

)−1

, t ∈ R.
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Notable distributions

Normal distribution with parameter (m, σ2)

Let m ∈ R and σ > 0. An absolutely continuous random variable X
is called normally distributed with parameter (m, σ2), if its density
function is

fX (x) =
1√
2πσ

e−
(x−m)2

2σ2

Characteristic function

φX (t) = eimt−σ2t2
2 , t ∈ R

de Moivre CLT, approximation of binomial distribution by normal
distribution
If Xn, n ∈ N, are binomially distributed random variables with
parameter (n,p), where p ∈ (0,1), then Xn−np√

np(1−p)

D−→ X as

n → ∞, where the random variable X is normally distributed with
parameter (0,1).
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Multidimensional normal distribution

Multidimensional normal distribution
A random vector Y : Ω → Rd is called standard normally
distributed, if Y = (Y1, . . . ,Yd), where Y1, . . . ,Yd : Ω → R are
independent, standard normally distributed random variables.
A random vector X : Ω → Rd is called normally distributed, if
the distribution of X coincides with the distribution of AY + m,
where Y : Ω → Rd is standard normally distributed, A ∈ Rd×d

and m ∈ Rd .
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Multidimensional normal distribution
Characteristic function, density function

A random vector X : Ω → Rd is normally distributed if and only if
its characteristic function has the form

φX (t) = exp

{
i⟨m, t⟩ − 1

2
⟨Dt , t⟩

}
, t ∈ Rd ,

where m ∈ Rd , and D ∈ Rd×d is a symmetric, positive
semidefinite matrix, i.e., D⊤ = D, and for each t ∈ Rd we have
⟨Dt , t⟩ ⩾ 0. Further, m = E(X ), D = Cov(X ).
If D is invertible, then X is absolutely continuous and its density
function is

fX (x) =
1√

(2π)d det(D)
exp

{
−1

2
⟨D−1(x − m), x − m⟩

}
, x ∈ Rd .

A random vector X : Ω → Rd is called normally distributed with
parameters (m,D), if the characteristic function of X has the form
given in the theorem above. In notation: X D

= N (m,D).
87



Multidimensional normal distribution

Linear transform of multidimensional normal distribution

If X D
= N (m,D) is a d-dimensional normally distributed random

vector, and a ∈ Rℓ, B ∈ Rℓ×d , then a + BX D
= N (a + Bm,BDB⊤) is

an ℓ-dimensional normally distributed random vector.

Characterisation of multidimensional normal distribution
A random vector X : Ω → Rd is normally distributed if and only if for
each c ∈ Rd , the random variable c⊤X is normally distributed.
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Multidimensional normal distribution

Independence of coordinates of multidimensional normal
distribution
Let (X1, . . . ,Xk ,Y1, . . . ,Yℓ) be a k + ℓ-dimensional normally
distributed random vector, and let us suppose that for each
i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ}, we have Cov(Xi ,Yj) = 0. Then the
random vectors (X1, . . . ,Xk ) and (Y1, . . . ,Yℓ) are independent.

Independence of linear combinations
Let X1, . . . ,Xd be independent, standard normally distributed random
variables. The linear combinations a1X1 + · · ·+ adXd and
b1X1 + · · ·+ bdXd are independent if and only if the vectors
(a1, . . . ,ad) and (b1, . . . ,bd) are orthogonal.
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Convergence of random vectors

Let X : Ω → Rd and Xn : Ω → Rd , n ∈ N, be random vectors.
We say that the sequence X1, X2, . . . converges to X

almost surely (in notation Xn
a.s.−→ X or Xn → X P-a.s.), if

P
(
lim

n→∞
Xn = X

)
= 1;

stochastically (in notation Xn
P−→ X ), if for each ε > 0, we have

lim
n→∞

P(∥Xn − X∥ ⩾ ε) = 0;

in distribution (in notation Xn
D−→ X ), if

lim
n→∞

FXn(x) = FX (x)

for each point x ∈ Rd , where FX is continuous;

in r th mean, where r > 0 (in notation Xn
∥·∥r−→ X or Xn

Lr−→X ),
if E(∥X∥r ) <∞, E(∥Xn∥r ) <∞, n ∈ N, and
lim

n→∞
E (∥Xn − X∥r ) = 0.
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Convergence of random vectors

Connection between modes of convergences

Let X : Ω → Rd and Xn : Ω → Rd , n ∈ N, be random vectors.

If Xn
a.s.−→ X , or Xn

∥·∥r−→ X for some r > 0, then Xn
P−→ X .

If Xn
∥·∥r−→ X for some r > 0, then for each s ∈ (0, r), we have

Xn
∥·∥s−→ X .

Limit of stochastic convergence is uniquely determined

If X : Ω → Rd , Y : Ω → Rd , Xn : Ω → Rd and Yn : Ω → Rd , n ∈ N,
are random vectors such that Xn

P−→ X , Yn
P−→ Y , and Xn = Yn

P-a.s. for each n ∈ N, then X = Y P-a.s. In particular, if Xn
a.s.−→ X ,

Yn
a.s.−→ Y and Xn = Yn P-a.s. for each n ∈ N, then X = Y P-a.s.
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Convergence of random vectors

An equivalent formulation of convergence in probability

Let Xn : Ω → Rd , n ∈ N, be random vectors. Then Xn converges in
probability to some random vector X : Ω → Rd as n → ∞, if and only
if for all ε > 0, we have

lim
n→∞

sup
{m∈N: m>n}

P(∥Xm − Xn∥ > ε) = 0.

Montone decreasing sequence converging in probability to 0

Let Xn : Ω → R, n ∈ N, be random variables. If Xn
P−→ 0 as n → ∞,

and P(0 ⩽ Xn+1 ⩽ Xn) = 1 for each n ∈ N, then Xn
a.s.−→ 0 as n → ∞.
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Convergence of random vectors

Convergence of random vectors

Let X : Ω → Rd and Xn : Ω → Rd , n ∈ N, be random vectors.
The following statements are equivalent:
(a) Xn

a.s.−→ X as n → ∞,
(b) sup

{k∈N: k⩾n}
∥Xk − X∥ P−→ 0 as n → ∞, i.e.,

lim
n→∞

P

(
sup

{k∈N: k⩾n}
∥Xk − X∥ > ε

)
= 0, ∀ ε > 0,

(c) sup
{k∈N: k⩾n}

∥Xk − X∥ a.s.−→ 0 as n → ∞.
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Convergence of random vectors
The following statements are equivalent:
(a) (Xn)n∈N converges almost surely to some d-dimensional random

vector,
(b) sup

{k∈N: k⩾n}
∥Xk − Xn∥

P−→ 0 as n → ∞, i.e.,

lim
n→∞

P

(
sup

{k∈N: k⩾n}
∥Xk − Xn∥ > ε

)
= 0, ∀ ε > 0,

(c) sup
{k∈N: k⩾n}

∥Xk − Xn∥
a.s.−→ 0 as n → ∞.

∞∑
k=1

P(∥Xk − X∥ ⩾ ε) <∞ for all ε > 0 =⇒ Xn
a.s.−→ X .

Xn
P−→ X as n → ∞ ⇐⇒ for each sequence of positive integers

n1 < n2 < . . . there exists a subsequence nk1 < nk2 < . . . such

that Xnki

a.s.−→ X as i → ∞. In particular, if Xn
P−→ X as n → ∞,

then there exists a subsequence n1 < n2 < · · · such that
Xnℓ

m.b.−→ X as ℓ→ ∞ (Riesz’s selection theorem).
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Convergence of random vectors
Convergence of continuous functions of random vectors

Let X : Ω → Rd , Y : Ω → Rd , Xn : Ω → Rd , and Yn : Ω → Rd , n ∈ N,
be random vectors and g : Rd × Rd → Rr is a continuous function.

If Xn
a.s.−→ X and Yn

a.s.−→ Y , then g(Xn,Yn)
a.s.−→ g(X ,Y ).

If Xn
P−→ X and Yn

P−→ Y , then g(Xn,Yn)
P−→ g(X ,Y ).

Connection between modes of convergences and operations

Let X : Ω → Rd , Y : Ω → Rd , Xn : Ω → Rd , and Yn : Ω → Rd ,
n ∈ N, be random vectors.

If Xn
a.s.−→ X and Yn

a.s.−→ Y , then Xn + Yn
a.s.−→ X + Y and

⟨Xn,Yn⟩
a.s.−→ ⟨X ,Y ⟩.

If Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y and

⟨Xn,Yn⟩
P−→ ⟨X ,Y ⟩.

If Xn
∥·∥r−→ X and Yn

∥·∥r−→ Y for some r > 0, then

Xn + Yn
∥·∥r−→ X + Y .
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Convergence of random vectors

Uniform integrability of random vectors
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set, and
for each γ ∈ Γ, let Xγ : Ω → Rd be a random vector. The family
{Xγ : γ ∈ Γ} is called uniformly integrable, if

lim
K→∞

sup
γ∈Γ

E
(
∥Xγ∥1{∥Xγ∥>K}

)
= 0.

If Γ ̸= ∅ is a nonempty finite set, then the uniform integrability of the
random vectors {Xγ : γ ∈ Γ} is equivalent to supγ∈Γ E(∥Xγ∥) <∞.

Especially, if Xn, n ∈ N, is a sequence of identically distributed,
integrable random vectors, then {Xn : n ∈ N} is uniformly integrable.

In case of an infinite set Γ, the next theorem gives a set of necessary
and sufficient conditions.
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Convergence of random vectors

Uniform integrability
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set, and
for each γ ∈ Γ, let Xγ : Ω → Rd be a random vector. The family
{Xγ : γ ∈ Γ} is uniformly integrable if and only if

sup
γ∈Γ

E(∥Xγ∥) <∞

and
lim

P(A)→0
sup
γ∈Γ

E (∥Xγ∥1A) = 0,

which is understood in a way that ∀ ε > 0 there exists δ > 0 such
that E (∥Xγ∥1A) < ε for all γ ∈ Γ and for all events A ∈ A satisfying
P(A) < δ.
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Convergence of random vectors
Uniform integrability
Let (Ω,A,P) be a probability space, Γ ̸= ∅ be a nonempty set, and
for each γ ∈ Γ, let Xγ : Ω → Rd , Yγ : Ω → Rd be random vectors.

