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Abstract

We prove an analogue of the portmanteau theorem on weak convergence of proba-
bility measures allowing measures which are unbounded on an underlying metric space
but finite on the complement of any Borel neighbourhood of a fixed element.

1 Introduction

Weak convergence of probability measures on a metric space has a very important role in
probability theory. The well known portmanteau theorem due to A. D. Alexandroff (see
for example Theorem 11.1.1 in Dudley [1]) provides useful conditions equivalent to weak
convergence of probability measures; any of them could serve as the definition of weak
convergence. Proposition 1.2.13 in the book of Meerschaert and Scheffler [3] gives an analogue
of the portmanteau theorem for bounded measures on R?. Moreover, Proposition 1.2.19 in
[3] gives an analogue for special unbounded measures on R? more precisely, for extended

real valued measures which are finite on the complement of any Borel neighbourhood of
0 € R

By giving counterexamples we show that the equivalences of (¢) and (d) in Proposi-
tions 1.2.13 and 1.2.19 in [3] are not valid (see our Remarks 2.2 and 2.3). We reformulate
Proposition 1.2.19 in [3] in a more detailed form adding new equivalent assertions to it (see
Theorem 2.1). Moreover, we note that Theorem 2.1 generalizes the equivalence of (a) and
(b) in Theorem 11.3.3 of [1] in two aspects. On the one hand, the equivalence is extended
allowing not necessarily finite measures which are finite on the complement of any Borel
neighbourhood of a fixed element of an underlying metric space. On the other hand, we do
not assume the separability of the underlying metric space to prove the equivalence. But we
mention that this latter possibility is hiddenly contained in Problem 3, p. 312 in [1]. For
completeness we give a detailed proof of Theorem 2.1. Our proof goes along the lines of the
proof of the original portmanteau theorem and differs from the proof of Proposition 1.2.19
in [3].
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To shed some light on the sense of a portmanteau theorem for unbounded measures, let
us consider the question of weak convergence of infinitely divisible probability measures p,,,
n € N towards an infinitely divisible probability measure o in case of the real line R.
Theorem VII.2.9 in Jacod and Shiryayev [2] gives equivalent conditions for weak convergence
fin — o. Among these conditions we have

/fdnn—>/fdn0 for all f € Cy(R), (1.1)
R R

where 7,, n € Z, are nonnegative, extended real valued measures on R with 7,({0}) =0
and [, (2> A1)dn,(x) < oo (i.e., Lévy measures on R) corresponding to j,, and Cy(R)
is the set of all real valued bounded continuous functions f on R vanishing on some
Borel neighbourhood of 0 and having a limit at infinity. Theorem 2.1 is about equivalent
reformulations of (1.1) when it holds for all real valued bounded continuous functions on R
vanishing on some Borel neighbourhood of 0.

2 An analogue of the portmanteau theorem

Let N and Z; be the set of positive and nonnegative integers, respectively. Let (X, d)
be a metric space and zp be a fixed element of X. Let B(X) denote the o-algebra of
Borel subsets of X. A Borel neighbourhood U of z, is an element of B(X) for which
there exists an open subset U of X such that To € UcCU. Let N, denote the set
of all Borel neighbourhoods of z(, and the set of bounded measures on X is denoted by

MP(X). The expression “a measure g on X7 means a measure g on the o-algebra
B(X).

Let C(X), Cy(X) and BL,,(X) denote the spaces of all real valued bounded continuous
functions on X, the set of all elements of C(X) vanishing on some Borel neighbourhood
of xg, and the set of all real valued bounded Lipschitz functions vanishing on some Borel
neighbourhood of x4, respectively.

For a measure 1 on X and for a Borel subset B € B(X), let 7| denote the
restriction of n onto B, i.e., n|g(A) :=n(BNA) forall Aec B(X).

Let p,, n € Z, be bounded measures on X. We write g, — p if p,(A) — pu(A)
for all A€ B(X) with p(0A) = 0. This is called weak convergence of bounded measures
on X.

Now we formulate a portmanteau theorem for unbounded measures.

