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REPRESENTATIONS OF FINITE GROUPS BY POSETS OF SMALL
HEIGHT

GERGŐ GYENIZSE, PÉTER HAJNAL, AND LÁSZLÓ ZÁDORI

ABSTRACT. We characterize the finite groups as the automorphism groups of
the finite height one posets with at most four orbits. We also prove that for
each n ≥ 8, the cyclic group Zn is isomorphic to the automorphism group of a
finite height one poset with at most two orbits. As a consequence, for each n,
we determine the minimum size of the posets whose automorphism groups are
isomorphic to Zn.

1. INTRODUCTION

Throughout the text, we use blackboard bold capitals to denote digraphs, in par-
ticular posets, and bold capitals to denote groups. We use common capital letters
for base sets of digraphs, posets and groups as well. Let G be a group, and D a
digraph. We say that D is a representation of G if G is isomorphic to the automor-
phism group of D. A representation is called transitive if its automorphism group
is transitive as a permutation group. A representation is regular if its automor-
phism group is regular as a permutation group. Let Zn denote the additive group of
integers modulo n. In [3], Babai proved that all finite groups with the exception of
the groups Z2

2, Z3
2, Z4

2, Z2
3 and the quaternion group have regular representations.

In this paper, we study the poset representations of the finite groups. Notice that
in a poset representation every orbit of the automorphism group is an antichain. So
only the finite symmetric groups have transitive poset representations. Thus the re-
maining finite groups have at least two orbits in each of their poset representations.
In this paper, we consider poset representations in which the number of orbits is at
most 4. We also want to keep the height of the poset representations we study as
small as possible, in most of the cases, just 1. Recall that a poset has height n if it
has a subchain of n+1 elements and has no subchain of n+2 elements.

By Proposition 7.3 in [2], a regular digraph representation of a finite group yields
a poset representation of height 2 with exactly three orbits. This with the above
mentioned Babai result in [3] gives that all finite groups with at most five excep-
tions have height two poset representations with at most three orbits. In [4], for
any finite group, Barmak gave a different poset representation of height 3 with just
four orbits. In both cases, the group G represented acts regularly on each of the
orbits, so each of the orbits has size |G|.

In this paper we prove that every finite group has a height one poset represen-
tation with at most four orbits. We also prove that with few exceptions, all finite
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cyclic groups have poset representations with at most two orbits, on each of which
the automorphism group of the poset acts regularly. By the use of this result, for
each n, we determine the minimum size of the posets that represent Zn. Our result
is similar in flavour to that of Meriwether in [8] where for each n, he determined
the minimum size of the graphs that represent Zn. Meriwether’s theorem was later
reproved by Arlinghaus, see Theorems 5.4 and 6.4 in [1]. In [1], Arlinghaus went
further by extending Meriwether’s theorem to finite Abelian groups.
Note Added in Proof: Our article was motivated by [4], an arXiv publication of
Barmak. After submitting our results, we learned that Barreto had achieved similar
results in a Spanish-language thesis in 2021 [6]. An English translation of part of
this thesis [5] was published when our paper had already been submitted to Order.
The translated part deals with the representation of cyclic groups, that is one of the
topics of our paper. Further valuable results of the thesis are still only available in
Spanish. Below we compare [5] with our results.

In Section 2 we prove that every finite group has a height one poset represen-
tation with at most four orbits. To verify the claim we need to represent the five
exceptional groups that occur in Babai’s classical result on regular digraph repre-
sentations. Specifically, we also include a representation of the quaternion group.
These claims are not presented in [5].

Section 3 and parts of section 4 deal with representations of cyclic groups. The
proofs are the most natural: they give constructions for each group. [5] uses similar
constructions. In the constructions, we want to keep the height of the representa-
tive poset, the number of orbits, and the degree of the Hasse diagram as small as
possible (see our Theorem 3.3). [5] is more purposeful towards proving the main
theorem, e. g., they state their version of our Theorem 3.3 only for prime powers.

In the constructions, we introduce a sequence of posets whose automorphism
group is mostly cyclic. We also examine the automorphism groups of all the ele-
ments of the sequence, and in Corollary 3.4 obtain poset representations of addi-
tional groups, such as PSL(2,7) and GL(2,3) among other groups. In their proof
they also introduce a sequence of posets parameterized by prime powers. The only
poset that belongs to both sequences has parameter 8.

The main result of our paper is Theorem 4.5. This requires a lower bound after
the constructions. Its essence is technical, elementary number theoretical analy-
sis, following natural lines of thought. In this respect our article and [5] are very
similar. We emphasize that we obtained Theorem 4.5 of the present paper indepen-
dently of the results in Barreto’s thesis [6].

To summarize, [6] obviously preceded our results, but is not available to the
general public. The two English language papers ours and [5] have significant
parts that are similar, but the attentive expert reader will find several statements,
constructions and remarks which are in our paper only.

2. HEIGHT ONE POSET REPRESENTATIONS OF FINITE GROUPS

In this section, we construct a poset representation of height 1 for every finite
group. We start with a theorem that renders a poset representation of height 1
to every finite group but the above mentioned five exceptional groups in Babai’s
regular digraph result of [3].

Theorem 2.1. If a finite group G has a regular digraph representation, then G has
a 4|G|-element poset representation of height 1 with four orbits of size |G|.
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Proof. Let D be a digraph such that Aut(D)∼= G and Aut(D) is a regular permu-
tation group on D. By regularity, the out-degree of every vertex is the same in
D, say d. Clearly, the in-degree of every vertex also equals d. If |D| ≥ 3, by
taking complement, we may assume that d ≥ 2. If |D| ≤ 2, we may assume that
d = 0. We also assume that D has the vertex set {a0, . . . ,an}. Let {b0, . . . ,bn}
be another copy of this vertex set. We define the poset P of height 1 with mini-
mal elements a0, . . . ,an,b0, . . . ,bn, with maximal elements a0, . . . ,an,b0, . . . ,bn and
covering pairs

ai < a j iff ai → a j in D, and ai < bi, bi < ai, bi < bi for all 0 ≤ i ≤ n.

Let α ∈Aut(D). We conceive α as if it also acted on the elements bi by α(bi) =
b j iff α(ai) = a j. Now it should be clear that the map β defined by

β (ai) = α(ai), β (bi) = α(bi), β (ai) = α(ai), β (bi) = α(bi)

is an element of Aut(P).
On the other hand, if β ∈Aut(P), then β is a permutation restricted to the set

of the bi and to the set of the bi, respectively, because of d ̸= 2. Since β permutes
the covering pairs bi < bi where 0 ≤ i ≤ n, these two restrictions are the same if
we ignore the underline and overline notation. The so obtained permutation of
the bi forces — as β permutes the pairs ai < bi, 0 ≤ i ≤ n, and the pairs bi < ai,
0 ≤ i ≤ n, respectively — that β is the same permutation restricted to the set of
the ai and to the set of the ai, respectively, if we ignore the underline and overline
notation. The so obtained permutation of the ai is clearly an automorphism of D.
So Aut(P)∼=Aut(D)∼= G. □

Let G be any finite group that admits a digraph representation D such that both
of the in-valency and the out-valency of every vertex in D are different from 1. We
note that an analogue of the preceding proof yields a height one poset representa-
tion P of G. Clearly, the number of orbits in P is four times that in D.