If there exists r > 1 such that supγ∈Γ E(∥Xγ∥r ) <∞, then the
random vectors {Xγ : γ ∈ Γ} are uniformly integrable.
If the random vectors {Xγ : γ ∈ Γ} and {Yγ : γ ∈ Γ} are
uniformly integrable, then the random vectors {Xγ + Yγ : γ ∈ Γ}
are uniformly integrable as well.
If the random vectors {Yγ : γ ∈ Γ} are uniformly integrable and
for each γ ∈ Γ, we have ∥Xγ∥ ⩽ ∥Yγ∥ P-a.s., then the random
vectors {Xγ : γ ∈ Γ} are uniformly integrable as well.

Momentum convergence theorem (Vitali)
Let X ,X1,X2, . . . be d-dimensional random vectors, and r > 0.

The convergence Xn
∥·∥r−→ X is equivalent to that Xn

P−→ X and the
uniform integrability of the random vectors {∥Xn∥r : n ∈ N}.
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Convergence of random vectors

Weak convergence of probability measures
Let µn, n ∈ N, and µ be probability measures on the measurable
space (Rd ,B(Rd)).
We say that the sequence µn, n ∈ N, converges weakly to µ
(in notation: µn ⇒ µ), if lim

n→∞
µn(A) = µ(A) for each A ∈ B(Rd) such

that µ(∂A) = 0, where ∂A = A− \A◦ denotes the boundary of the set A.
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Convergence of random vectors

Portmanteau theorem
Let µn, n ∈ N, and µ be probability measures on the measurable
space (Rd ,B(Rd)). The following assertions are equivalent:

1 lim
n→∞

∫
Rd

g(y)µn(dy) =
∫
Rd

g(y)µ(dy) for all bounded and

continuous functions g : Rd → R.

2 lim
n→∞

∫
Rd

g(y)µn(dy) =
∫
Rd

g(y)µ(dy) for all bounded and

uniformly continuous functions g : Rd → R.
3 lim sup

n→∞
µn(F ) ⩽ µ(F ) for all closed sets F ∈ B(Rd).

4 lim inf
n→∞

µn(G) ⩾ µ(G) for all open sets G ∈ B(Rd).

5 lim
n→∞

µn(A) = µ(A) for all A∈B(Rd) such that µ(∂A) = 0.

The word ”portmanteau” originally means a big travel suitcase. Nowadays, in linguistics it means
blend of words: a new word is formed by combining two existing words that relate to a singular
concept (for example: breakfast + lunch -> brunch or Hungarian + English -> Hunglish).
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Convergence of random vectors
Connection between weak convergence and convergence in
distribution
Let Xn : Ω → Rd , n ∈ N, and X : Ω → Rd be random vectors.
The following assertions are equivalent:

1 Xn
D−→ X .

2 PXn ⇒ PX .
3 lim

n→∞
E(g(Xn)) = E(g(X )) for all bounded and continuous

functions g : Rd → R.
4 lim

n→∞
E(g(Xn)) = E(g(X )) for all bounded and uniformly

continuous functions g : Rd → R.
5 lim sup

n→∞
P(Xn ∈ F ) ⩽ P(X ∈ F ) for all closed sets F ∈ B(Rd).

6 lim inf
n→∞

P(Xn∈G) ⩾ P(X ∈G) for all open sets G ∈ B(Rd).

7 lim
n→∞

P(Xn ∈ A) = P(X ∈ A) for all Borel sets A ∈ B(Rd) such
that P(X ∈ ∂A) = 0. 101



Convergence of random vectors

For a measurable function h : Rd → Rℓ, let Dh be the set of
discontinuity points of h, i.e.,

Dh :=
{

x ∈ Rd : there exists a sequence (xn)n∈N in Rd such that xn → x ,

but h(xn) ↛ h(x)
}
.

From measure theory it is known that Dh ∈ B(Rd).

Mapping theorem

Let X : Ω → Rd , Xn : Ω → Rd , n ∈ N, be random vectors, and
h : Rd → Rℓ be a measurable function.
If Xn

D−→ X and P(X ∈ Dh) = 0, then h(Xn)
D−→ h(X ).

If Xn
D−→ X and h is continuous, then Dh = ∅, and h(Xn)

D−→ h(X ),
and in this case the mapping theorem is called continuous mapping
theorem as well.
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Convergence of random vectors

Cramér–Slutsky lemma

Let X : Ω → Rd , Xn : Ω → Rd , n ∈ N, and Yn : Ω → Rd , n ∈ N, be
random vectors.
If Xn

D−→ X and Xn − Yn
P−→ 0, then Yn

D−→ X .

Joint convergence in distribution

Let X : Ω → Rd , Xn : Ω → Rd , Yn : Ω → Rd , n ∈ N, be random
vectors, and c ∈ Rd . If Xn

D−→ X and Yn
P−→ c, then

(Xn,Yn)
D−→ (X , c).
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Convergence of random vectors

Convergence of random vectors

Let X : Ω → Rd , Xn : Ω → Rd , Yn : Ω → R and Zn : Ω → Rd , n ∈ N,
be random vectors, and a ∈ Rd , b ∈ R.

If Xn
P−→ X , then Xn

D−→ X .

(Cramér–Slutsky) If Xn
D−→ X , Yn

P−→ b and Zn
P−→ a, then

YnXn + Zn
D−→ bX + a. Especially, if Xn

D−→ X , and a, an ∈ Rd ,
n ∈ N, b, bn ∈ R, n ∈ N, such that an → a and bn → b, then
bnXn + an

D−→ bX + a.

Xn
P−→ a if and only if Xn

D−→ a.

Mapping theorem (for stochastic convergence)

Let Xn : Ω → Rd , n ∈ N, be random vectors, h : Rd → Rℓ be a
measurable function, and x ∈ Rd . If Xn

P−→ x and x /∈ Dh, then
h(Xn)

P−→ h(x).
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Convergence of random vectors

Continuous mapping theorem (for stochastic convergence)

Let Xn : Ω → Rd , n ∈ N, and X : Ω → Rd be random vectors, and
h : Rd → Rℓ be a continous function. If Xn

P−→ X , then
h(Xn)

P−→ h(X ).

Mapping theorem (for expectation)
Let Xn : Ω → R, n ∈ N, be random vectors and h : R → R be a
bounded and measurable function such that P(X ∈ Dh) = 0.
If Xn

D−→ X , then E(h(Xn)) → E(h(X )).
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Convergence of random vectors

Let X : Ω → R and Xn : Ω → R, n ∈ N, be random variables.
If Xn

D−→ X , then E(|X |) ⩽ lim infn→∞ E(|Xn|).

Convergence in distribution and uniform integrability, I
Let X : Ω → R and Xn : Ω → R, n ∈ N, be random variables.
If Xn

D−→ X and {Xn : n ∈ N} is uniformly intregrable, then
E(|X |) <∞ and E(Xn) → E(X ).

Convergence in distribution and uniform integrability, II
Let X : Ω → R and Xn : Ω → R, n ∈ N, be random variables.
If Xn ⩾ 0, n ∈ N, X ⩾ 0, E(Xn) <∞, n ∈ N, E(X ) <∞, Xn

D−→ X
and E(Xn) → E(X ), then {Xn : n ∈ N} is uniformly integrable.
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Conditional probability, conditional expectation
Let (Ω,A,P) be a probability space.

Conditional relative frequency
If we carry out n independent experiments, then the conditional
relative frequency of an event A ∈ A given that the event B ∈ A
occured is

rn(A |B) :=
kn(A ∩ B)

kn(B)
=

rn(A ∩ B)

rn(B)
,

where kn(A ∩ B) and kn(B) denotes the frequency of the event A ∩ B,
and B, respectively, and rn(A ∩ B), and rn(B) denotes their relative
frequencies.

Conditional probability
Let B ∈ A be an event such that P(B) > 0. The conditional
probability of an event A ∈ A given the event B ∈ A (i.e., if we
know that the event B occured) is

P(A |B) :=
P(A ∩ B)

P(B)
.
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Conditional probability, conditional expectation

Conditional probability
Let (Ω,A,P) be a probability space, and B ∈ A be such that
P(B) > 0. Then the mapping QB : A → [0,1], QB(A) := P(A |B),
A ∈ A, is a probability measure on the measurable space (Ω,A), i.e.,
(Ω,A,QB) is a probability space.

Conditional probability
Let (Ω,A,P) be a probability space, and B ∈ A be such that
P(B) > 0. Further, let AB := {A ∩ B : A ∈ A}. Then AB is a
σ-algebra and the mapping QB : AB → [0,1], QB(A) := P(A |B),
A ∈ AB, is a probability measure on the measurable space (B,AB),
i.e., (B,AB,QB) is a probability space.

108



Conditional probability, conditional expectation
Conditional distribution, conditional expectation, conditional
variance of a discrete random variable
Let B be an event having positive probability. If X is a discrete
random variable with distribution P(X = xk ), k = 1,2, . . ., then the
conditional distribution of X given B is

P(X = xk |B) = QB(X = xk ), k = 1,2, . . . ,
the conditional expectation of X given B is

E(X |B) :=
∑

k

xk · P(X = xk |B) =
∑

k

xk · QB(X = xk ),

provided that this series is absolutely convergent, i.e.,∑
k |xk | · P(X = xk |B) <∞, and the conditional variance is

Var(X |B) := E
[
(X − E(X |B))2|B

]
= E(X 2|B)−

[
E(X |B)

]2
=
∑

k

x2
k · P(X = xk |B)−

(∑
k

xk · P(X = xk |B)

)2

,

provided that the series
∑

k x2
k · P(X = xk |B) is convergent.
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Conditional probability, conditional expectation
If X is a discrete random variable, then the sequence
P(X = xk |B), k ∈ N, is a probability distribution, since these
numbers are nonnegative and their sum is 1:∑

k

P(X = xk |B) =
1

P(B)

∑
k

P({X = xk} ∩ B)

=
1

P(B)
P

(⋃
k

({X = xk} ∩ B)

)
=

1
P(B)

P

((⋃
k

{X = xk}
)
∩ B

)

=
1

P(B)
P(Ω ∩ B) = 1.

