
LOCAL AUTOMORPHISMS OF THE SETS OF STATES
AND EFFECTS ON A HILBERT SPACE
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Abstract. We prove that every local automorphism (affine 1-local, or
non-affine 2-local) of the sets of all states on a Hilbert space is an auto-
morphism. We also present similar results concerning the various auto-
morphisms of the set of all effects.

1. Introduction

In what follows H denotes a separable infinite dimensional complex
Hilbert space and B(H) stands for the algebra of all bounded linear op-
erators on H.

The set S of all states on H is defined as the set of all positive operators
on H with trace 1, that is,

S = {T ∈ B(H) : T ≥ 0, trT = 1},
where tr denotes the usual trace functional on B(H).

The operator interval E = [0, I] of all positive operators on H which are
bounded by the identity I is called the effect algebra on H. The elements
of E are called effects.

These sets of operators, that is, the set of all states and the set of all
effects, play important role in the mathematical description of quantum me-
chanics (see, for example, [3, 7] and the references therein as well). Just as
with any algebraic structure, the study of the automorphisms of these sets
when equipped with certain algebraic structures is of considerable impor-
tance.

So, what algebraic structures can be given to the mentioned two sets?
As for S, it is a convex subset of B(H) and one can consider its affine
automorphisms (also called S-automorphisms [3] or mixture-automorphisms
[7]) which are the bijective maps φ : S→ S satisfying

(1) φ(λT + (1− λ)S) = λφ(T ) + (1− λ)φ(S)
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for every T, S ∈ S and 0 ≤ λ ≤ 1. It is known (see, for example, [3]) that
every such φ is of the form

(2) φ(T ) = UTU∗ (T ∈ S),
where U is either a unitary or an antiunitary operator on H (this latter
notion means a conjugate-linear norm-preserving bijection of H). As for
the set of all effects, we have several possibilities how to introduce algebraic
structures on E. First, E is a convex subset of B(H) and hence, just as in
the case of S, one can consider the affine automorphisms φ of E. In fact,
in the literature it is very common that, in addition to that φ is an affine
bijection, they also assume that φ is positive homogeneous as well (that is, φ
satisfies φ(λE) = λφ(E) for all E ∈ E and 0 ≤ λ ≤ 1). In a recent paper [11]
Molnár has determined all the affine automorphisms of the effect algebra in
a von Neumann factor without this extra condition on homogenity. As a
particular case of his result we obtain that if φ is an affine bijection of E,
then φ is either of the form

(3) φ(E) = UEU∗ (E ∈ E),

or of the form

(4) φ(E) = U(I − E)U∗ (E ∈ E),

where in both cases U is either a unitary or an antiunitary operator on H. As
a second possibility, there is also a so-called partial addition on E. Namely,
if E,F ∈ E and E + F ∈ E, then we define the sum of E and F by E + F .
Now, we say that the bijective map φ : E → E is an effect-automorphism
(in other terminology, E-automorphism [3]) if

E + F ≤ I if and only if φ(E) + φ(F ) ≤ I

and in this case we have

φ(E + F ) = φ(E) + φ(F ).

It is known [3], [7] that the effect-automorphisms are exactly the maps of
the form

(5) φ(E) = UEU∗ (E ∈ E),

where U is either a unitary or an antiunitary operator on H. Finally, E has
also a multiplicative structure, namely one can consider the product ABA
on it (A,B ∈ E). This operation on E was introduced in [11] and it was
proved there that if dimH ≥ 3, then the automorphisms of E with respect
to this multiplication are the same as in (5).