For all n ≥ 2, we define the 2n-element crowns Cn that are the height one posets
as follows. The minimal and maximal elements of Cn are i and i, respectively,
where 0 ≤ i ≤ n− 1, and i has exactly two upper covers i and i+1 in Cn where
i+ 1 is meant modulo n. It is easy to check that Aut(C2)∼= Z2

2 and for any n ≥ 3,
Aut(Cn)∼= Dn where Dn is the 2n-element dihedral group. When n ≥ 3, as usual,
we call the powers of the automorphism (0 . . .n−1)(0 . . .n−1) rotations and the
remaining elements of Aut(Cn) reflections.

Corollary 2.2. Every finite group G has a height one poset representation with at
most four orbits.

Proof. It suffices to verify the claim for the five groups that occur as exceptions
in Babai’s regular digraph representation result in [3]. First we define some poset
representations of Z2

2, Z3
2, and Z4

2, see Figure 1. As we noted after the definition
of crowns, a 4-element crown is a height one poset representation of Z2

2. The
disjoint sum of a 4-element crown and a 2-element antichain is a height one poset
representation of Z3

2. The poset obtained from the disjoint sum of two 4-element
crowns by adding all pairs whose first components are minimal in the first crown
and whose second components are maximal in the second crown is a height one
poset representation of Z4

2. Obviously, in each of these representations of Z2
2, Z3

2,
and Z4

2, the number of orbits is at most four.
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FIGURE 1. Poset representations of Z2
2, Z3

2, and Z4
2

Next we exhibit a poset representation of the group Z2
3. We assume that Z2

3 is
defined on the set H = {00,01,02,10,11,12,20,21,22} with the usual componen-
twise modulo 3 addition. Let

H = {00,01,02,10,11,12,20,21,22}.

The set H is defined analogously. These definitions extend to the subsets of H in
the natural way.

Let
A = {10,01,22}, B = {00,12,21}, C = {02,20,11} and

D = {00,11,22}, E = {21,02,10}, F = {12,20,01}.
We note that the elements of B form a subgroup of Z2

3 with corresponding cosets
A, B and C. Similarly, the elements of D constitute a subgroup of Z2

3 with related
cosets D, E and F .

We define a poset P on the set

P = (H ∪{A,B,C})∪ ({D,E,F}∪H).

The covering relation of P is the union of the following sets

{(h,g) : h ∈ H, g ∈ {h+10,h+01,h+02}},

{A}×A, {B}×B, {C}×C and D×{D}, E ×{E}, F ×{F},
see Figure 2.

D E 0222 112012  2110 01F

A

00

2212 011002  1100 21 20 B C

FIGURE 2. A poset representation of Z2
3

We claim that P is a poset representation of Z2
3 with the orbits H, H, {A,B,C},

and {D,E,F}. As Z2
3 acts faithfully on P by translations, Z2

3 embeds into Aut(P).
Note that the orbits of this action on P coincide with the orbits of Aut(P). Indeed,
every element in H is covered by exactly four elements, whereas every element in
{A,B,C} is covered by exactly three elements. So {A,B,C} and H are orbits of
Aut(P). A dual argument yields that {D,E,F} and H are also orbits. Since H is
a 9-element orbit of Aut(P) and |H|= |Aut(P)|/|G0| where G0 is the stabilizer of
00, to complete the proof of the claim, it suffices to show that G0 is 1-element.
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So let us assume that ϕ(00) = 00 where ϕ ∈ Aut(P). First observe that the
numbers of length two paths from 00 to A, B, C are 2, 0 and 1 respectively. Since
ϕ fixes 00 and preserves the set {A,B,C}, ϕ fixes A, B, C, and 02. For ϕ fixes 00
and 02, ϕ preserves the set {22,01}. Since ϕ fixes 00 and preserves {D,E,F}, it
fixes D as well. So ϕ preserves the set {11,22}. Hence 22, 11 and 01 are fixed by
ϕ . Since 01 is fixed and {D,E,F} is preserved, F is fixed by ϕ . For D and F are
fixed, E must be fixed.

Let S be the subposet spanned by the union of the orbits H and H. The set S is
obviously preserved by ϕ . For C is fixed, the set {02,20,11} is preserved by ϕ .
We already saw that 02 and 22 are fixed, hence 20 and 11 must be also fixed by ϕ .
Since 10 is the only common lower cover of 20 and 11 in S, 10 is also fixed by ϕ .

Now we use the fact that any maximal element p of P must be fixed by ϕ if p
has a fixed lower cover whose all upper covers different from p are fixed. By this
fact and its dual, we obtain that 21,12,00 and 21,12 are fixed, since 22,10,01 and
02,20,11 are fixed by ϕ . By using the same fact again, the remaining elements
02,20,10,01,22 are also fixed by ϕ . Thus ϕ is the identity on P, and Z2

3 has a
height one poset representation with at most four orbits.

To conclude the proof, we exhibit a poset representation of the quaternion group.
Let Q be the quaternion group defined as usual on Q = {−1,1,−i, i,− j, j,−k,k}.
Let

A = {−1,1,− j, j}, B = {−i, i,−k,k}, C = {−1,1,−i, i} and D = {− j, j,−k,k}.
Notice that A and C are normal subgroups of Q with related cosets B and D, re-
spectively.

We define the sets

Q = {−1,1,−i, i,− j, j,−k,k} and Q = {−1,1,−i, i,− j, j,−k,k}.

The sets A, B, C and D are defined similarly. We define a poset P with base set

P = (Q∪{A,B})∪ (Q∪{C,D})
and with covering relation

{(g,h) : g ∈ Q, h ∈ {gi,g j,gk}}∪{A}×A∪{B}×B∪C×{C}∪D×{D},
see Figure 3.