Especially, if B is an event such that P(B) = 1 (e.g., B = Ω),
then the conditional distribution, expectation and variance of X
given B coincides with the distribution, expectation and variance
of X .
If E(|X |) <∞, then for each event B having positive probability,
we have E(|X | |B) <∞.
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Conditional probability, conditional expectation
Let us roll two fair dices. What is the conditional distribution of the
difference of the numbers shown on the dices given that their sum is ℓ?
Denote by X and Y the two numbers. Then ℓ ∈ {2,3, . . . ,12} and

P(X + Y = ℓ) =

{
ℓ−1
36 if 2 ⩽ ℓ ⩽ 7,

13−ℓ
36 if 7 ⩽ ℓ ⩽ 12.

Further, |X − Y | can have values: 0,1,2,3,4,5, and for ℓ ∈ {2, . . . ,6},
the conditional probabilities in question are:

P(|X − Y | = 0 |X + Y = 2) = 1, P(|X − Y | = 1 |X + Y = 3) = 1,

P(|X − Y | = 0 |X + Y = 4) =
1
3
, P(|X − Y | = 2 |X + Y = 4) =

2
3
,

P(|X − Y | = 1 |X + Y = 5) =
1
2
, P(|X − Y | = 3 |X + Y = 5) =

1
2
,

P(|X − Y | = 0 |X + Y = 6) =
1
5
, P(|X − Y | = 2 |X + Y = 6) =

2
5
,

P(|X − Y | = 4 |X + Y = 6) =
2
5
.
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Conditional probability, conditional expectation
In case of ℓ = 6, the conditional probabilities above can be calculated
as follows. Since

{X + Y = 6} = {X = 1,Y = 5} ∪ {X = 2,Y = 4}
∪ {X = 3,Y = 3} ∪ {X = 4,Y = 2} ∪ {X = 5,Y = 1},

if the event {X + Y = 6} occurs, then |X − Y | can take the values
0,2,4, and we have

{|X − Y | = 0} = {X = 3,Y = 3},
{|X − Y | = 2} = {X = 2,Y = 4} ∪ {X = 4,Y = 2},
{|X − Y | = 4} = {X = 1,Y = 5} ∪ {X = 5,Y = 1}.

Hence

P(|X − Y | = 0 |X + Y = 6) =
P(|X − Y | = 0,X + Y = 6)

P(X + Y = 6)
=

1
36
5

36

=
1
5
,

P(|X − Y | = 2 |X + Y = 6) =
P(|X − Y | = 2,X + Y = 6)

P(X + Y = 6)
=

2
36
5

36

=
2
5
,

P(|X − Y | = 4 |X + Y = 6) =
P(|X − Y | = 4,X + Y = 6)

P(X + Y = 6)
=

2
36
5

36

=
2
5
.
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Conditional probability, conditional expectation

Conditional distribution and conditional expectation of an
absolutely continuous random variable
The conditional distribution function of a real-valued random
variable X given an event B having positive probability is
FX |B : R → [0,1],

FX |B(x) := P(X < x |B) = QB(X < x), x ∈ R.

If there exists a Borel mesaurable function fX |B : R → R such that

FX |B(x) =
∫ x

−∞
fX |B(u) du

for all x ∈ R, then the function fX |B is called a conditional density
function of X given B.

The conditional distribution function FX |B is nothing else but the distribution function
of X under the probability measure QB . The conditional density function fX |B , provided
that it exists, is Borel measurable, nonnegative Lebesgue almost everywhere, and∫∞
−∞ fX |B(u) du = 1, and hence it is (usual) density function.
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Conditional probability, conditional expectation

Conditional variance of an absolutely continuous r. v.
If there exists a conditional density function fX |B, then the conditional
expectation of X given B is

E(X |B) :=

∫ ∞

−∞
x · fX |B(x) dx

provided that this improper integral is absolutely convergent, i.e.,∫∞
−∞ |x | · fX |B(x) dx <∞; and the conditional variance is of X given

B is

Var(X |B) := E
[
(X − E(X |B))2|B

]
= E(X 2|B)−

[
E(X |B)

]2
=

∫ ∞

−∞
x2 · fX |B(x) dx −

(∫ ∞

−∞
x · fX |B(x) dx

)2

,

provided that
∫∞
−∞ x2 · fX |B(x) dx <∞.

If there exists a conditional density function fX |B and E(|X |) <∞, then
for each event B having positive probability, we have E(|X | |B) <∞.
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Conditional probability, conditional expectation

Example: Let X be a standard normally distributed random variable,
and B := {X ⩾ 0}. Then P(B) = 1/2, and

FX |B(x) =
P(0 ⩽ X < x)
P(X ⩾ 0)

=

{
0 if x ⩽ 0,
2P(0 ⩽ X < x) if x > 0.

If x > 0, then

FX |B(x) = 2(Φ(x)− Φ(0)) =

√
2
π

∫ x

0
e−u2/2 du.

Hence the conditional density function of X given B is

fX |B(x) =

{√
2
π e−x2/2 if x > 0,

0 if x ⩽ 0.
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Conditional probability, conditional expectation

Consequently, the conditional expectation of X given B is

E(X |B) =

∫ ∞

−∞
x · fX |B(x) dx =

∫ ∞

0
x

√
2
π

e−x2/2 dx

=

√
2
π

[
− e−x2/2

]∞
0

=

√
2
π
.

Further, if Y := |X |, then

FY (x) = P(|X | < x) =

{
0 if x ⩽ 0,
P(−x < X < x) if x > 0,

=

{
0 if x ⩽ 0,
2P(0 ⩽ X < x) if x > 0,

= FX |B(x), x ∈ R,

i.e., the conditional distribution of X given B coincides with the
distribution of |X |.
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Conditional probability, conditional expectation
Conditional density function and conditional expectation given
an absolutely continuous random variable
Let (X ,Y ) be an absolutely continuous random vector with density
function fX ,Y . Then the conditional density function of X given
Y = y (where y ∈ R) is defined by

fX |Y (x |y) :=


fX ,Y (x , y)

fY (y)
if fY (y) ̸= 0,

h(x) if fY (y) = 0,
x ∈ R,

where fY is the density function of Y and h is an arbitrary density
function.
the conditional distribution function of X given Y = y is

P(X < x |Y = y) :=
∫ x

−∞
fX |Y (u|y) du, x ∈ R.

the conditional expectation of X given Y = y is

E(X |Y = y) :=
∫ ∞

−∞
x · fX |Y (x |y) dx ,

provided that the integral on the right hand side is absolutely
convergent.
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Conditional probability, conditional expectation

Remark. Let (X ,Y ) be an absolutely continuous random vector with
density function fX ,Y . Let y ∈ R and consider the conditional density
function of X given Y = y : R ∋ x 7→ fX |Y (x |y).
Then, by furnishing the set of real numbers R with the σ-algebra B(R)
of Borel sets, the set function

B(R) ∋ B 7→
∫

B
fX |Y (u|y) du

is a probability measure on (R,B(R)).
Further, for all x ∈ R, the probability of the set (event) (−∞, x) with
respect to this probability measure is nothing else but

P(X < x |Y = y),

and the probability of the set (event) (x ,∞) is∫ ∞

x
fX |Y (u|y) du = 1 − P(X < x |Y = y).
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Conditional probability, conditional expectation
Conditional variance and regression curve given an absolutely
continuous random variable
The conditional variance of X given Y = y is

Var(X |Y = y) := E
[
(X − E(X |Y = y))2|Y = y

]
= E(X 2|Y = y)−

[
E(X |Y = y)

]2
=

∫ ∞

−∞
x2 · fX |Y (x |y) dx −

(∫ ∞

−∞
x · fX |Y (x |y) dx

)2

,

provided that
∫∞
−∞ x2 · fX |Y (x |y) dx <∞.

The regression curve of X given Y is

the function R ∋ y 7→ E(X |Y = y).

This minimizes the quantity E
[
(X − f (Y ))2], i.e., if E(X 2) <∞ and

f : R → R is a Borel measurable function such that E
[
f (Y )2] <∞,

then
E
[
(X − E(X |Y ))2] ⩽ E

[
(X − f (Y ))2].
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Conditional probability, conditional expectation
Theorem of total expectation given a partition in the discrete
case
If B1, B2, . . . is a partition of Ω such that P(Bi) > 0, i ∈ N, X is a
discrete random variable and E(|X |) <∞, then

E(X ) =
∑

k

E(X |Bk ) · P(Bk ).

Proof. Let X be a discrete random variable having possible values
x1, x2, . . . . Then∑

k

E(X |Bk ) · P(Bk ) =
∑

k

∑
j

xjP(X = xj |Bk ) · P(Bk )

=
∑

k

∑
j

xjP({X = xj} ∩ Bk ) =
∑

j

xj
∑

k

P({X = xj} ∩ Bk )

=
∑

j

xjP(X = xj) = E(X ),

where we used the condition E(|X |) <∞ for interchanging the sums.
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Conditional probability, conditional expectation

Conditional expectation of a discrete random variable given a
partition
Let X be a discrete random variable such that E(|X |) <∞, and let
G := {B1,B2, . . .} be a partition Ω such that P(Bk > 0), k ∈ N. Then

the conditional expectation of X given G is the discrete random
variable

E(X | G) :=
∑

k

E(X |Bk )1Bk .