Theorem 2.1 Let (X,d) be a metric space and xo be a fized element of X. Let mn,,
n € Z,, be measures on X such that 1n,(X \U) < oo for all U € N, and for all
n € Z,. Then the following assertions are equivalent:

(i) fX\denn — fX\deno forall feC(X), UeN,, with ny(oU) =0,

(ll) 77n|X\U g 770|X\U f07” all U EN;EO with T](](aU) = 0,



(iii

(X \U) = no(X\U) forall Ue N, with n(0U) =0,
(iv f fdn, —>foan forall fe€C.y(X),

Jx fdn — [ fdno forall f e BL,(X),

)

)

(v)

(vi) the following inequalities hold:
(
(

a) limsupn, (X \U)<no(X \U) for all open neighbourhoods U of =z,

n—oo

b) liminfn,(X \V)=ny(X \V) for all closed neighbourhoods V' of xy.

Proof. (i)=-(ii): Let U be an element of A, with 1y(0U) = 0. Note n,|x\v € M*(X),
n € Z,. By the equivalence of (a) and (b) in Proposition 1.2.13 in [3], to prove

Mlx\v = Mo|x\o it is enough to check [ fdn.|x\o — [ fdnolx\w for all f € C(X).
For this it suffices to show that for all real valued bounded measurable functions A on X,
for all A€ B(X) and for all n € Z, we have

X A

By Beppo-Levi’s theorem, a standard measure-theoretic argument implies (2.1).

(ii)=(iii): Let U be an element of N, with no(9U) =0. By (ii), we have n,|x\v —

nolx\u- Since o] x\v(0X) = nolx\v (D) =0, we get 1,(X\U) = | x\v(X) = mo|x\v(X) =
no(X \ U), as desired.

(iii)=(ii): Let U be an element of N, with 70(0U) =0 and let B € B(X) be such
that no|x\v(0B) = 0. We have to show 7,|x\v(B) — no|x\v(B).

Since. BN(X\U) = X\ [X\(BN(X\U))] and nu|x\v(B) = m(BN(X\U)), n € Zy,
by (iii), it is enough to check 7o(9(X \ (BN (X \U)))) =0. First we show
(BN (X\U)) C (0BN(X\U))UdU for all subsets B, U of X. (2.2)

Let z be an element of (BN (X \U)) and (Yn)n>1, (2n)n>1 be two sequences such
that lim, e yp =lim, o2, =2 and y, € BN(X\U), 2z, € X\ (BN(X\U)), neN.
Then for all n € N we have one or two of the following possibilities:

e y, €B, y, € X\U and z, € X\ B,

¢y, €B, y, € X\U and z, €U.

Then we get z € (OB N ((X\U)UdU)) U (0U N (BUIB)) U (0BNAU). Since BN
(X\U)udU) Cc (0BN(X\U))UdU, wehave z € (0BN (X \U))UIU, as desired.

Using (2.2) we get 70 (0(X\(BN(X\U)))) <no(0BN(X\U))+n0(0U) = 0. Indeed, by
the assumptions 7o(0BN(X\U)) =0 and no(0U) = 0. Hence 1o(d(X\(BN(X\U)))) = 0.

(ii)=-(i): Using again the equivalence of (a) and (b) in Proposition 1.2.13 in [3] and
(2.1) we obtain (i).

(iii)=>(iv): Let f be an element of C,,(X). Then there exists A € N, such that
f() =0 forall z € A and n(9A) = 0. Indeed, the function ¢ — n({z € X :
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d(z, o) > t}) from (0,+0c) into R is monotone decreasing, hence the set {t € (0, +00) :
no({z € X : d(z,z0) = t}) > 0} of its discontinuities is at most countable. Consequently,
for all U € N,, there exists some ¢ > 0 such that U := {z € X : d(z,zy) < t} € N,
UcU and 1(dU) = 0. (At this step we use that an element U of A, contains
an open subset of X containing xy.) This implies the existence of A. We show that
the set D= {t € R:n({z € X : f(z) =t}) > 0} is at most countable. The function
F:R—[0,m(X \ A)], defined by