C Di-i j-j k-k-1 1

i-i j-j k-k-1 1A B

FIGURE 3. A poset representation of the quaternion group

We claim that P is a poset representation of Q with the orbits Q, Q, {A,B}, and
{C,D}. The left multiplication of Q acts faithfully on P, hence Q embeds into
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Aut(P). Note that the orbits of this action on P coincide with the orbits of Aut(P).
Indeed, every element in Q can be reached from A via a path of length 2, but there
is no path of length 2 from A to B. So {A,B} is an orbit of Aut(P). Similarly,
{C,D} is also an orbit. Therefore, Q and Q are also orbits of Aut(P). Since Q is an
8-element orbit of Aut(P), to complete the proof of the claim, it suffices to show
that the stabilizer of 1 is 1-element.

So let us assume that ϕ(1) = 1 where ϕ ∈ Aut(P). Clearly, then ϕ fixes A and B,
and hence ϕ preserves the sets {1,−1, j,− j} and {i,−i,k,−k}. For 1 is fixed, ϕ

preserves the set {−i,− j,−k}. Since 1 covers a unique element below C and two
elements below D, ϕ fixes C and D as well. Then ϕ preserves the sets {1,−1, i,−i}
and { j,− j,k,−k}.

Since ϕ preserves the sets {−i,− j,−k} and {1,−1, i,−i}, ϕ fixes −i. Then ϕ

preserves the set {1, j,−k}. By using that ϕ preserves the set {i,−i,k,−k}, ϕ fixes
−k. Since {1, j,−k} is preserved by ϕ and 1 and −k are fixed by ϕ , j is also fixed
by ϕ .

Since j and D are fixed, their unique common lower cover k is fixed. Then the
unique common upper cover −i of k and B are fixed. Since −k and D are fixed,
their unique common lower cover j is fixed. Then the unique common upper cover
−1 of j and A are fixed. For j is fixed, ϕ preserves {−1, i,−k}. So, since −1 and
−k are fixed by ϕ , i is also fixed.

So far we proved that all elements above A except − j and all elements above
B except k are fixed by ϕ . Then, as A and B are fixed, − j and k must also be
fixed. So every maximal element of P is fixed by ϕ . Now each minimal element
of P is a unique common lower cover of two maximal elements of P. So we obtain
that every minimal element of P is fixed by ϕ . Thus ϕ is the identity on P, and the
quaternion group has a height one poset representation with at most four orbits. □

3. POSET REPRESENTATIONS OF FINITE CYCLIC GROUPS

Now we turn to the poset representations of the finite cyclic groups. Clearly, an
n-cycle is a regular digraph representation of an n-element cyclic group Zn. The
poset defined from an n-cycle in the proof of Proposition 7.3 [2] gives a height
two representation of Zn. The resulting height two posets are sometimes called
subdivided crowns, see Figure 4. So the following proposition holds.

FIGURE 4. Some subdivided crowns

Proposition 3.1. If n ≥ 2, then Zn is representable by a 3n-element height two
poset with three n-element orbits.

By the use of Theorem 2.1, starting with an n-cycle, it is possible to construct
a height one poset representation of Zn with four n-element orbits. In the proof of
the next theorem, we construct a more economical height one poset representation
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of the n-element cyclic group when n is even and n ≥ 4. We note that this theo-
rem is not used in the further parts of our paper. We also remark that for n = 4,
the posets constructed in Theorems 3.1 and 3.2 yield 12-element height three and
height two representations for Z4, respectively. It will turn out later that the these
poset representations of Z4 are of minimum size.

Theorem 3.2. If n≥ 4 and n is even, then Zn is representable by a (2n+4)-element
height one poset with two n-element and two 2-element orbits.

Proof. For any n ≥ 4, we define the height one poset Tn as follows. First we
take the 2n-element crown with minimal and maximal elements i and i, where
0 ≤ i ≤ n− 1, and for any 0 ≤ i ≤ n− 1, i is covered by i and i+1 where i+ k is
meant modulo n. To obtain Tn we add four elements denoted by a,b,a, and b to
this crown with covering pairs a < a, b < b, a < i and i < a if i is even, and b < i
and i < b if i is odd for any 0 ≤ i ≤ n−1. We claim that Aut(Tn)∼= Zn.

The map that swaps a with b and a with b and maps i to i+1 and i to i+1
where 0 ≤ i ≤ n− 1 is an automorphism of Tn and acts transitively on the sets
of the minimal and the maximal elements of the crown and on the sets {a,b} and
{a,b}, respectively. If n = 4, notice that the distance between every two different
minimal (maximal) elements is two in Tn, but the distance between a and b (a
and b) is 4. If n > 4, then the number of covers of each of a and b is 1+ n

2 that
differs from 3, the number of covers of any i in the crown. Hence each of the sets
{0, . . . ,n−1}, {0, . . . ,n−1}, {a,b} and {a,b} is an orbit of Aut(Tn). Clearly, Zn
embeds into Aut(Tn). Therefore, it suffices to prove that |Aut(Tn)| = n. Then we
only have to prove that the stabilizer G0 of 0 is one-element. Indeed, if G0 is one-
element, by using the fact that the size of the orbit of 0 is |Aut(Tn)|/|G0| on one
hand and is n on the other hand, we shall be done.

So let ϕ ∈Aut(Tn) such that ϕ(0) = 0. We want to prove that ϕ is the identity
map on Tn. Since ϕ fixes 0 and {0, . . . ,n−1} is an orbit in Aut(Tn), ϕ permutes
the elements 0 and 1. Also, ϕ must fix the elements a,b,a, and b. Then by a =
ϕ(a) ≤ ϕ(0) ∈ {0,1}, ϕ(0) = 0. By using the fact that ϕ(0) = 0 and applying
a dual argument, we obtain that ϕ(1) = 1. By continuing the proof in the same
fashion, now starting with the condition that ϕ(1) = 1, we obtain that ϕ(2) = 2,
and so on. At the end, we get that ϕ fixes all of the elements of 0, . . . ,n−1 and
hence ϕ is the identity of Tn. This concludes the proof. □

For any n ≥ 4, we define the 2n-element height one poset Pn as follows. The
minimal and maximal elements of Pn are i and i, respectively, where 0 ≤ i ≤ n−1,
and i has exactly three upper covers i, i+1, and i+3 in Pn where i+ k is meant
modulo n. It may be surprising that for finite cyclic groups with finitely many
exceptions, there are height one poset representations with just two orbits. Here is
the main theorem of the section.

Theorem 3.3. If n ≥ 8, then Zn is representable by a 2n-element height one poset
with two n-element orbits.

Proof. We shall prove first that for every n ≥ 9, Aut(Pn) is isomorphic to Zn.
Clearly, the natural action of Zn on Pn is contained in the action of Aut(Pn) and is
transitive on the sets of the minimal and the maximal elements, respectively. Hence
Zn embeds into Aut(Pn), and each of the sets of the minimal and the maximal ele-
ments is an n-element orbit of Aut(Pn). Therefore, if we prove that |Aut(Pn)|= n,
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we are done. Similarly as in the preceding proof, it suffices to prove that the stabi-
lizer of 0 is one-element. So let ϕ ∈Aut(Pn) such that ϕ(0) = 0. We want to prove
that ϕ is the identity map on Pn. The proof can be visualized in Figure 5.