The random variable E(X | G) takes the value E(X |Bk ) on the event Bk .
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Conditional probability, conditional expectation
Example:
We roll a fair dice until we see 6 as the result.
Let X be the number of times we have to roll.
Then X is geometrically distributed with parameter 1

6 , so E(X ) = 6.
In what follows we determine E(X ) using the theorem of total
expectation as well.
Then Bk := {the first roll is k}, k = 1, . . . ,6, is a partition of Ω
consisting of events having positive (1/6) probability.
By the theorem of total expectation, since E(|X |) <∞, we have

E(X ) =
6∑

k=1

E(X |Bk ) · P(Bk )

We show that

E(X |Bk ) =

{
1 + E(X ) if 1 ⩽ k ⩽ 5,
1 if k = 6.
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Conditional probability, conditional expectation
Then P(X = 1 |B6) = 1 and hence E(X |B6) = 1 · 1 = 1.
If 1 ⩽ k ⩽ 5, then

E(X |Bk ) = E(1 + X − 1 |Bk ) = 1 + E(X − 1 |Bk ) = 1 + E(X ),

where at the last step we used that the conditional distribution of
X − 1 given Bk -ra (k = 1,2,3,4,5) coincides with the distribution of
X . Indeed, the range of X − 1 is Z+ = {0,1,2, . . .},
P(X − 1 = 0 |Bk ) = 0 and

P(X − 1 = n |Bk ) =
P(X − 1 = n,Bk )

P(Bk )
=

P(X = n + 1,Bk )

P(Bk )

=
P({the 1st throw is k} ∩ {the 2nd , . . . , nth throws are not 6} ∩ {the (n + 1)th throw is 6})

P(Bk )

=
1
6 ·
(5

6

)n−1 · 1
6

1
6

=
1
6
·
(

5
6

)n−1

= P(X = n), n ∈ N.

Hence
E(X ) =

1
6
(
1 + 5(1 + E(X ))

)
,

yielding that E(X ) = 6. 123



Conditional probability, conditional expectation

The conditional expectations E(X |Bk ), 1 ⩽ k ⩽ 5, can be directly
calculated (by definition).

If 1 ⩽ k ⩽ 5, then P(X = 1 |Bk ) = 0 and

P(X = n |Bk )

=
P({the first throw is k} ∩ {the 2nd , . . . , (n − 1)th throws are not 6} ∩ {the nth throw is 6})

P(Bk )

=
1
6 ·
(5

6

)n−2 · 1
6

1
6

=
5n−2

6n−1 , n = 2,3, . . . .
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Conditional probability, conditional expectation

Hence, for k = 1, . . . ,5 we have

E(X |Bk ) =
∞∑

n=2

n
5n−2

6n−1 =
1
5

∞∑
n=2

n
(

5
6

)n−1

=
1
5

∞∑
n=2

(xn)′
∣∣∣
x=5/6

=
1
5

( ∞∑
n=2

xn

)′ ∣∣∣
x=5/6

=
1
5

(
x2

1 − x

)′ ∣∣∣
x=5/6

=
1
5

2x − x2

(1 − x)2

∣∣∣
x=5/6

= 7.

Consequently, E(X ) = 1
6(1 + 5 · 7) = 6.
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Conditional probability, conditional expectation

Further, the conditional expectation of X given the partition
G := {B1, . . . ,B6} consisting of events with positive probability is
the discrete random variable

E(X | G) = 7(1B1 + · · ·+ 1B5) + 1 · 1B6 = 7 · 1Ω\B6
+ 1 · 1B6 .

That is

E(X | G)(ω) =

{
7 if ω /∈ B6,
1 if ω ∈ B6.
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Conditional probability, conditional expectation

Theorem of total probability and total expectation in jointly
absolute continuous case
Let (Ω,A,P) be a probability space, and (X ,Y ) : Ω → R2 be an
absolute continuous random vector with density function fX ,Y .
Let fY denote the density function of Y .

1 For all x ∈ R, we have

P(X < x) =
∫ ∞

−∞
P(X < x |Y = y)fY (y) dy .

2 If E(|X |) <∞, then

E(X ) =

∫ ∞

−∞
E(X |Y = y)fY (y) dy .
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Conditional probability, conditional expectation
Example: Let us choose a point uniformly in the interval (0,1), and
denote it by Y . Consider the random interval (0,Y ), and let X be
uniformly distributed in this interval. What is the expected value of X?

By the assumptions, Y is uniformly distributed in the interval (0,1), and
for all y ∈ (0,1), the conditional density function of X given Y = y
takes the form

fX |Y (x |y) =
{

1
y if x ∈ (0, y),
0 if x /∈ (0, y),

x ∈ R.

By the theorem of total expectation, we have

E(X) =

∫ ∞

−∞
E(X |Y = y)fY (y) dy =

∫ ∞

−∞
E(X |Y = y) dy ,

where
E(X |Y = y) =

∫ ∞

−∞
x · fX |Y (x |y) dx =

∫ y

0
x ·

1
y

dx =
y
2
.

Consequently,
E(X) =

∫ 1

0

y
2

dy =
1
4
.
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Conditional probability, conditional expectation

Another property of expectation
Let (Ω,A,P) be a probability space and F ⊂ A be a sub-σ-algebra.

1 If ζ : Ω → R is an F-measurable random variable such that
E(|ζ|) <∞ and E(ζ1A) ⩾ 0 for each A ∈ F , then ζ ⩾ 0 P–a.s.

2 If ξ : Ω → R and η : Ω → R are F-measurable random variables
such that E(|ξ|) <∞, E(|η|) <∞, and E(ξ1A) ⩽ E(η1A) for
each A ∈ F , then ξ ⩽ η P–a.s.

3 If ξ : Ω → R and η : Ω → R are F-measurable random variables
such that E(|ξ|) <∞, E(|η|) <∞, and E(ξ1A) = E(η1A) for
each A ∈ F , then ξ = η P–a.s.
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Conditional probability, conditional expectation

Conditional expectation given a σ-algebra
Let (Ω,A,P) be a probability space, F ⊂ A be a sub-σ-algebra, and
X : Ω → R is a random variable such that E(|X |) <∞.
A random variable XF : Ω → R is called a conditional expectation
of X given F , if

1 XF is F-measurable (i.e., σ(XF ) ⊂ F) and E(|XF |) <∞,
2 for each A ∈ F , we have E(XF1A) = E(X1A).

Conditional expectation given a σ-algebra
Let (Ω,A,P) be a probability space, F ⊂ A be a sub-σ-algebra, and
X : Ω → R be a random variable such that E(|X |) <∞.
Then there exists a conditional expectation XF : Ω → R, which is
uniquely determined P-a.s.

In notation: E(X | F) denotes the equivalence class of the random
variable XF with respect to P, and its arbitraty representative as well.
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Conditional probability, conditional expectation

Properties of conditional expectation
Let (Ω,A,P) be a probability space, F ⊂ A be a sub-σ-algebra.

1 If E(|X |) <∞, E(|Y |) <∞ and X ⩽ Y , then E(X | F) ⩽ E(Y | F).
2 If E(|X |) <∞, then |E(X | F)| ⩽ E(|X | | F).
3 If E(|X |) <∞, then E(X | A) = X .
4 If X is F-measurable and E(|X |) <∞, then E(X | F) = X .
5 If E(|X |) <∞, then E[E(X | F)] = E(X ).
6 If E(|X |) <∞ and X is independent of F , then E(X | F) = E(X ).
7 Tower rule: if E(|X |) <∞ and G ⊂ F is a sub-σ-algebra, then

E[E(X | F) | G] = E[E(X | G) | F ] = E(X | G).
8 If E(|X |) <∞ and E(|Y |) <∞, then for each a,b ∈ R, we have

E(aX + bY | F) = aE(X | F) + b E(Y | F).
9 If E(|X |) <∞, E(|XY |) <∞ and Y is F–measurable, then

E(XY | F) = Y E(X | F).
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Conditional probability, conditional expectation
Properties of conditional expectation

10 If X1, X2, . . . are P-integrable, Xn ↑ X P-a.s. and X is
P-integrable as well, further there exists a random variable Y
such that for each n ∈ N, we have Xn ⩾ Y P-a.s. and
E(|Y |) <∞, then E(Xn | F) ↑ E(X | F) P-a.s.

11 If X1, X2, . . . are P-integrable, for each n ∈ N, we have Xn ⩾ Y
P-a.s., where Y is a random variable such that E(|Y |) <∞, and
E
(∣∣∣lim inf

n→∞
Xn

∣∣∣) <∞, then E
(
lim inf
n→∞

Xn | F
)
⩽ lim inf

n→∞
E(Xn | F).

12 If Xn
a.s.−→ X , and there exists a P-integrable random variable Y

such that for each n ∈ N, we have |Xn| ⩽ Y P-a.s., then
E(Xn | F)

a.s.−→ E(X | F), and E(|Xn − X | | F)
a.s.−→ 0.

13 If X1, X2, . . . are P-integrable, for each n ∈ N, we have Xn ⩾ 0

P-a.s., and
∞∑

n=1
Xn is P-integrable as well, then

E

( ∞∑
n=1

Xn | F
)

=
∞∑

n=1
E(Xn | F).
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Conditional probability, conditional expectation
Multidimensional conditional Jensen inequality
Let (Ω,A,P) be a probability space, F ⊂ A be a sub-σ-algebra, and
X = (X1, . . . ,Xd) : Ω → Rd be a random vector such that E(∥X∥) <∞.

1 If K ⊂ Rd is nonempty, convex, closed and X ∈ K P-a.s., then
E(X | F) := (E(X1 | F), . . . ,E(Xd | F)) ∈ K P-a.s.

2 If g : Rd → R is convex and E(|g(X )|) <∞, then
g(E(X | F)) ⩽ E(g(X ) | F).

Conditional probability given a σ-algebra
Let (Ω,A,P) be a probability space and F ⊂ A be a sub-σ-algebra.
The conditional probability of an event A ∈ A given F is given
by P(A | F) := E(1A | F).

Conditional expectation given a random vector
Let (Ω,A,P) be a probability space, X : Ω → R be a random variable
such that E(|X |) <∞, and Y : Ω → Rd be a random vector. Then the
conditional expectation of X given Y is E(X |Y ) := E(X |σ(Y )).
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Conditional probability, conditional expectation

Conditional expectation given a random vector

There exists a measurable function f : Rd → R such that
E(X |Y ) = f (Y ).
This is the PY -a.s. uniquely determined measurable function
f : Rd → R such that for each B ∈ B(Rd), we have∫

B
f (y) PY (dy) = E(X1Y−1(B)),

where PY denotes the distribution of Y , i.e., PY (B) := P(Y ∈ B) for
all B ∈ B(Rd).