The aim of this paper is to present some results on the local behaviour of
the automorphisms of the sets of states and effects appearing above. There
are relatively new investigations on local maps of operator algebras [5, 6, 10,
14] (also see the references therein). A linear map ψ on an algebra is called
a linear (1-)local automorphism if at every point of the underlying algebra ψ
coincides with an automorphism of the algebra (which automorphism may,
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of course, differ from point to point). It is a remarkable fact concerning the
algebra in question if it then follows that ψ is necessarily an automorphism.
Following the concept of 2-local automorphisms due to Šemrl [16], we say
that a map ψ on any algebraic structure (no linearity is assumed) is a 2-
local automorphism if at every pair of points of the underlying structure ψ
coincides with an automorphism (which automorphism may depend on the
pair of points in question). Hence, we drop the assumption on the linearity
of ψ, but instead we require that it behaves as an automorphism at every
pair of points. Here, the problem is that whether a 2-local automorphism
ψ is necessarily an automorphism? Recent result of that kind can be found
in [13], [15]. If every linear (1-)local automorphism of an algebra is an
automorphism or every 2-local automorphism of an algebraic structure is an
automorphism, then we can say that the automorphisms of those structures
are, in a certain sense, completely determined by their local actions.

The aim of this paper is to obtain results of that kind concerning the
automorphism groups of S and E. We note that there are several other
algebraic structures which also appear in relation to the mathematical for-
mulations of quantum mechanics. These are, for instance, the orthomodular
poset of all projections on H, the Jordan algebra of all bounded self-adjoint
operators on H and the C∗-algebra of all bounded operators B(H). The
local automorphisms of these latter structures were investigated in [2], [13],
[16].

2. Results

Our first result which follows says that every affine (1-)local automor-
phism of S is an automorphism.

Theorem 1. Let φ : S → S be an affine transformation (that is, a func-
tion satisfying (1)) with the property that for every T ∈ S there is an affine
automorphism φT of S such that φ(T ) = φT (T ). Then φ is an affine auto-
morphism of S.

Proof. Denote by C1(H) the Banach algebra of all trace-class operators on
H. Since φ is an affine transformation on S, it can be uniquely extended
to a linear transformation Φ : C1(H) → C1(H). In fact, if A is a nonzero
positive trace-class operator, then let

Φ1(A) = tr(A)φ
( A

tr(A)
)
.

We set Φ1(0) = 0. If B ∈ C1(H) is selfadjoint, then B = B+ −B−, where

B+ =
B + |B|

2
∈ C1(H), B− =

|B| −B

2
∈ C1(H)

are the positive and negative parts of B, respectively. Define

Φ2(B) = Φ1(B+)− Φ1(B−).
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If C is an arbitrary trace-class operator, then C = C1 + iC2, where C1, C2

are the real and the imaginary parts of C respectively, both of which belong
to C1(H). We finally set

Φ(C) = Φ2(C1) + iΦ2(C2).

It needs only elementary calculations to verify that Φ is a linear extension of
φ. Since φ is a local automorphism of S, by (2) we obtain that Φ is a positive
linear map on C1(H) sending rank-one projections to rank-one projections.
The form of such maps can be easily derived from [4, Theorem 3.1, p. 21].
Namely, it follows from that result that either there is an isometry U on H
such that

Φ(A) = UAU∗ (A ∈ C1(H)),
or there is an antiisometry (that is, a conjugate-linear norm-preserving map)
V on H such that

Φ(A) = V A∗V ∗ (A ∈ C1(H)),

or there is a rank-one projection P on H such that

Φ(A) = (tr A)P (A ∈ C1(H)).

Using the local property of φ we can easily infer that this third possibility
is untenable. Without serious loss of generality we can assume that there
exists an antiisometry V on H such that

(6) φ(T ) = V TV ∗ (T ∈ S).
Pick an element T of S with dense range. By the local form of φ we see that
φ(T ) must have dense range too. This gives us that the operator V in (6)
is in fact antiunitary. This completes the proof of our assertion. ¤

The next statement asserts that every 2-local automorphism of the space
of all states is an automorphism. We note that in the proof 〈., .〉 denotes
the inner product on H. Because of our mathematical education we suppose
that this form is linear in the first variable and conjugate-linear in the second
variable. For any x, y ∈ H, the symbol |x〉〈y| stands for the operator defined
by |x〉〈y|z = 〈z, y〉x (z ∈ H).