0 1 2 3 4 5-1-2

0 1 2 3 4 5-1-2

 6

 6

-3

-3

FIGURE 5. A slice of Pn

We call a sequence 0 < x > y < z a 3-path where x ̸= z and 0 ̸= y. So a 3-path
contains 4 different elements, including the starting element 0. We list all of the
3-paths in Pn:

0 < 0 >−1 <−1, 0 < 0 >−1 < 2, 0 < 0 >−3 <−3, 0 < 0 >−3 <−2,

0 < 1 >−2 <−2, 0 < 1 >−2 <−1, 0 < 1 > 1 < 2, 0 < 1 > 1 < 4,

0 < 3 > 2 < 2, 0 < 3 > 2 < 5, 0 < 3 > 3 < 4, 0 < 3 > 3 < 6.

It is obvious that for any 3-path 0 < x > y < z, the sequence

0 = ϕ(0)< ϕ(x)> ϕ(y)< ϕ(z)

is a 3-path too. Hence ϕ permutes the ending elements of the 3-paths. Let

E = {−3,−2,−1,2,4,5,6}.
Observe that E is the set of ending elements of the 3-paths. Notice that E is a
7-element set if n > 9, and E is a 6-element set if n = 9. In the latter case, 6 =−3.
We say that a 3-path of the form 0 < x > y < z has color x. So every 3-path has a
unique color: color 0, color 1, or color 3. We partition the set of the twelve 3-paths
into three color classes, see the three lines of our list above. Notice that in E, 2 is
the only element that is reached by three 3-paths of different colors. Therefore, 2
is also a fixed point of ϕ .

An element w in E is lone iff there is only one 3-path ending at w. If n = 9,
then 5 is the only lone element of E, it is the ending element of a 3-path of color
3. Hence the elements of the 3-path leading to 5 are fixed by ϕ . Thus ϕ(3) = 3,
ϕ(2) = 2, and ϕ(5) = 5. Since ϕ(0) = 0 implies ϕ(3) = 3, ϕ(x) = x similarly
implies ϕ(x+3) = x+3.

Notice that the map ρ that swaps x and −x is an order reversing bijection of Pn.
So Pn is a self-dual poset and in its dual x is covered by x, x−1 and x−3. As ϕ

preserves the dual ordering, we obtain by a dual argument as above that ϕ(x) = x
implies ϕ(x−3) = x−3. Hence by ϕ(2) = 2, we obtain that ϕ(−1) =−1. So we
proved based only on the assumption ϕ(0) = 0 that ϕ(−1) = −1. By the use of
ϕ(−1) = −1 we similarly obtain ϕ(−2) = −2, and so on. Eventually, ϕ fixes all
underlined elements in Pn, hence ϕ must be the identity.

If n > 9, then −3, 5, 6 are the lone elements. The color of the unique 3-paths
leading to 5 and 6 is 3. The color of the unique 3-path leading to −3 is 0 ̸= 3. Hence
the elements of the 3-path leading to −3 are fixed by ϕ . Therefore, ϕ(0) = 0,



REPRESENTATIONS OF FINITE GROUPS BY POSETS OF SMALL HEIGHT 9

ϕ(−3) = −3, and ϕ(−3) = −3. The fixed element 0 has the three lower covers:
0, −1, and −3. Since 0 and −3 are fixed by ϕ , ϕ fixes −1 as well. From here, the
proof of case n > 9 finishes in the same way as in case n = 9.

Now it remains to prove the theorem for n = 8. We note that the poset P8 is the
point-line poset of the Möbius-Kantor configuration, and its automorphism group
has 48 elements and isomorphic to GL(2,3), cf. [7]. So we need to come up with
another 16-element height one poset to finish the proof of this theorem. We define
the height one poset R8 as follows. The minimal and maximal elements of R8 are i
and i, respectively, where i ∈ {0, . . . ,7}, and in R8, for any 0 ≤ i ≤ 7, i has exactly
four upper covers i−1, i, i+1, and i+3 where i+k is meant modulo 8, see Figure
6.

0 1 2 3 4 5

0 1 2 3 4 576

76

FIGURE 6. R8

We shall prove that Aut(R8) is isomorphic to Z8. We follow the structure of
the proof for Pn, n ≥ 9. First observe that the natural action of Z8 on R8 yields a
subgroup Aut(R8) and is transitive on the sets of the minimal and the maximal ele-
ments, respectively. Hence each of these two sets is an 8-element orbit of Aut(R8),
and Z8 embeds into Aut(R8). Therefore, if we prove that |Aut(R8)| = 8 we are
done. Similarly as earlier, it suffices to prove that the stabilizer of 0 is one-element.

So let ϕ ∈Aut(R8) such that ϕ(0) = 0. We want to prove that ϕ is the identity
map on R8. We call a sequence w < x > y a 2-path, where w ̸= y. So a 2-path
contains three different elements. Here is the list of all 2-paths starting with 0 ∈ R8,
the list for the 2-paths starting with w ∈ R8 is similar:

0 < 7 > 6, 0 < 7 > 7, 0 < 7 > 4,

0 < 0 > 7, 0 < 0 > 1, 0 < 0 > 5,

0 < 1 > 1, 0 < 1 > 2, 0 < 1 > 6,

0 < 3 > 2, 0 < 3 > 3, 0 < 3 > 4.

We call a sequence w < x > y < z > w a 4-cycle if w ̸= y and x ̸= z. So a
4-cycle contains four different elements. Note that a 4-cycle is oriented, hence
w < x > y < z > w and w < z > y < x > w are two different 4-cycles. Every 4-cycle
is put together from two 2-paths in one of the previous lists of 2-paths. Now we
list all 4-cycles through 0 ∈ R8, the list for the 4-cycles through w ∈ R8 is similar:

0 < 7 > 6 < 1 > 0, 0 < 7 > 7 < 0 > 0, 0 < 7 > 4 < 3 > 0,

0 < 0 > 1 < 1 > 0, 0 < 0 > 7 < 7 > 0,

0 < 1 > 2 < 3 > 0, 0 < 1 > 6 < 7 > 0, 0 < 1 > 1 < 0 > 0,

0 < 3 > 4 < 7 > 0, 0 < 3 > 2 < 1 > 0.