In notation: f (y) = E(X |Y = y), y ∈ Rd .

Here f is nothing else but the Radon-Nikodym derivative of the finite,
signed (i.e., not necessarily nonnegative) measure
Q(B) := E(X1Y−1(B)), B ∈ B(Rd), with respect to PY on the
mesurable space (Rd ,B(Rd)).
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Conditional probability, conditional expectation

Monotone class
A family C of subsets of a nonempty set Ω is called a monotone
class, if An ∈ C, n ∈ N and An ↑ A as n → ∞ yield A ∈ C.

Monotone class theorem
Let Ω ̸= ∅, H be an algebra consisting of some subsets of Ω, and
C be a monotone class of some subsets of Ω such that H ⊂ C.
Then σ(H) ⊂ C.
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Conditional probability, conditional expectation

Properties of conditional expectation given a random vector
Let (Ω,F ,P) be a probability space, X : Ω → R be a random
variable such that E(|X |) <∞, and Y : Ω → Rd be a random vector.

1 If g : Rd → R is a measurable function such that
E(|Xg(Y )|) <∞, then E(Xg(Y ) |Y = y) = g(y) E(X |Y = y).

2 If X and Y are independent, and g : R× Rd → R is a
measurable function such that E(|g(X ,Y )|) <∞, then
E(g(X ,Y ) |Y = y) = E(g(X , y) |Y = y) = E(g(X , y)) and
E(g(X ,Y ) |Y ) = E(g(X , y))

∣∣
y=Y .

3 If g : R× Rd → R is a measurable function such that
E(|g(X ,Y )|) <∞, then E(g(X ,Y ) |Y ) = E(g(X , y) |Y )

∣∣
y=Y .
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Conditional probability, conditional expectation

Conditional probability given a random vector

Let (Ω,A,P) be a probability space, and Y : Ω → Rd be a random
vector. The conditional probability of an event A ∈ A given Y is

P(A |Y ) := P(A |σ(Y )) := E(1A |σ(Y )).

As we saw earlier, there exists a PY -a.s. uniquely determined
measurable function f : Rd → R such that P(A |Y ) = f (Y ).
The equivalence class of this function f with respect to PY , and its
arbitrary representative as well, is denoted by
P(A |Y = y) = E(1A |Y = y).
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Conditional probability, conditional expectation
Properties of a conditional density function

Let (Ω,A,P) be a probability space, and (X ,Y ) : Ω → R2 be an
absolutely continuous random vector. Denote by fX ,Y the density
function of (X ,Y ). Let us define the function fX |Y : R2 → [0,∞),

fX |Y (x |y) :=


fX ,Y (x , y)

fY (y)
if fY (y) ̸= 0,

h(x) if fY (y) = 0,

where fY is the density function of Y , and h : R → [0,∞) is an
arbitrary density function. Then the following assertions hold:

1 For each y ∈ R, the function R ∋ x 7→ fX |Y (x |y) is a density
function.

2 For each A ∈ B(R), we have P(X ∈ A |Y = y) =
∫

A fX |Y (x |y) dx .
3 If g : R → R is a measurable function such that E(|g(X )|) <∞,

then E(g(X ) |Y = y) =
∫∞
−∞ g(x)fX |Y (x |y) dx .

The 2nd and 3rd statements hold for PY -a.e. y ∈ R. 138



Conditional probability, conditional expectation
Conditional density function

Let (Ω,A,P) be a probability space, and (X ,Y ) : Ω → R2 be an
absolutely continuous random variable. The function fX |Y defined
above is called a conditional density function of X given Y .

Theorems of total probability and total expectation
Let (Ω,A,P) be a probability space, and Y : Ω → R be a random
variable.

1 Then for each event A ∈ A, we have

P(A) =
∫ ∞

−∞
P(A |Y = y) PY (dy).

2 If X : Ω → R is a random variable such that E(|X |) <∞, then

E(X ) =

∫ ∞

−∞
E(X |Y = y) PY (dy).
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Conditional probability, conditional expectation

Continuous version of Bayes theorem

Let (Ω,A,P) be a probability space, and (X ,Y ) : Ω → R2 be an
absolutely continuous random vector. Then for each Borel set
A ∈ B(R), we have

P(X ∈ A |Y = y) =

∫
A

fY |X (y |x)fX (x) dx∫ ∞

−∞
fY |X (y |x)fX (x) dx

PY -a.e. y ∈ R.
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Conditional probability, conditional expectation
Best mean squared, F-measurable prediction
Let (Ω,A,P) be a probability space, F ⊂ A be a sub-σ-algebra, and
X : Ω → R be a square P-integrable random variable. A random
variable Y : Ω → R is called a best mean squared, F -measurable
prediction of X , if

1 Y is F-measurable and square P-integrable,
2 for each F-measurable square P-integrable random variable

Z : Ω → R, we have E((X − Y )2) ⩽ E((X − Z )2).

In fact, given the vector X ∈ L2(Ω,A,P) we search for a vector
Y ∈ L2(Ω,F ,P) such that ∥X − Y∥L2 ⩽ ∥X − Z∥L2 holds for all
Z ∈ L2(Ω,F ,P), and this is of course the orthogonal projection of X
onto the closed, linear subspace L2(Ω,F ,P).

Best mean squared, F-measurable prediction
There exists a best mean squared, F-measurable prediction of X ,
namely, E(X | F) (which is square integrable).
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Conditional probability, conditional expectation
Best mean squared linear prediction
Let (Ω,A,P) be a probability space, and X ,Y1, . . . ,Yn : Ω → R be
square P–integrable random variables. A random variable Y : Ω → R
is called a best mean square linear prediction of X given
Y1, . . . ,Yn, if

1 Y is an element of the closed, linear subspace L2(Y1, . . . ,Yn) of
the Hilbert space L2(Ω,A,P) which consists of the linear
combinations of Y1, . . . ,Yn,

2 for each Z ∈ L2(Y1, . . . ,Yn), we have E((X −Y )2) ⩽ E((X −Z )2).

In fact, given the vector X ∈ L2(Ω,A,P), we search for a vector
Y ∈ L2(Y1, . . . ,Yn) such that ∥X − Y∥L2 ⩽ ∥X − Z∥L2 for all
Z ∈ L2(Y1, . . . ,Yn); and this is of course the orthogonal projection of
X onto the closed, linear subspace L2(Y1, . . . ,Yn). Since
L2(Y1, . . . ,Yn) is contained in L2(Ω, σ(Y1, . . . ,Yn),P), a best mean
squared linear prediction given Y1, . . . ,Yn is in general ”worse” than a
best mean squared, σ(Y1, . . . ,Yn)-measurable prediction, which has the
form f (Y1, . . . ,Yn) with some PY1,...,Yn -a.e. uniquely determined measurable function
f : Rn → R. 142



Conditional probability, conditional expectation

Best mean squared linear prediction
Let (X ,Y1, . . . ,Yn) be a n + 1–dimensional normally distributed
random variable, and let us suppose that
E(X ) = E(Y1) = . . . = E(Yn) = 0. Then the best mean squared linear
prediction of X given Y1, . . . ,Yn coincides with the best mean
squared, σ(Y1, . . . ,Yn)–measurable prediction, so it is
E(X |Y1, . . .Yn) as well.
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Conditional probability, conditional expectation

Example: Let (X ,Y ) be a normally distributed random vector such
that D2(Y ) > 0. Then

E(X |Y = y) = E(X ) +
Cov(X ,Y )

D2(Y )
(y − E(Y )),

i.e., the regression curve is a line.

Further, if the covariance matrix of (X ,Y ) is invertible, i.e.,
D2(X )D2(Y )− (Cov(X ,Y ))2 > 0, then the conditional distribution of X
given Y = y is normal distribution such that

N
(
E(X |Y = y), D2(X )− (Cov(X ,Y ))2

D2(Y )

)
.

Hence

D2(X |Y = y) = D2(X )− (Cov(X ,Y ))2

D2(Y )
,

which does not depend on y .
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Weak laws of large numbers

Let X1,X2, . . . be random variables, and let

Sn := X1 + · · ·+ Xn, X n :=
X1 + · · ·+ Xn

n
.

L2-convergence of arithmetic mean

If E(X 2
n ) <∞ for each n ∈ N and E(XkXℓ) = 0 for k ̸= ℓ, then for

all ε > 0 and n ∈ N we have

P(|X n| ⩾ ε) ⩽
1
ε2 E(X

2
n) ⩽

1
nε2 sup

ℓ⩾1
E(X 2

ℓ ).

Especially, if sup
ℓ⩾1

E(X 2
ℓ ) <∞, then X n

∥·∥2−→ 0, and hence X n
P−→ 0.
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Weak laws of large numbers

Chebyshev theorem
If X1,X2, . . . are pairwise uncorrelated such that sup

ℓ⩾1
Var(Xℓ) <∞

and E(Xn) = m for each n ∈ N, where m ∈ R, then X n
∥·∥2−→ m, and

hence X n
P−→ m.

Markov theorem
If X1,X2, . . . are pairwise uncorrelated such that sup

ℓ⩾1
Var(Xℓ) <∞

and ∃ lim
n→∞

E(X n) =: m ∈ R, then X n
∥·∥2−→ m, and hence X n

P−→ m.

Khinchin theorem (1929)
If X1,X2, . . . are pairwise independent, identically distributed random
variables and E(|X1|) <∞, then X n

P−→ E(X1).
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Weak laws of large numbers

L1-convergence of arithmetic mean
If X1,X2, . . . are uniformly integrable, (totally) independent random
variables, then

X n − E(X n)
∥·∥1−→ 0, and hence X n − E(X n)

P−→ 0.