F(t)=m({z e X\ A: f(z) <t}), teR,

is monotone increasing and left continuous. (Note that 79(X\A) < oo, by the assumption on
no.) Hence it has at most countably many discontinuity points, and ¢, € R is a discontinuity
point of F if and only if F(ty 4+ 0) > F(ty), ie., no({z € X\ A: f(z) =to}) > 0. If
to#0, then {zr € X : f(z) =t} ={x € X\A: f(z) =to}, thus ¢y # 0 is a discontinuity
point of F' if and only if no({x € X : f(z) =to}) > 0. Henceif t € D then t=0 or ¢
is a discontinuity point of F, consequently D is at most countable. Since f is bounded
and D is at most countable, there exists a real number M > 0 such that —M, M ¢ D
and |f(z)| <M for x € X. Let € > 0. Choose real numbers t;, i =0,...,k such that
—M=ty<ty <--<tpr=M, t;¢ D,i=0,...,k and maxoc;<gp_1(tir1 — ;) <e&. The
countability of D implies the existence of ¢;, ¢ =0,..., k. Let

Bii= f ([t tia)) N (X \ A) = {x eX\A:t < flz) < tm}

forall ¢ =0,...,k—1. Then B;, i =20,...,k— 1, are pairwise disjoint Borel sets
and X \ A = Uf:_ol B;. Since f is continuous, the boundary O(f~'(H)) of the set
S7Y(H) is a subset of the set f~'(0H) for all subsets H of R. Using (2.2) this implies
X\ B;)=0B; C f7'({t;}) U f ' ({tix1}) UOA forall i =0,...,k—1. Since ¢ ¢ D,
i=0,...,k 1n9(0A) =0 and

m(O(X\By) <no({zeX : f(z)=t;}) + no({re X : f(z)=tiz1}) +m0(dA),

we get no(O(X\ B;)) =0, i =0,...,k—1. Since A C X\ B;, we have X \ B; € N,
for all ¢ =0,...,k—1. Hence condition (iii) implies that n,(B;) — n(B;) as n — oo,
t=0,...,k—1. By the triangle inequality

[ ran= [ ram| =] [ ram— [ el
X X X\A X\A

k—1
<2 max (tisr —t;) + ‘ > ti(na(B:) = no(By)) ‘
1=0

0<i<k—1

Hence limsup,, .. Udenn — fodno‘ < 2maxogi<k—1(tip1 — ;) < 26. Since € > 0 is
arbitrary, (iv) holds.

(iv)=(v): It is trivial, since BL, (X) C Cy,(X).

(v)=(vi): First let U be an open neighbourhood of z. Let & > 0. We show the
existence of a closed neighbourhood U. of zy such that U. C U and no(U \ Us) < e,



and of a function f € BL,,(X) such that f(x)=0 for x € U, f(z)=1 for x € X\ U
and 0< f(x) <1 for z € X.

For all B € B(X) and for all A >0 we use notation B*:= {z € X : d(z, B) < A},
where d(z, B) := inf{d(z,z) : z € B}. Since U is open, we get U = |J._, F,,, where
F, =X\ (X\U)Y", ne&N. Then F, C F,;1, n €N, F, is a closed subset of X
forall n € N and ())_ (X \ F,) = X \U. We also have 19(X \ Fy) < oo for some
sufficiently large N € N and X \ F,, D X \ F,;; for all n € N; and hence the continuity
of the measure 79 implies that lim, . 70(X \ Fy) = 1no(X \ U). Since no(X \ U) < oo,
there exists some ng € N such that no(X \ F,,) —nmo(X \U) <e. Set U, :=F,,. Since
N0(X \ Frg) = mo(X \U) = o (X \ Fpy) \ (X \U)) =no(U \ F,), theset U. is a closed
neighborhood of xy, U. CU and no(U \U;) < ¢

We show that the function f: X — R, defined by f(z):= min(1,ned(z,U.)), z € X,
is an element of BL,,(X), f(z) =0 for z € U, f(x)=1 for x € X\U and 0< f(z) <1
for x € X.

Note that if = € U. then d(z,U.) =0, hence f(x) =0. Andif z € X\ U then
d(z,U.) 2d(X \U,U.) 2 1/ng, hence f(x)=1. The fact that 0< f(z)<1, z € X is
obvious. To prove that f is Lipschitz, we check that

|f(x) = f(y)] <nod(x,y) for all z,y € X.

If z,y e X with d(x,y) >1/ng then |f(z)— f(y)| <1< ned(z,y). If xz,y € X with
d(x,y) < 1/ng then we have to consider the following four cases apart from changing the
roleof z and y: x€ X\U, yeU\U,; v €U, yecU\U;; z,y € U\U. and the case
r,y €U, or x,y e X \U.