10 GERGŐ GYENIZSE, PÉTER HAJNAL, AND LÁSZLÓ ZÁDORI

It is clear that Aut(R8) acts on the edge set of the Hasse diagram of R8 in the
natural way: β (xx+ k) = β (x)β (x+ k) for β ∈Aut(R8) and x < x+ k. Since the
number of 4-cycles starting with an edge ww+3 or with an edge ww is 2 and the
the number of 4-cycles starting with an edge ww−1 or with an edge ww+1 is 3,
the edge set

F := {ww+3 : w ∈ Z8}∪{ww : w ∈ Z8},
is a union of orbits of the action of Aut(R8) on the edge set of the Hasse diagram
of R8. These edges form a 16-element crown CF in R8:

0 < 3 > 3 < 6 > 6 < 1 > 1 < 4 > 4 < 7 > 7 < 2 > 2 < 5 > 5 < 0 > 0.

Since 0 is a fixed point of ϕ and Aut(CF ) is isomorphic to D8, ϕ is the identity
map or the reflection on CF that fixes 0 and 4. In the latter case, ϕ swaps 4 and 7,
which contradicts 0 = ϕ(0) < ϕ(7) = 4 in R8. Thus ϕ indeed is the identity map
on R8. □

In the following corollary, we describe the automorphism groups of the posets
Pn for all n ≥ 4.

Corollary 3.4. Aut(P4)∼=S4, Aut(P5)∼=D5, Aut(P6)∼=A4×Z2, Aut(P7)∼=PSL(2,7),
Aut(P8)∼=GL(2,3), and for each n ≥ 9, Aut(Pn)∼= Zn.

Proof. The first two isomorphisms hold, since Aut(P4) coincides with the automor-
phism group of the disjoint sum of five two element chains and Aut(P5) coincides
with the automorphism group of a 10-element crown.

0 1 2 3 4 5

0 1 2 3 4 5

FIGURE 7. Poset P6

Now we prove the third isomorphism, see Figure 7. First we determine the
stabilizer G0 of 0 in Aut(P6). Let ϕ be an arbitrary element of G0. Observe that 3
is the only element that can be reached from 0 by two different paths of length 2 in
P6. So ϕ fixes 3. Since 0 and 3 are fixed by ϕ , the sets {0,1,3}, {0,3,4} and their
intersection {0,3} are preserved by ϕ . So ϕ also fixes the elements 1 and 4. Then ϕ

preserves the set {1,4}. Thus ϕ preserves the subsets {0,3}, {2,5}, {1,4}, {2,5}
and fixes 0,3,1,4. Then G0 is the 4-element group generated by β = {(1 4)(2 5)}
and γ = {(2 5)(0 3)}. So Aut(P6) has 24 elements and is generated by α,β and γ .

We decompose Aut(P6) into a product of its two normal subgroups. Since α3

commutes with β and γ , α3 generates a 2-element normal subgroup H of Aut(P6).
The 4-element subgroup M generated by α3β and βγ consists of the identity map
and all elements of Aut(P6) whose cycle type is 2+ 2+ 2+ 2, hence it is closed
under conjugation, so M is a normal subgroup of Aut(P6). Therefore the product of
the two complexes M and the 3-element subgroup generated by α2 is a subgroup
N of Aut(P6). Since N has index 2, N is also normal in Aut(P6). So Aut(P6)
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is the inner product of H and N. Hence Aut(P6)∼= H × N. Since N is a non-
commutative 12-element group, and it has 8 elements of order 3, N ∼= A4. Thus
Aut(P6)∼= Z2 ×A4.

It is well known that P7 is the point-line poset of the Fano plane and Aut(P7) is
isomorphic to the 168-element simple group PSL(2,7), cf. [7]. As we mentioned
in the proof of the preceding theorem, it is also well known that Aut(P8)∼=GL(2,3).
Finally, we also saw in the proof that Aut(Pn)∼= Zn if n ≥ 9. □

4. MINIMUM SIZE OF POSET REPRESENTATIONS OF Zn

In this section, for each n, we determine the minimum size of the poset rep-
resentations of Zn. Let fn denote the minimum size of the posets that represent
Zn. Clearly, f1 = 1 and f2 = 2. First, by the use of Theorem 3.3, we determine
the values of fn when n is a prime power. Let Sn and An respectively denote the
symmetric group and the alternating group on n-elements.

Corollary 4.1. Let n be a prime power. Then

fn = 3n if 3 ≤ n ≤ 7, and fn = 2n if n ≥ 8.

Proof. Let n = pk where p is a prime. Let P be a poset representation of Zn of
minimum size. In [4], Barmak proved that in this case Aut(P) has at least two
orbits of size n, if n ≥ 3. This and Theorem 3.3 imply that fn = 2n if n ≥ 8. If
3 ≤ n ≤ 7, then by Proposition 3.1, fn ≤ 3n. So it suffices to prove the inequality
3n ≤ fn for n ∈ {3,4,5,7}. The proof is explicitly given for n = 3 by Barmak in
[4], and is very similar for n = 4, 5, 7 as we see it in what follows.

Let us assume that n∈ {3,4,5,7}. Let P be a minimum size poset representation
of Zn. Then, as it was proved in [4], there are two n-element orbits in P. First we
want to exclude that |P| = 2n. To the contrary, let us suppose that |P| = 2n. Then
a generating element α of Aut(P) must be a product of two disjoint n-cycles, and
so the comparability graph of P is a regular bipartite graph. To get a contradiction,
it suffices to prove that the automorphism group of such a 2n-element height one
poset is not commutative. Let A and B be respectively the set of minimal and the
set of maximal elements of P. Clearly, A and B are the two n-element orbits of
α . Let P′ be the height one poset whose base set equals P and whose ordering
is defined by i < j iff i ∈ A, j ∈ B and i ̸< j in P. Let v be the valency of every
vertex in the comparability graph of P. We may assume that 1 ≤ v ≤ [n

2 ] or v = n.
Indeed, if [n

2 ] < v < n, then the automorphism groups of P and P′ are the same,
and in the comparability graph of P′ every vertex has valency n− v. By using the
assumption that 1 ≤ v ≤ [n

2 ] or v = n, P must be a poset of one of the following
types: a disjoint sum of n two-element chains, a 2n-element crown, the disjoint
sum of two 4-element crowns, a linear sum of two n-element antichains, and a
14-element height one poset that has a 3-regular comparability graph and admits
an automorphism with cycle decomposition of two 7-cycles. It turns out that the
automorphism groups of all of these posets are non-commutative groups in which
Zn is embedded as a subgroup. The automorphism groups Sn, Dn, S2 ≀S2

2, S2
n of

the first four types are indeed non-commutative. For the last type when n = 7 and
v = 3, we give a detailed proof of the non-commutativity of Aut(P) as follows.