Especially, if X1,X2, . . . are independent, identically distributed

random variables and E(|X1|) <∞, then X n
∥·∥1−→ E(X1), and hence

X n
P−→ E(X1).
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Strong laws of large numbers
L4- and P-a.s. convergence of arithmetic mean
If X1,X2, . . . are independent random variables and E(Xn) = 0 for
each n ∈ N, then for all ε > 0 and n ∈ N, we have

P(|X n| ⩾ ε) ⩽
E(X

4
n)

ε4 ⩽
3

n2ε4 sup
ℓ⩾1

E(X 4
ℓ ).

Especially, if sup
ℓ⩾1

E(X 4
ℓ ) <∞, then X n

∥·∥4−→ 0 and X n
a.s.−→ 0.

A strong law under second order moment assumption
If X1,X2, . . . are pairwise independent, identically distributed random
variables and E(X 2

1 ) <∞, then X n
a.s.−→ E(X1).

Kolmogorov inequality

If X1, . . . ,Xn are independent random variables and E(X 2
k ) <∞ for

each k ∈ {1, . . . ,n}, then for all ε > 0, we have

P

(
max

1⩽k⩽n
|Sk − E(Sk )| ⩾ ε

)
⩽

Var(Sn)

ε2 .
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Strong laws of large numbers

Kolmogorov one series theorem

If X1,X2, . . . are independent random variables and
∞∑

n=1
Var(Xn) <∞,

then
P

( ∞∑
n=1

(Xn − E(Xn)) is convergent

)
= 1.

Kolmogorov two series theorem

If X1,X2, . . . are independent random variables such that
∞∑

n=1
E(Xn) is

convergent and
∞∑

n=1
Var(Xn) <∞, then

P

( ∞∑
n=1

Xn is convergent

)
= 1.
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Strong laws of large numbers

Kolmogorov three series theorem
If X1,X2, . . . are independent random variables and there exists
c > 0 such that

(1)
∞∑

n=1
E(X (c)

n ) is convergent,

(2)
∞∑

n=1
Var(X (c)

n ) <∞,

(3)
∞∑

n=1
P(|Xn| ⩾ c) <∞,

where

X (c)
n := Xn1{|Xn|<c} =

{
Xn, if |Xn| < c,
0, if |Xn| ⩾ c,

then

P

( ∞∑
n=1

Xn is convergent

)
= 1.
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Kronecker lemma
Let b1,b2, . . . be a sequence of positive numbers such that bn ↑ ∞,
and for each n ∈ N let βn := bn − bn−1, where b0 := 0.

1 If s1, s2, . . . is a real sequence and sn → s ∈ R, then
1
bn

∑n
ℓ=1 βℓsℓ → s. Especially, for a convergent sequence, the

sequence of its arithmetic means converges to the same limit.
2 If x1, x2, . . . is a real sequence and

∑∞
n=1

xn
bn

is convergent, then
1
bn

∑n
ℓ=1 xℓ → 0.

3 (Discrete L’Hôspital rule) Let us suppose that βn > 0, n ∈ N,
and let (xn)n∈N be a real sequence such that xn

βn
→ c ∈ R. Then

1
bn

n∑
ℓ=1

xℓ =
∑n

ℓ=1 xℓ∑n
ℓ=1 βℓ

→ c.

The reason for calling it as discrete L’Hôspital rule is that the
condition xn

βn
→ c ∈ R can also be written in the form

∆
(∑n

ℓ=1 xℓ
)

∆
(∑n

ℓ=1 βℓ
) → c ∈ R,

where ∆xn := xn − xn−1, n ∈ N, with x0 := 0.
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Strong laws of large numbers

Kolmogorov theorem (1929)
Let X1,X2, . . . be independent random variables. Let b1,b2, . . . be a

sequence of positive numbers such that bn ↑ ∞. If
∞∑

n=1

Var(Xn)

b2
n

<∞,

then
1
bn

n∑
ℓ=1

(Xℓ − E(Xℓ))
a.s.−→ 0.

Especially, if
∞∑

n=1

Var(Xn)
n2 <∞, then X n − E(X n)

a.s.−→ 0.

Kolmogorov theorem (1933)
Let X1,X2, . . . be independent, identically distributed random
variables.

1 If E(|X1|) <∞, then X n
a.s.−→ E(X1).

2 If P
(
(X n)n⩾1 converges

)
> 0, then E(|X1|) <∞.
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Strong laws of large numbers

Etemadi (1981)
Let X1,X2, . . . be pairwise independent, identically distributed random
variables such that E(|X1|) <∞. Then X n

a.s.−→ E(X1).

Chandra and Goswami (1992)
Let X1,X2, . . . be pairwise independent random variables such that∫ ∞

0
sup
n∈N

P(|Xn| > t) dt <∞.

Then Sn−E(Sn)
n

a.s.−→ 0.
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Central limit theorems
Degenerate random variable

Let (Ω,A,P) be a probability space. A random vector X : Ω → Rd is
called degenerate, if there exists x0 ∈ Rd such that P(X = x0) = 1.

For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent (real-valued)
random variables such that not all of them are degenerate and
E(X 2

n,j) <∞, j = 1, . . . , kn. For each n ∈ N and j = 1, . . . , kn, let

σn,j :=
√
Var(Xn,j),

Sn := Xn,1 + · · ·+ Xn,kn ,

Dn :=
√

Var(Sn) =
√∑kn

j=1 σ
2
n,j > 0,

Ŝn := (Sn − E(Sn))/Dn. Then E(Ŝn) = 0 and Var(Ŝn) = 1.

rn := 1
Dn

max1⩽j⩽kn σn,j ,

Ln(ε) :=
1

D2
n

∑kn
j=1 E

[
(Xn,j − E(Xn,j))

2
1{|Xn,j−E(Xn,j )|⩾εDn}

]
, ε > 0.

Let Y ∼ N (0,1).
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Central limit theorems

Lindeberg theorem
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate and E(X 2

n,j) <∞,
j = 1, . . . , kn. Let g : R → R be a three times continuously
differentiable function.

1 For each n ∈ N and ε > 0, we have∣∣∣E[g(Ŝn)]− E[g(Y )]
∣∣∣ ⩽ ( ε

6
+

rn

2

)
∥g′′′∥∞ + Ln(ε)∥g′′∥∞,

where ∥h∥∞ := sup
x∈R

|h(x)| for any h : R → R.

2 If ∥g′′∥∞ <∞, ∥g′′′∥∞ <∞, and the so called Lindeberg
condition holds, i.e., lim

n→∞
Ln(ε) = 0 for each ε > 0, then

lim
n→∞

E[g(Ŝn)] = E[g(Y )].
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Central limit theorems

Lindeberg central limit theorem for triangular arrays
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate and E(X 2

n,j) <∞,
j = 1, . . . , kn. If lim

n→∞
Ln(ε) = 0 for each ε > 0, and g : R → C is a

continuous function such that

sup
x∈R

|g(x)|
1 + x2 <∞,

then
lim

n→∞
E[g(Ŝn)] = E[g(Y )].

Especially, Ŝn
D−→ N (0,1).
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Central limit theorems

Lindeberg central limit theorem for triangular arrays
For each n ∈ N, let Xn,1, . . . ,Xn,kn be indendent random variables
such that not all of them are degenerate and E(X 2

n,j) <∞,
j = 1, . . . , kn. If lim

n→∞
Ln(ε) = 0 for each ε > 0, and gn : R → C,

n ∈ N, are continuous functions such that

sup
n∈N

sup
x∈R

|gn(x)|
1 + x2 <∞,

and gn converges uniformly on compact sets to some continuous
function g : R → C as n → ∞ (i.e., for each compact set K ⊂ R, we
have gn|K converges uniformly to g|K as n → ∞, i.e., for each
compact set K ⊂ R, we have limn→∞ supx∈K |gn(x)− g(x)| = 0),
then

lim
n→∞

E[gn(Ŝn)] = E[g(Y )].

Especially, Ŝn
D−→ N (0,1).
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Central limit theorems
Lyapunov central limit theorem for triangular arrays
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate. If for some δ > 0, we have
E(|Xn,j |2+δ) <∞, n ∈ N, j = 1, . . . , kn, and

1
D2+δ

n

kn∑
j=1

E
[
|Xn,j − E(Xn,j)|2+δ

]
→ 0, as n → ∞,

then Ŝn = Sn−E(Sn)
Dn

D−→ N (0,1). (Here Dn =
√
Var(Sn), n ∈ N.)

Lévy central limit theorem: independent, identically distributed case

Let X1, X2, . . . be independent, identically distributed random
variables, and let Sn := X1 + · · ·+ Xn.
If E(X 2

1 ) <∞ and Var(X1) > 0, then Sn−E(Sn)√
VarSn

D−→ N (0,1).
Further,

sup
x∈R

∣∣∣∣∣P
(

Sn − E(Sn)√
VarSn

< x
)
− Φ(x)

∣∣∣∣∣→ 0, as n → ∞.
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Central limit theorems
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate, and E(X 2

n,j) <∞,
j = 1, . . . , kn. If the Lindeberg condition holds, i.e., Ln(ε) → 0 for
each ε > 0, then the so called uniformly asymptotically negligible
condition holds, i.e., for each ε > 0, we have

max
1⩽j⩽kn

P

(∣∣∣∣∣Xn,j − E(Xn,j)√
Var(Sn)

∣∣∣∣∣ ⩾ ε

)
→ 0.

The uniformly asymptotically negligible condition is called
infinitesimality condition as well.

Feller theorem (1935)
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate, E(X 2

n,j) <∞, j = 1, . . . , kn,

and let Sn = Xn,1 + · · ·+ Xn,kn . If Ŝn = Sn−E(Sn)√
Var(Sn)

D−→ N (0,1) and the

uniformly asymptotically negligible condition holds, then the Lindeberg
condition holds.
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Central limit theorems

Corollary
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that not all of them are degenerate, E(X 2

n,j) <∞, j = 1, . . . , kn,
and let Sn = Xn,1 + · · ·+ Xn,kn .