Theorem 2. Let φ : S → S be any transformation with the property that
for every T, S ∈ S there is an affine automorphism φT,S of S such that
φ(T ) = φT,S(T ) and φ(S) = φT,S(S). Then φ is an affine automorphism of
S.

Proof. Let φ : S → S be as above and let P, Q be rank-one projections on
H. The local property of φ implies that there exists an either unitary or
antiunitary operator U on H such that

φ(P ) = UPU∗, φ(Q) = UQU∗.

In both cases we obtain that

(7) tr(φ(P )φ(Q)) = tr(UPU∗UQU∗) = tr(UPQU∗) = tr(PQ).
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By the form of the automorphisms of S we see that the restriction of φ
onto the set P1(H) of all rank-one projections on H maps P1(H) into itself
and by (7) it preservers the so-called transition probabilities (see [3, 2.1, p.
923]). We now apply a non-surjective variant of Wigner’s classical theorem
on transformations of P1(H) preserving transition probabilities. According
to the main result in [17] there is either an isometry or an antiisometry V
on H such that

(8) φ(P ) = V PV ∗ (P ∈ P1(H)).

We should remark here that the result in [17] applied above is about vector-
to-vector transformations preserving the modulus of the inner product be-
tween vectors. But, just as with the original Wigner’s theorem, it is easy
to see that this is just an equivalent formulation of our problem concerning
transformations on P1(H) which preserve the transition probabilities.

We next show that V is surjective. Let (λn) be a sequence of pairwise
different positive numbers with sum 1. Pick an orthonormal basis in H and
let Pn denote the rank-one projection onto the subspace of H generated by
the nth basis vector. We fix the operator

T =
∑

n

λnPn.

By the local property of φ we can clearly assume that φ(T ) = T for this
particular T . Now, let n0 ∈ N be arbitrary. By the local property of φ once
again, we can choose a unitary or antiunitary operator U on H such that

∑
n

λnPn = φ(
∑

n

λnPn) = U ·
∑

n

λnPn · U∗ =
∑

n

λnUPnU∗

and
φ(Pn0) = UPn0U

∗.
It follows from the first equation, that UPnU∗ = Pn for every n ∈ N, so
φ(Pn0) = Pn0 . Since n0 was arbitrary, we can infer that φ(Pn) = Pn (n ∈ N).
But this latter equality implies that the range of V in (8) contains the range
of all Pn, that is, it contains an orthonormal basis and this gives us that V
is surjective.

It remains to prove that φ(S) = V SV ∗ holds for every S ∈ S. Clearly,
without serious loss of generality we can assume that V above is unitary.
Let S ∈ S and pick an arbitrary unit vector x ∈ H. Taking into account the
form (8) of φ on P1(H) and the local property of φ, we obtain on the one
hand that

φ(|x〉〈x|)φ(S)φ(|x〉〈x|) = (V · |x〉〈x| · V ∗)φ(S)(V · |x〉〈x| · V ∗) =

〈φ(S)V x, V x〉 · |V x〉〈V x|
and, on the other hand, that there is an either unitary or antiunitary oper-
ator W on H such that

φ(|x〉〈x|)φ(S)φ(|x〉〈x|) = (W · |x〉〈x| ·W ∗)(WSW ∗)(W · |x〉〈x| ·W ∗) =
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〈WSW ∗Wx, Wx〉 · |Wx〉〈Wx| = 〈Sx, x〉 · |Wx〉〈Wx|.
This gives us that 〈V ∗φ(S)V x, x〉 = 〈Sx, x〉. Since this holds for every unit
vector x ∈ H, we conclude that V ∗φ(S)V = S. Therefore, we have

φ(S) = V SV ∗

for every S ∈ S and this completes the proof. ¤
Since on E there are several algebraic structures we decided to begin with

the 2-local automorphisms.