Let {0, . . . ,6} be the orbit of minimal and {0, . . . ,6} the orbit of maximal el-
ements in P. We may assume that Aut(P) is generated by the permutation α =
(0 . . .6)(0 . . .6). Let C = { j ∈ Z7 : 0 < j in P}. Now we know that |C| = 3. We
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may also assume that 0 ∈ C. Then for each 0 ≤ i ≤ 6, the covers of i are the i+ j
where j ∈C in P. So P is determined by the set C. Up to an isomorphism of P, C
coincides with one of the following 3-element sets:

{6,0,1}, {5,0,2}, {4,0,3}, {0,1,3}.

In the first three cases, the automorphism group of the corresponding poset P con-
tains the involution given by

i 7→ −i and i 7→ −i for each 0 ≤ i ≤ 6.

In the forth case, P∼= P7. So by Corollary 3.4, Aut(P) is isomorphic to PSL(2,7).
Thus, Aut(P) is a non-commutative group in all of the cases when n ∈ {3,4,5,7},
|P|= 2n and α ∈Aut(P).

So Aut(P) has at least three orbits, two of which have n-elements. Next we prove
that P cannot have just one-element orbits and two n-element orbits. Let us suppose
the contrary. Let H denote the set of the 1-element orbits in P, and P−H the poset
obtained by removing the elements of H from P. Then Aut(P) is clearly isomorphic
to the subgroup K of Aut(P−H) that consists of the automorphisms that preserve
the two n-element orbits of Aut(P). Since P is of minimum size, Aut(P−H) has
only one orbit. So P−H is an antichain, and Aut(P−H)∼= S2n. Therefore, K ∼= S2

n
which contradicts K ∼=Aut(P)∼= Zn. Thus for the primes n ∈ {3,5,7}, there must
be a third orbit of size n in P, and hence 3n ≤ fn.

To conclude the proof for n = 4, we have to exclude two cases: |P| = 10 and
|P| = 11 such that in both cases P has two 4-element orbits and one 2-element
orbit. So let us suppose that |P|= 10 or |P|= 11, and let

O0 = {0,1,2,3}, O1 = {0,1,2,3}, O2 = {0,1}

be the at least 2-element orbits of P. We denote the corresponding subposets of P
by O0, O1 and O2, respectively. Let α be a generating element of Aut(P). Clearly,
α acts transitively on the orbits Oi, 1 ≤ i ≤ 3.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

FIGURE 8. Shapes of O0 ∪O1 with vertices of valency at most 2

The comparability graph of O0 ∪O1 must be a bipartite regular graph preserved
by α . To determine Aut(O0 ∪O1), we may assume as before that the valency of
every vertex is at most 2 in this graph or the graph is full bipartite. So by inspecting
of the possible shapes of the poset O0 ∪O1, see Figure 8, we may assume that the
automorphism group of O0 ∪O1 restricted to O0 admits the transposition (0 2).
We may analogously assume that the automorphism group of O0 ∪O1 restricted
to O1 admits the transposition (0 2). Besides the above assumptions, we may also
assume that

α = (0 1)(0 1 2 3)(0 1 2 3).
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Now observe that the comparability graph of the subposet O0 ∪O2 is either the
empty graph, or the full bipartite graph between O0 and O2 , or it consists of the
edges a0, a2 and b1, b3 where {a,b}= {0,1}. Clearly, an analogous statement is
satisfied by the comparability graph of the subposet O1 ∪O2.

Let O denote the subposet O0 ∪O1 ∪O2 in P. Let us assume that O is a
height one poset. Without loss of generality, we may assume that the elements
of O0 are minimal, the elements of O2 are maximal in O. Then the restriction of
Aut(O0 ∪O1) to O0 contains the transposition (0 2). Clearly, this transposition ex-
tends to P as an automorphism of P, so Aut(P) is not commutative, a contradiction.

So O has to be a height two poset. Up to duality and symmetry we have two
cases. We assume in the first case that the elements of O2 are maximal in O.
Without loss of generality we may assume that 0 < 0. If the comparability graph
O1 ∪O2 is the full bipartite graph, then there is an automorphism of O0 ∪O1 that
equals (0 2) on O0 and extends to an automorphism of P. So Aut(P) is not com-
mutative, a contradiction. This means that up to symmetry, O1 ∪O2 contains only
the covering pairs 0,2 < 0 and 1,3 < 1. We also know that i < i, 0 ≤ i ≤ 3, in O.
Notice that there are no covering pairs of O in O0 ∪O2 or the comparability graph
of O0 ∪O2 would be full bipartite. In both cases, we take again an automorphism
of O0 ∪O1 that is (0 2) restricted to O1 and extend it to an automorphism of P.
Then again Aut(P) is not commutative, a contradiction.

Now for the remaining case, O has height two, O0 has the minimal and O1 has
the maximal elements of O. By a similar argument as in preceding paragraph we
may assume that the comparability graphs of O0 ∪O2 and O2 ∪O1 are not full
bipartite. Then up to symmetry, O has either the covering pairs

0,2 < 0 and 1,3 < 1 and 0 < 0,2 and 1 < 1,3

or these covering pairs plus the covering pairs

0 < 1 and 1 < 0 and 3 < 4 and 4 < 3.

In each of the resulting posets the permutation (0 2)(0 2) is an automorphism of P.
So in this case, Aut(P) is not commutative as well, a contradiction. □

We remark that by Theorem 3.3 and Corollary 4.1, Zn has a 2n-element poset
representation with two n-element orbits whenever n ≤ 2 and n ≥ 8, and there are
no such representations if n = 3,4,5,7. For the sake of completeness, we give a
proof that there is no such representation for n = 6 as well.

Corollary 4.2. Zn is representable by a 2n-element height one poset with two n-
element orbits if and only if n ≤ 2 or n ≥ 8.

Proof. By Theorem 3.3 and Corollary 4.1, we only have to prove that there is no
12-element height one poset P with two 6-element orbits such that Aut(P)∼= Z6.
To the contrary, let us suppose that P is such a poset. Let {0, . . . ,5} be the orbit of
minimal and {0, . . . ,5} the orbit of maximal elements in P. We may assume that
Aut(P) is generated by the permutation α = (0 . . .5)(0 . . .5).

Let B := { j ∈ Z6 : 0 < j in P}. Clearly, B ̸= /0, Z6. We may also assume that
0 ∈ B. Then for each 0 ≤ i ≤ 5, the covers of i are the i+ j where j ∈ B in P. So
P is determined by the subset B of Z6. Similarly as in the proof of the preceding
corollary, the posets determined by B and its complement Z6 \B have the same
automorphism groups. Hence, it suffices to prove that Aut(P) ̸∼= Z6 if 1 ≤ |B| ≤ 3.
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When |B| = 1, then Aut(P)∼= S6. When |B| = 2, then P is a 12-element crown,
or a disjoint sum of two 6-element crowns, or a disjoint sum of three 4-element
crowns. Then the corresponding automorphism groups are D6, S3 ≀S2, and S2 ≀S3,
respectively. These groups are clearly not isomorphic to Z6.