(i) If rn = 1
Dn

max1⩽j⩽kn σn,j → 0, as n → ∞, then the uniformly
asymptotically negligible condition holds.

(ii) If the uniformly asymptotically negligible condition holds, then
Ŝn

D−→ N (0,1), as n → ∞ holds if and only if the Lindeberg
condition holds.
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Central limit theorems

Lindeberg multidimensional central limit theorem for triangular
arrays
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent d-dimensional
random vectors, and E(∥Xn,j∥2) <∞, j = 1, . . . , kn.
If

1
kn∑

j=1
Var(Xn,j) → Σ as n → ∞, where Σ ∈ Rd×d is invertible,

2 for each ε > 0, we have
kn∑

j=1

E
[
∥Xn,j − E(Xn,j)∥2

1{∥Xn,j−E(Xn,j )∥⩾ ε}
]
→ 0,

then Sn − E(Sn)
D−→ N (0,Σ), where N (0,Σ) denotes a

d-dimensional normal distribution with mean vector 0 ∈ Rd and
covariance matrix Σ ∈ Rd×d .
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Central limit theorems

Multidimensional central limit theorem: IID case
Let Xn, n ∈ N, be independent, identically distributed d-dimensional
random variables, and let Sn = X1 + · · ·+ Xn, n ∈ N, denote the
partial sums. If E(∥X1∥2) <∞ and Var(X1) ∈ Rd×d is invertible, then

1√
n
(Sn − E(Sn))

D−→ N (0,Var(X1)) as n → ∞,

where N (0,Var(X1)) denotes a d-dimensional normal distribution
with mean vector 0 ∈ Rd and covariance matrix Var(X1).
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Central limit theorems

Poisson convergence theorem
For each n ∈ N, let Xn,1, . . . ,Xn,kn be independent random variables
such that P(Xn,j = 1) = pn,j = 1 − P(Xn,j = 0), j = 1, . . . , kn, and let

Sn := Xn,1 + · · ·+ Xn,kn . If
kn∑

j=1
pn,j → λ ∈ R+ and max

1⩽j⩽kn
pn,j → 0,

then Sn
D−→ Poisson(λ).

An auxiliary lemma for estimation of difference of products
If m ∈ N and a1, . . . ,am,b1, . . . ,bm ∈ [−1,1], then∣∣∣∣∣∣

m∏
j=1

aj −
m∏

j=1

bj

∣∣∣∣∣∣ ⩽
m∑

j=1

|aj − bj |.
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Stochastic processes

Stochastic process
Let (Ω,A,P) be a probability space, T be an arbitrary nonempty set,
and for each t ∈ T , let ξt : Ω → R be a random variable. Then the
family {ξt : t ∈ T} is called a stochastic process. We say that T is
the parameter set (or index set) of the process, and R is its phase
space (or state space).

We say that a stochastic process {ξt : t ∈ T} is in the state x ∈ R at
the parameter t ∈ T , if for a realized outcome ω ∈ Ω, we have
ξt(ω) = x . For denoting the value of the process, we will use ξ(t)(ω),
and ξ(t , ω), t ∈ T , ω ∈ Ω as well (since a process can be naturally
considered as a single mapping ξ : T × Ω → R: ξ(t , ω) := ξt(ω) ).

Trajectory (realization, sample function)
For a fixed ω ∈ Ω, the mapping T ∋ t 7→ ξt(ω) ∈ R is called a
trajectory (realization, sample function) of the process.
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Stochastic processes

Discrete and continuous time processes
Let T ⊂ R+ and {ξt : t ∈ T} be a real valued stochastic process. We
say that the process is of discrete time, if T is a countable set. Then
usually T = Z+, so the process is a sequence of random variables.
The process is called a continuous time process, if T is a finite or
infinite subinterval of the nonnegative real line. Then for example
T = R+ or T = [0,1].

Finite dimensional distributions
Let T ⊂ R. By the finite dimensional distributions of a stochastic
process {ξt : t ∈ T}, we mean the distributions of the random vectors:

{(ξt1 , . . . , ξtk ) : k ∈ N, t1, . . . , tk ∈ T} .

165



Stochastic processes

Modification, indistinguishability
Let T be a nonempty set. The stochastic processes {ξt : t ∈ T} and
{ηt : t ∈ T} are called

1 equivalent in the wide sense, if their finite dimensional
distributions coincide.

2 equivalent, if they are defined on the same probability space and
P(ξt = ηt) = 1 holds for all t ∈ T . The equivalent processes are
also called modifications of each other.

3 indistinguishable, if they are defined on the same probability
space and P(ξt = ηt , ∀ t ∈ T ) = 1.

166



Stochastic processes
1 If the stochastic processes {ξt : t ∈ T} and {ηt : t ∈ T} are

equivalent (i.e., modifications of each other), then they are
equivalent in the wide sense as well (i.e., their finite dimensional
distributions coincide).

2 If the stochastic processes {ξt : t ∈ T} and {ηt : t ∈ T} are
indistinguishable, then they are equivalent as well (i.e.,
modifications of each other).

Independent, stationary increments
A stochastic process {ξt : t ⩾ 0} is said to have independent
increments, if P(ξ0 = 0) = 1, and for any k ∈ N and any time points
0 ⩽ t1 < t2 < . . . < tk , the increments ξt1 , ξt2 − ξt1 , . . . , ξtk − ξtk−1 are
(totally) independent. A stochastic process {ξt : t ⩾ 0} is said to have
independent, stationary increments, if it has independent
increments, and the distribution of the increments is invariant with
respect to time translation, i.e., for any time points t ,h ⩾ 0, the
distribution of ξt+h − ξt does not depend on t (and consequently it
coincides with the distribution of ξh).
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Stochastic processes

Convolution of distribution functions
Let X and Y be independent (real valued) random variables with
distribution functions F and G, respectively. Let H denote the
distribution function of X + Y , which is called the the convolution of
the distribution functions F and G, and it is denoted by F ∗ G.
Then

H(z) =
∫ ∞

−∞
F (z − y) dG(y), z ∈ R.

Finite dimensional distributions of processes with independent
increments
The finite dimensional distributions of a stochastic process {ξt : t ⩾ 0}
with independent increments is uniquely determined by the
distributions of the increments ξt − ξs, 0 ⩽ s < t .
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Stochastic processes

Finite dimensional distributions of processes with independent
and stationary increments
The finite dimensional distributions of a stochastic process {ξt : t ⩾ 0}
with independent and stationary increments is uniquely determined by
the distributions of the random variables ξt , t ⩾ 0 (i.e., by the
one-dimensional distributions).

Further, for the family {Fξt : t ⩾ 0} of distribution functions, it holds
that Fξs+t = Fξs ∗ Fξt for all s, t ⩾ 0 (where ∗ denotes the
convolution of distribution functions).

One-parameter convolutional semigroup of distribution functions
A family {Ft : t ⩾ 0} of (one-dimensional) distribution functions is
called a one-parameter convolutional semigroup, if Fs+t = Fs ∗ Ft
for all s, t ⩾ 0, and F0 = 1(0,∞).
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Stochastic processes
Expectation and covariance function
Let T ̸= ∅ and {ξt : t ∈ T} be a real valued stochastic process such
that E(|ξt |) <∞, t ∈ T . Then the function m : T → R, m(t) := E(ξt),
t ∈ T , is called the expectation function of the process. Further, if
E(ξ2

t ) <∞, t ∈ T , then the function K : T × T → R,

K (s, t) := Cov(ξs, ξt), (s, t) ∈ T × T ,

is called the covariance function of the process.

Let T ̸= ∅ and {ξt : t ∈ T} be a real valued stochastic process such
that E(ξ2

t ) <∞, t ∈ T . Then
1 K (s, t) = K (t , s), s, t ∈ T (i.e., K is symmetric),
2 ∀ k ∈ N, ∀ t1, . . . , tk ∈ T , ∀ λ1, . . . , λk ∈ C, we have

k∑
i,j=1

λiλjK (ti , tj) ⩾ 0.

Especially, for each k ∈ N and t1, . . . , tk ∈ T , the matrix
(K (tj , tl))j,l=1,...,k is positive semidefinite.
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Kolmogorov consistency and existence theorem

Let ξ := {ξt : t ∈ T} be a real valued stochastic process, where T is
a nonempty index set.

Let RT := {x | x : T → R}.

The stochastic process ξ can be also considered as a function which
is defined on the sample space Ω, and it can take values in the space
RT , namely

ξ : Ω → RT , Ω ∋ ω 7→ ξ(ω),

where ξ(ω) : T → R, T ∋ t 7→ ξ(ω)(t) := ξt(ω).

It were convenient if ξ would be a random element of the space RT ,
i.e., if the function ξ : Ω → RT would be measurable with respect to
some appropriately defined measurable structure.

We furnish the space RT with a σ-algebra denoted by σ(C), with a
σ-algebra generated by the so called cylinder sets.

For this, first we introduce the so called (finite dimensional) projections.
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Kolmogorov consistency and existence theorem
Projections
Let T be a nonempty index set, n ∈ N and S = {s1, . . . , sn} ⊂ T .
A mapping pS : RT → RS,

(pS(x))(si) := x(si), i = 1, . . . ,n, x ∈ RT ,

is called the projection onto RS.
(The mapping pS(x) can be written in an abbreviated form
(xs1 , . . . , xsn) as well, where xsi denotes the value x(si) of the
mapping x at the point si in an abbreviated form, where i = 1, . . . ,n.)

Product of measurable spaces
Let (X1,A1) and (X2,A2) be mesaurable spaces. The elements of
the set

T := {A1 × A2 : A1 ∈ A1,A2 ∈ A2}
are called measurable rectangles, and the measurable space
(X1 × X2, σ(T )) is called the product of measurable spaces (X1,A1)
and (X2,A2). The σ-algebra σ(T ) is usually denoted by A1 ×A2
(or A1 ⊗A2). 172



Kolmogorov consistency and existence theorem
Product of measurable spaces, cylinder sets
The previous definition can be extended to the product of finitely many
measurable spaces (Xi ,Ai), i = 1, . . . ,n, as well in an obvious way.