Theorem 3. Let φ : E → E be a transformation with the property that for
every E, F ∈ E there exists an either unitary or antiunitary operator UE,F

on H such that φ(E) = UE,F EU∗
E,F and φ(F ) = UE,F FU∗

E,F . Then there
exists an either unitary or antiunitary operator U on H such that

φ(E) = UEU∗ (E ∈ E).

Proof. It is clear that the restriction of φ onto the orthomodular poset P of
all projections is a 2-local automorphism of P. Now, [13, Proposition] tells
us that every 2-local automorphism of P is an automorphism. Therefore,
there exists an either unitary or antiunitary operator U on H such that
φ(P ) = UPU∗ for every projection P . Clearly, we can suppose that φ(P ) =
P for every P ∈ P. By the 2-local property of φ we easily deduce φ(λP ) =
λP (λ ∈ [0, 1]). This property also gives us that E ≤ F if and only if
φ(E) ≤ φ(F ). Therefore, for any E ∈ E we have λP ≤ E if and only if
λP = φ(λP ) ≤ φ(E) (P ∈ P, λ ∈ [0, 1]).

Now, let P1, . . . , Pn be pairwise orthogonal spectral projections of E and
λ1, . . . , λn ∈ [0, 1] such that

∑
i λiPi ≤ E. Then we have λiPi ≤ φ(E) for

every i = 1, . . . , n. As Pi commutes with E, by the 2-local property of φ
we obtain that Pi = φ(Pi) commutes with φ(E). Multiplying the inequality
λiPi ≤ φ(E) by Pi from both sides, we have λiPi ≤ Piφ(E)Pi. By the
commutativity of Pi and φ(E) we have that Pi and

√
φ(E) also commute.

We can compute ∑

i

λiPi ≤
∑

i

Piφ(E)Pi =
∑

i

Piφ(E) =

√
φ(E)(

∑

i

Pi)
√

φ(E) ≤
√

φ(E)I
√

φ(E) = φ(E).

Approximating E with operators of the form
∑

i λiPi we obtain that E ≤
φ(E). Interchanging the role of E and φ(E) in the argument above, we also
get φ(E) ≤ E. Therefore, φ(E) = E for every E ∈ E and this completes the
proof. ¤

We now treat the various (1-)local automorphisms of E.

Theorem 4. Let φ : E → E be an affine transformation with the property
that for every E ∈ E there exists an affine automorphism φE of E such that
φ(E) = φE(E). Then φ is an affine automorphism of E.
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Proof. By the form of the affine automorphisms of E it follows that either
φ(0) = 0 or φ(0) = I. Suppose first that φ(0) = 0. Then one can prove
just as in the proof of Theorem 1 that φ can be extended to a linear trans-
formation Φ : B(H) → B(H). By the local form of φ we deduce that Φ
sends projections to projections. Since Φ is a positive linear transforma-
tion, it is well-known to be norm-continuous. Now, it needs only elemen-
tary computation to verify that Φ is a Jordan *-endomorphism of B(H)
(see, for example, the proof of [8, Theorem 2]) We show that φ preserves
the rank-one projections. Let P be a rank-one projection. Suppose that
φ(P ) = U(I−P )U∗ for some unitary or antiunitary operator U on H. As for
φ((1/2)P ) we have two possibilities. First assume that there exists an either
unitary or antiunitary operator W such that φ((1/2)P ) = W ((1/2)P )W ∗.
Since φ((1/2)P ) = (1/2)φ(P ) (this follows from the fact that φ is affine and
φ(0) = 0), we have

(1/2)U(I − P )U∗ = W ((1/2)P )W ∗

which is an obvious contradiction if one considers the ranks of the op-
erators appearing in that equality. So, it remains that φ((1/2)P ) =
W (I − (1/2)P )W ∗ for some unitary or antiunitary operator W . This leads
to the equality