In the remaining cases, |B| = 3. Up to isomorphism, we only have to look at
the three cases B = {5,0,1}, B = {4,0,2}, and B = {0,1,3}. In the first two cases
when B = {5,0,1} or B = {4,0,2}, the involution defined by

i 7→ −i and i 7→ −i for each 0 ≤ i ≤ 5

is an automorphism of P that is not a power of α . Hence in these cases, Aut(P)̸∼=Z6.
In the third case, B = {0,1,3}, that is, P = P6, and by Corollary 3.4, we know

that Aut(P6)∼= A4 ×Z2. Thus Aut(P) ̸∼= Z6, which concludes the proof. □

Now we turn to investigating the value of fn when n is not a prime power. First
we give an example of a poset that plays a crucial role in our characterization of fn
for an arbitrary n.

We define the a 20-element height one poset E as follows. Let C4 be the 8-
element crown whose elements and covering relation are given by

i∼ <
∼
i ,

∼
j where 0 ≤ i ≤ 3, j = i+1

where the addition is meant modulo 4. First we take the disjoint sum of C4 with the
poset P6, see Figure 9. Then to obtain E, we add to this sum all pairs between the
minimal elements of C4 and the maximal elements of P6 with the same parity, fur-
thermore, all pairs between the minimal elements of P6 and the maximal elements
of C4 with the same parity.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

4 5

4 5
~ ~ ~ ~

~ ~ ~ ~

FIGURE 9. The disjoint sum of posets C4 and P6

The disjoint sum of two minimum size posets representing Z3 and Z4 respec-
tively, is a 21-element poset representation of Z12. By the following proposition,
the 20-element E gives us a more economical poset representation of Z12.

Proposition 4.3. Aut(E)∼= Z12.

Proof. Let C∼ be the set of minimal and
∼
C the set of maximal elements of C4. Let

P be the set of minimal and P the set of maximal elements of P6. Let us choose
an element of C∼ and count the elements that are reached from this element by a

unique path of length 2 in E. Without loss of generality, we choose 0∼ ∈ C∼. Then
the ending vertices of these paths from 0∼ are 1∼, 3∼, 0, 2, 4. So for any element

of C∼, the number of elements reached from it by a unique path of length 2 in E is
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5. Similarly, the vertices that are reached from 0 ∈ P by a unique path of length 2
are 0∼, 2∼, 1, 2, 4, 5. So for any element of P, the number of elements that can be

reached from it by a unique path of length 2 in E is 6. This shows that C∼ and P are

preserved by the automorphisms of E. A dual argument proves that both of the sets
∼
C and P are also preserved by the automorphisms of E.

Since the permutation

(0∼ 1∼ 2∼ 3∼)(
∼
0

∼
1

∼
2

∼
3)(0 1 2 3 4 5)(0 1 2 3 4 5)

is an automorphism of E, Z12 embeds into Aut(E), and C∼,
∼
C, P, P are the orbits

of Aut(E). As 4 = |C∼| = |Aut(E)|/|G0| where G0 is the stabilizer of 0∼ in Aut(E),

it suffices to prove that |G0|= 3. Let β be an element of G0. Since β preserves C4,
β |C4 is an automorphism of C4 that fixes 0∼. So β |C4 is the identity or the reflection

(1∼ 3∼)(
∼
0

∼
1)(

∼
2

∼
3) on C4.

We argue that β |C4 is the identity. If not, then the subsets of the even and respec-
tively the odd elements in P are preserved by β , and the subsets of the even and
respectively the odd elements in P are swapped by β . So the subposet induced by
the even elements of P6 is mapped into the subposet induced by the odd elements
of P and the even elements of P. This is impossible, since the first subposet is a
disjoint sum of three 2-element chains and the second one is a 6-element crown.

So we have that β restricted to C4 is the identity. Then the subsets of the even
and respectively the odd elements in P are preserved by β . Similarly, the subsets
of the even and respectively the odd elements in P are preserved by β . In this
way, β permutes the edges of the form (i, i) in P6. By leaving out these edges
from P6, we obtain a poset that is a disjoint sum of two six-element crowns. Let
A denote one of these crowns induced by 0,2,4,1,3,5. Let B denote the other
crown, so B is induced by 1,3,5,0,2,4. Clearly, β preserves the subsets A and B.
Moreover, β |A uniquely determines β |P6 (hence β as well) since β permutes the
edges of the form (i, i) in P6. So if β |A was the reflection (2 4)(1 3) on A, then β |B
would be (1 3)(2 4) on B. This is impossible, since the latter permutation is not
an automorphism of B. Thus, β |A is one of the three rotations on A. Thus G0 has
indeed 3-elements. □

By the preceding corollary and proposition, we get an upper bound for fn. We
prove also the that the so obtained upper bound is a lower bound as well.

Theorem 4.4. Let
n = ∏

q|n
q ≥ 2

where the q are the full prime power factors of n. Let

sn = ∑
2=q|n

q+ ∑
3≤q≤7, q|n

3q+ ∑
8≤q|n

2q.

Then fn = sn −1 if n = 12k where k is coprime to 6 and fn = sn otherwise.

Proof. Since the automorphism group of the disjoint sum of pairwise non-isomorphic
connected posets is the product of their automorphism groups, by Corollary 4.1 and
Proposition 4.3, we have that fn ≤ sn − 1 if n = 12k where k is coprime to 6 and
fn ≤ sn otherwise.
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Let P be a minimum size poset representation of Zn. Let α be a generating
element of Aut(P). To prove the other direction of the corollary, we require some
claims on the cycle structure of α .

Claim 1. For any full prime power factor q of n, there is a cycle β in the cycle
decomposition of α such that q divides the length of β .

Proof of Claim 1. Since the order of α is n and equals the least common multiple
of the lengths of the cycles of α , we have the claim.

Claim 2. For any full prime power factor q ≥ 3 of n, there are at least two cycles
of α such that q divides their lengths.

Proof of Claim 2. Suppose that β is the only cycle of α whose length is divisible
by q, and q = pm where p is a prime. Then α

n
p = β

n
p is a product of p-cycles that

only move elements which are also moved by β . So there are no comparabilities
between the elements moved by these p-cycles. For each element fixed by β

n
p and

for each p-cycle of β
n
p , the fixed element is greater or smaller than all elements

moved by the p-cycle or is incomparable to all of them. This yields that any trans-
position that switches two elements moved by one of the p-cycles is in Aut(P). It
is a contradiction, since α does not have a power which is a transposition.