Let us consider the case when z,y € U\ U. and f(x) =1, f(y) = nod(y,U.). Then
d(l?, UE) > 1/nOa d(ya Ua) < 1/nO and we get ’f(l’) - f(y)’ =1- nOd(y> U&) < nod(x,y).
Indeed, 1/no<d(z,U.) <d(x,y) + d(y,U:). The case z,y € U\ U. and f(y) =
f(z) = ned(z,U.) can be handled similarly. If z,y € U\ U. and f(z) = nod(z,U.),
f(y) =nod(y,U:) then

[f (@) = f(y)] = nold(z, Ue) — d(y, Ue)| < nod(z,y).

Indeed, since U, is closed, we have |d(z,U.) —d(y,U.)| <d(z,y). If x,y € U\ U. and
f(x) = f(y) =1 then |f(z) — f(y)| = 0 < nod(,y).

The other cases can be handled similarly. Hence f € BL,,(X) and we get

/deno = /X\deno <no(X\U:) = no(X\U) +no(U\U:) < no(X\U)+e

and [, fdn, > fX\U fdn, =n,(X \U). Hence by condition (v) we have

lim sup 7, (X \ U) < lim sup / i, = / f o < (X \ U) +

n—oo n—oo

Since € > 0 is arbitrary, we get (a).



Now let V' be a closed neighbourhood of zy. Let ¢ > 0. As in case of an open
neighbourhood of 1z, one can show that there exist an open neighbourhood V. of =z
such that V' C V. and no(V-\V) <e and a function f € BL,,(X) such that f(z)=0
for x eV, f(x)=1 for z€ X\ V. and 0< f(z) <1 for x € X. Then we get

/fdnoz Fdmo =X \V)+ [ fn
X X\V Ve\V

> no(X\V) = n(Vo\ V) > no(X\ V) —e,

and [ fdn, = [\ fdn. <n.(X\ V). Hence by condition (v) we have

liminf 7, (X \ V) > liminf/ fdn, = / fdng >n(X\V)—e.
n— oo X X

n—o0o

Since € > 0 is arbitrary, we obtain (b).

(vi)= (iii): The proof can be carried out similarly to the proof of the corresponding
part of Theorem 11.1.1 in Dudley [1]. O

Remark 2.1 Assertion (v) in Theorem 2.1 can be replaced by

[ fam— [ ram ol fecnx),
X X
where C (X) denotes the set of all uniformly continuous functions in C,,(X).

Remark 2.2 By giving a counterexample we show that (a) and (b) in condition (vi)
of Theorem 2.1 are not equivalent. For all n € N let 7, be the Dirac measure 9, on
R concentrated on 2 and let 7y be the Dirac measure 6, on R concentrated on 0.
Then no(R\ V) =0 for all closed neighbourhoods V' of 0, hence (b) in condition (vi)
of Theorem 2.1 holds. But (a) in condition (vi) of Theorem 2.1 is not satisfied. Indeed,
U :=(—1,1) is an open neighbourhood of 0, ny(R\ U) =0, but

MR\ U) =n,((—00, —1JU[1,+00)) =1, n€N,

hence limsup,, . 7,(R\ U) =1. This counterexample also implies that the equivalence of
(¢) and (d) in Proposition 1.2.19 in [3] is not valid.

Remark 2.3 By giving a counterexample we show that the equivalence of (¢) and (d) in
Proposition 1.2.13 in [3] is not valid. For all n € N let p, be the measure 26,/, on R and
g be the Dirac measure §; on R. We have u(A) < liminf,_ . p,(A) for all open subsets
A of R but there exists some closed subset F' of R such that limsup,,_, . pn(F) > p(F).
If A is an open subset of R such that 0 € A then pu(A) =1 and p,(A) =2 for all
sufficiently large n, which implies p(A) < liminf, .. p,(A). If A is an open subset of
R such that 0 ¢ A then pu(A) =0, hence wu(A)< liminf, o p,(A) is valid. Let F
be the closed interval [—1,1]. Then wu(F) =1 and pu,(F) =2, n € N, which yields
limsup,,_, tn(F) = 2. Hence limsup,,_, pn(F) > p(F).
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