(1/2)U(I − P )U∗ = W (I − (1/2)P )W ∗

which also leads to a contradiction since the spectrum of the operator on
the left-hand side is {0, 1/2} while the spectrum of the operator on the
right-hand side is {1/2, 1}. Therefore, φ(P ) must be of the form UPU∗ for
some unitary or antiunitary operator U and this gives us that Φ preserves
the rank-one projection. Moreover, similarly as above one can verify that
φ(I) = I and this yields that Φ(I) = I. So Φ is a Jordan *-endomorphism of
B(H) which preserves the rank-one projections and it sends I to I. Similarly
as in the proof of [1, Theorem 3] we obtain that Φ is implemented by either
a unitary or an antiunitary operator. This completes the proof in the case
when φ(0) = 0. If φ(0) = I, then one can consider the transformation
E 7→ I − φ(E) to reduce the proof to the previous case. ¤

Theorem 5. Let φ : E→ E be an additive transformation in the sense that
for every E, F ∈ E with E + F ∈ E we have φ(E + F ) = φ(E) + φ(F ).
If for every E ∈ E there exists an effect-automorphism φE of E such that
φ(E) = φE(E), then φ is an effect-automorphism.

Proof. We are going to prove that φ is an affine transformation and φ(0) = 0.
If this is done, then one can simply refer to our previous theorem.

The fact that φ(0) = 0 is trivial by the local property of φ. ¿From the
additivity of φ it follows that φ is monotone increasing. Once again, the
additivity of φ gives us that nφ(E) = φ(nE) for every n ∈ N and E ∈ E
with nE ∈ E. Now simple calculation shows that rφ(E) = φ(rE) for every
positive rational number r and E ∈ E with rE ∈ E. Finally, for any real
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number 0 < α < 1 and E ∈ E we have φ(αE) = αφ(E). Indeed, we can
construct two sequences (βn), (γn) of rational numbers in [0, 1] such that,
βn < α < γn for every n and both (βn) and (γn) converge to α. Using the
monotonity of φ, we get

βnφ(E) = φ(βnE) ≤ φ(αE) ≤ φ(γnE) = γnϕ(E),

and taking limits we have the desired equality αφ(E) = φ(αE). If E, F ∈ E
are arbitrary and λ ∈ [0, 1], then we can compute

φ(λE + (1− λ)F ) = φ(λE) + φ((1− λ)F ) = λφ(E) + (1− λ)φ(F ).

This shows that φ is affine and we are done. ¤

Theorem 6. Let φ : E→ E be a transformation satisfying

φ(EFE) = φ(E)φ(F )φ(E) (E, F ∈ E).

If for every E ∈ E there exists an automorphism φE of E of the form (5)
such that φ(E) = φE(E), then φ is an automorphism of E of the form (5).

Proof. First we show that φ preserves the projections and the orthogonality
between them. Indeed, by the local property of φ we deduce that φ sends
projections to projections. Let P, Q ∈ B(H) be projections such that PQ =
0. Then we have 0 = φ(PQP ) = φ(P )φ(Q)φ(P ) which implies that

0 = φ(P )φ(Q)φ(P ) = (φ(Q)φ(P ))∗(φ(Q)φ(P )).

This gives us that φ(Q)φ(P ) = 0.
Next observe that φ also preserves the partial ordering ≤ between pro-

jections. To see this, let P,Q ∈ B(H) be projections and suppose that
P ≤ Q. Then we have P = QPQ and φ(P ) = φ(QPQ) = φ(Q)φ(P )φ(Q)
which yields that the range of φ(P ) is included in the range of φ(Q), that
is, φ(P ) ≤ φ(Q).