If (Xα,Aα)α∈T are infinitely many measurable spaces, where T is an
arbitrary (not necessarily finite) index set, then by their product we
mean the measurable space (X , σ(C)), where X :=

∏
α∈T Xα and

σ(C) is the σ-algebra generated by the so called cylinder sets.
By a cylinder set, we mean a set C ⊂ X for which there exist n ∈ N,
α1, . . . , αn ∈ T , αi ̸= αj , if i ̸= j , i , j ∈ {1, . . . ,n}, and
B ∈

∏n
k=1 Aαk := Aα1 × · · · × Aαn such that

C = {x ∈ X : (xα1 , . . . , xαn) ∈ B}.

The indices α1, . . . , αn are called the base points (coordinates) of C,
and the set B is called a base set (a base) of C.
The collection of cylinder sets is denoted by C.
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Kolmogorov consistency and existence theorem
Example for a cylinder set
Let T := {1,2,3} and Xi := R, i = 1,2,3. Then for each r > 0, the
set

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 ⩽ r2

}
is a cylinder set, since{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 ⩽ r2
}
=
{
(x1, x2, x3) ∈ R3 : (x1, x2) ∈ B

}
,

where B denotes the disk in the plane (x1, x2) having center as the
origin and with radius r (including its boundary as well).

This cylinder set is nothing else but the cylinder which is rotation
invariant with respect to the coordinate ax x3 and has radius r .

This cylinder set can be also given in the form{
(x1, x2, x3) ∈ R3 : x2

1+x2
2 ⩽ r2

}
=
{
(x1, x2, x3) ∈ R3 : (x1, x2, x3) ∈ B×R

}
,

so, we can see that a cylinder set can be given in different forms.
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Kolmogorov consistency and existence theorem

The collection of cylinder sets, denoted by C, is an algebra.

Product measurability
A set B ⊂ X is measurable, i.e., B ∈ σ(C) holds if and only if there
exist (αk )

∞
k=1 and B̃ ∈

∏∞
k=1 Aαk such that p−1

(αk )
∞
k=1

(B̃) = B, where
p(αk )

∞
k=1

:
∏

α∈T Xα →
∏∞

k=1 Xαk , p(αk )
∞
k=1

(x) := (xαk )
∞
k=1, x ∈

∏
α∈T Xα

(i.e., the set B depends „only on countably many coordinates”).

In case of Xα := R, α ∈ T , the previous result means picturesquely
that a set B ⊂ RT is σ(C)-measurable if and only if the functions
belonging to B are defined in a way that their values are commonly
given at countably many points, while they can take arbitrary values at
other points.

After this it is meaningful to ask whether a mapping ξ : Ω → RT is
measurable or not.
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Kolmogorov consistency and existence theorem

Measurability of a stochastic process
Let ξ := {ξt : t ∈ T} be a real valued stochastic process, where T is
a nonempty index set. Then ξ : Ω → RT is measurable with respect
to the measurable spaces (Ω,A) and (RT , σ(C)).

Distribution of a stochastic process
By the distribution of a (real valued) stochastic process
ξ := {ξt : t ∈ T} (where T is a nonempty index set), we mean the
following probability measure defined on the space (RT , σ(C)):

Pξ(M) := P(ξ ∈ M) = P(ξ−1(M)), M ∈ σ(C).
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Kolmogorov consistency and existence theorem

Connection between the distribution and finite dimensional
distributions of a stochastic process
Let ξ := {ξt : t ∈ T} be a (real valued) stochastic process, where T
is a nonempty index set.

(i) Then the distribution of ξ uniquely determines the finite
dimensional distributions of ξ.

(ii) If η := {ηt : t ∈ T} is a (real valued) stochastic process such that
its finite dimensional distributions coincide with those of ξ, then
the distributions of ξ and η coincide, i.e., Pξ = Pη.
Hence the finite dimensional distributions of a stochastic process
uniquely determines its distribution on the space (RT , σ(C)).

In what follows we investigate the question raised earlier: what is a
minimal condition under which a family of probability distributions
coincides with the family of the finite dimensional distributions of some
stochastic process.
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Kolmogorov consistency and existence theorem

Consistent family of probability measures
Let T ̸= ∅ be an index set. Let

T ∗ :=
{
(t1, . . . , tn) ∈ T n : n ∈ N, ti ̸= tj , if i ̸= j , i , j ∈ {1, . . . ,n}

}
,

and for each (t1, . . . , tn) ∈ T ∗, let us given a probability measure
Pt1,...,tn on the measurable space (Rn,B(Rn)).
The family {Pt1,...,tn : (t1, . . . , tn) ∈ T ∗, n ∈ N} is called consistent if it
satisfies the following two conditions:
(a) permutation invariance: if π is a permutation of (1,2, . . . ,n),

then for all Borel measurable sets Ai ∈ B(R), i = 1, . . . ,n, the
probability measures Pt1,...,tn and Ptπ(1),...,tπ(n) satisfy the equation

Pt1,...,tn(A1 ×A2 ×· · ·×An) = Ptπ(1),...,tπ(n)(Aπ(1)×Aπ(2)×· · ·×Aπ(n)),
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Kolmogorov consistency and existence theorem
(b) compatibility condition: for each n ∈ N, (t1, . . . , tn, tn+1) ∈ T ∗

and for each A ∈ B(Rn), we have

Pt1,...,tn(A) = Pt1,...,tn,tn+1(A × R).

The condition (a) means picturesquely that the measure of a
rectangular cuboid does not depend on the order of its coordinates.
The condition (b) is a generalization of the principle „the volume of a
prism is the product of the area of the base and the height”. One can
call it compatibility condition, since it is about a connection between
probability measures on Euclidean spaces with different dimensions.

Example for a consistent family of probability measures
Let T ̸= ∅, f : R → [0,∞) be a density function, and for each
(t1, . . . , tn) ∈ T ∗, n ∈ N, and A ∈ B(Rn), let

Pt1,...,tn(A) :=
∫

A
f (x1) · · · f (xn) dx1dx2 . . . dxn.
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Kolmogorov consistency and existence theorem

Let T ̸= ∅ be an index set. Let P be a probability measure on the
product space

(
RT , σ(C)

)
, where σ(C) denotes the σ-algebra

generated by the cylinder sets. For each (t1, . . . , tn) ∈ T ∗, n ∈ N, let

Pt1,...,tn(A) := P
({

x ∈ RT : (xt1 , . . . , xtn) ∈ A
})

, A ∈ B(Rn).

Then the family {Pt1,...,tn : (t1, . . . , tn) ∈ T ∗, n ∈ N} consisting of
probability measures is consistent.

Kolmogorov consistency theorem
Let T ̸= ∅ be an index set, and for each (t1, . . . , tn) ∈ T ∗, n ∈ N let
Pt1,...,tn be a probability measure on the measurable space
(Rn,B(Rn)). Let us suppose that the family
{Pt1,...,tn : (t1, . . . , tn) ∈ T ∗, n ∈ N} is consistent. Then there exists a
unique probability measure P on the measurable space (RT , σ(C))
(where σ(C) is the σ-algebra generated by cylinder sets) such that for
each (t1, . . . , tn) ∈ T ∗, n ∈ N, we have
Pt1,...,tn(A) = P

({
x ∈ RT : (xt1 , . . . , xtn) ∈ A

})
, ∀ A ∈ B(Rn).
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Kolmogorov consistency and existence theorem
In the proof of Kolmogorov consistency theorem, the following results
from measure theory play important roles.

Inner regularity of a measure
Let X ̸= ∅, A be a set of some subsets of X , and µ : A → [0,∞] be
a function. We say that µ is inner regular with respect to a system
K ⊂ A, if for each A ∈ A, we have µ(A) = sup{µ(K ) : K ⊂ A,K ∈ K}.

σ-compact family
A family K consisting of some subsets of X ̸= ∅ is called
σ-compact, if for each sequence Kn ∈ K, n ∈ N, satisfying⋂∞

n=1 Kn = ∅, we can find an N ∈ N such that
⋂N

n=1 Kn = ∅.

Let X ̸= ∅, A be an algebra of some subsets of X , µ : A → [0,∞)
be a finitely additive function having finite values, and K ⊂ A be a
σ-compact family. If µ is inner regular with respect to the system
K ⊂ A, then µ is σ-additive on the algebra A.
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Kolmogorov existence theorem
Let T ⊂ [0,∞) be a nonempty set. For each k ∈ N, t1, . . . , tk ∈ T ,
t1 < · · · < tk , let Ft1,t2,...,tk : Rk → [0,1] be a k-dimensional distribution
function. Let us suppose that the family

{Ft1,t2,...,tk : k ∈ N, t1, t2, . . . , tk ∈ T , t1 < t2 < · · · < tk}

is compatible, i.e., for any k ∈ N, t1, . . . , tk ∈ T , ℓ ∈ {1, . . . , k}, and
integers 1 ⩽ i1 < i2 < . . . < iℓ ⩽ k , we have

lim
xj→∞, j ̸∈{i1,...,iℓ}

Ft1,...,tk (x1, . . . , xk ) = Fti1 ,...,tiℓ
(xi1 , . . . , xiℓ), ∀ xi1 , . . . , xiℓ ∈ R.

Then there exist a probability space (Ω,A,P) and a real valued
stochastic process {ξt : t ∈ T} on it such that for any k ∈ N,
t1, . . . , tk ∈ T , t1 < · · · < tk , we have the distribution function of
ξt1 , . . . , ξtk is Ft1,...,tk .
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Existence of a stochastic process with independent and
stationary increments corresponding to a given one-parameter
convolution semigroup
Let {Ft : t ⩾ 0} be a one-parameter convolution semigroup of
distribution functions. Then there exist a probability space (Ω,A,P)
and a stochastic process {ξt : t ⩾ 0} with independent and stationary
increments on it such that Fξt = Ft for all t ⩾ 0.
Then, as we saw earlier, the finite dimensional distributions of
{ξt : t ⩾ 0} are uniquely determined by the family {Ft : t ⩾ 0}.
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