We prove that φ is finitely orthoadditive on the set of all finite rank
projections in B(H). To see this, let P, Q ∈ P (H) be mutually orthogonal
finite rank projections. By the order preserving property of φ we have
φ(P ), φ(Q) ≤ φ(P + Q). Since φ preserves orthogonality, we infer that
φ(P ) + φ(Q) is a projection and φ(P ) + φ(Q) ≤ φ(P + Q). By the local
form of φ we find that φ also preserves the rank of projections. Hence we
compute

rank(φ(P ) + φ(Q)) = rank(φ(P )) + rank(φ(Q)) =

rank(P ) + rank(Q) = rank(P + Q) = rank(φ(P + Q))

which yields that φ(P ) + φ(Q) = φ(P + Q).
We now extend φ from the set of all finite rank projections to a Jordan

*-homomorphism of the algebra F (H) of all finite rank operators in B(H).
This can be done in a way very similar to what was followed in the proof of
[9, Theorem 1]. By the properties of φ, this extension preserves the rank-one



LOCAL AUTOMORPHISMS OF THE SETS OF STATES AND EFFECTS 9

projections and the orthogonality between them. Now, [12, Lemma 2] tells
us that there exists an isometry or antiisometry U : H → H such that

(9) φ(P ) = UPU∗

holds for every finite rank projection P on H.
If B ∈ [0, I] is an arbitrary operator, due to φ(I) = I we have (φ(B))2 =

φ(B)φ(I)φ(B) = φ(B2), which implies that
√

φ(A) = φ(
√

A) holds for every
A ∈ [0, I].

We prove that φ is homogeneous in some sense. Let P ∈ B(H) be a finite
rank projection and λ ∈ [0, 1]. By the local property of φ we get φ(P ) =
V PV ∗ and φ(λP ) = WλPW ∗ = λWPW ∗, where V and W are unitary
or antiunitary operators. Since λP ≤ P , it follows that φ(λP ) ≤ φ(P ).
Therefore, λWPW ∗ ≤ V PV ∗. As WPW ∗ and V PV ∗ are projections of the
same rank, it follows that WPW ∗ = V PV ∗ which implies that φ(λP ) =
λφ(P ).

We claim that the operator U appearing in (9) is either unitary or an-
tiunitary. To verify this, let Pi (i ∈ N) be pairwise orthogonal rank-one
projections and λi ∈ [0, 1] (i ∈ N) be scalars, such that

∑∞
i=1 Pi = I and∑∞

i=1 λi < ∞. Set A =
∑∞

i=1 λiPi. By the properties of φ what we already
know, we infer

n∑

i=1

λiφ(Pi) =
n∑

i=1

φ(λiPi) =
n∑

i=1

φ(
√

APi

√
A) =

n∑

i=1

φ(
√

A)φ(Pi)φ(
√

A)

=
√

φ(A)
n∑

i=1

φ(Pi)
√

φ(A) ≤
√

φ(A)I
√

φ(A) = φ(A).

So we have
∑∞

i=1 λiφ(Pi) ≤ φ(A). By the local property of φ we get that

tr(φ(A)) = tr(A) = tr(
∞∑

i=1

λiPi) =
∞∑

i=1

λi = tr(
∞∑

i=1

λiφ(Pi)),

which implies that tr(φ(A) − ∑∞
i=1 λiφ(Pi)) = 0. Since if the trace of a

positive operator is 0 then the operator in question is necessarily 0, it follows
that

∞∑

i=1

λiφ(Pi) = φ(A).

Therefore, we have

φ(A) =
∞∑

i=1

λiUPiU
∗ = U(

∞∑

i=1

λiPi)U∗ = UAU∗.

Since, by the local property of φ, the range of φ(A) must be dense, we deduce
that U is a unitary or antiunitary operator.

Clearly, without any loss of generality we now can assume that φ(P ) = P
holds for every finite rank projection P . We claim that φ is the identity on



10 MÁTYÁS BARCZY AND MARIANN TÓTH

E. Let A ∈ E. Pick an arbitrary rank-one projection P . Then PAP = λP
holds for some λ ∈ [0, 1]. We compute

PAP = λP = λφ(P ) = φ(λP ) = φ(PAP ) = φ(P )φ(A)φ(P ) = Pφ(A)P.

Since P was arbitrary, we obtain φ(A) = A for every A ∈ E. This completes
the proof. ¤
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