We define the small cycles of α to be the cycles that have length q where q = 2
or q is a full prime power factor of n in the cycle decomposition of α . The large
cycles are the non-small cycles in the cycle decomposition of α that have even
length not divisible by 4 or length divisible by at least a full prime power factor of
n. The small and large cycles altogether are called important cycles.

Claim 3. Let q be a full prime power factor of n where q ∈ {3,4,5,7}. If there
are exactly two cycles of α whose lengths are divisible by q and the lengths of the
other cycles of α are coprime to q, then both cycles whose lengths are divisible by
q are large.

Proof of Claim 3. Suppose the contrary. Let β and γ be a q-cycle and a kq-cycle of
α , respectively. Then α

n
q = β

n
q γ

n
q , and the elements moved by β and β

n
q coincide.

Observe that α acts transitively on the set W of the 2q-element subposets of P
induced by the moved elements of β and any one of the q-cycles of γ

n
q . So the

posets in W are isomorphic to each other via a restriction of a suitable power α .
Let us fix an element R in W . Since each poset in W is isomorphic to R, the
restriction of any automorphism of R to the set of elements moved by β extends to
an automorphism of any poset in W . Let us take such an automorphism extension
for each poset in W . Then the union of these extensions is an automorphism µ

of the subposet induced by the moved elements of β and γ in P. Clearly, the
automorphism µ preserves each subset of P that consists of the elements moved
by any of the q-cycles of α

n
q . Since α

n
q fixes the elements apart from the moved

elements of β and γ , the automorphism µ extends further onto the whole poset P
by mapping the elements that are fixed by α

n
q into themselves. At the beginning of

the proof of Corollary 4.1, we saw that for any q ∈ {3,4,5,7}, the automorphism
group of any 2q-element poset of height 1 that admits an automorphism with two
q-cycles has a non-commutative automorphism group. Hence the automorphism
group of R is non-commutative. Since each automorphism of R extends to an
automorphism of P, Aut(P) ̸∼= Zn, a contradiction. Thus β and γ are large.
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Claim 4. Let 4 be a full prime power factor of n. If there are exactly three cycles of
α of even lengths and the length of one of them is not divisible by 4, then at least
two of these cycles are large.
Proof of Claim 4. To the contrary, let us suppose first that β and γ are two 4-
cycles of α . Then α

n
4 consists of two 4-cycles and some 2-cycles where each of

the 2-cycles are located in the antichain of the elements moved by the cycle whose
length is divisible by 2 but not 4. Then α acts transitively on the set of subposets
determined by the elements moved by β , γ , and any one of the 2-cycles of α

n
4 .

So these subposets are isomorphic to each other. Similarly, as in the preceding
proof every element of the automorphism group of such a subposet R extends to an
automorphism of P. But at the end of the proof of Corollary 4.1, we saw that the
automorphism group of R is non-commutative, hence Aut(P) is non-commutative,
a contradiction. The proof is completely similar, if β is a 2-cycle and γ is a 4-cycle
of α .

Now we give some lower bounds for the cycle lengths of the cycles of α . For
the lengths of unimportant cycles, we let our lower bound be 0. For the length of
a small cycle of α , our lower bound is q where q is the length of the cycle. Let l
be the length of a large cycle of α where 2|l. If 4 ̸ |l, then we take the lower bound
3
2 +

3
2 ∑r|l r for l where r runs through the full odd prime power factors of l. If 2 ̸ |l

or 4|l, our lower bound for l is 3
2 ∑r|l r where r runs through the full prime power

factors of l.
In order to see that the lower bounds given in the preceding paragraph are correct

for l when l is the length of a large cycle, we prove the inequality

3
2

t

∑
i=1

ri ≤
t

∏
i=1

ri

where the ri are integers at least 3 and t is at least 2. We use an induction on t. If
t = 2, we may assume that r1 ≤ r2, that is, r1

r2
≤ 1. Then we have 3

2(
r1
r2
+ 1) ≤ 3.

Thus by 3 ≤ r1, 3
2(

r1
r2
+ 1) ≤ r1, that is, 3

2(r1 + r2) ≤ r1r2 . If t > 2, then by using
the induction hypothesis, the following inequalities hold

3
2

t

∑
i=1

ri ≤
3
2

rt +
3
2

t−1

∑
i=1

ri ≤
3
2

rt +
t−1

∏
i=1

ri ≤
3
2
(rt +

t−1

∏
i=1

ri)≤
t

∏
i=1

ri.

If 2|l, 4 ̸ |l and l has exactly one full odd prime power factor, then this factor is
at least 3, and our lower bound for l in the preceding paragraph is correct. If 2|l,
4 ̸ |l and l has more than one full odd prime power factors, then by the use of the
inequality we just proved,

3
2
+

3
2 ∑

r|l
r ≤ 3

2
+∏

r|l
r ≤ 2∏

r|l
r = l

where r runs through the full odd prime power factors of l. If 2 ̸ |l or 4|l, then l
has at least 2 full prime power factors. All of these factors are at least 3. So by the
inequality we just proved 3

2 ∑r|l r ≤ ∏r|l r = l where r runs through the full prime
power factors of l.

Let s denote the sum of lower bounds just introduced for the lengths of the
cycles of α . Clearly, |P| is greater than or equal to the sum of the cycle lengths
of α . Therefore, ⌈s⌉ ≤ |P|. In what follows in the proof, we are vying for the
inequality sn ≤ ⌈s⌉. We narrow the cases for n until this inequality is unachievable.
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In this case, it will turn out that n = 12k where k is coprime to 6 and we still have
the inequality sn −1 ≤ s.

So first observe that if q ≥ 8 is a full prime power factor of n, then by Claim 2,
there are at least two cycles of α whose cycle lengths are divisible by q. So in s, q
adds up at least two times. If q ∈ {3,5,7} is a full prime power factor of n, then it
is possible that q may occur as a full prime power factor of the lengths of only two
cycles, but when this happens, by Claim 3, these two cycles are large. So in s, q is
counted at least 3 times, no matter if q divides the lengths of two or more cycles of
α . If q = 2 is a full prime power factor of n, then 2 or 3

2 appears as a summand in
s. So if 4 is not a full prime power factor of n, then we have indeed that sn ≤ ⌈s⌉.

For the remaining cases, we assume that 4 is a full prime power factor of n. Then
the only problem occurs when there are exactly two cycles with length divisible by
4 and some cycles with length divisible by 2 but not 4, for otherwise in s, we
have the summand 4 at least 3 times and we get that sn ≤ s. So from now on,
we assume that among the cycles of even length of α there are exactly two cycles
whose lengths are divisible by 4.

If α has only two cycles of even length, necessarily divisible by 4, then by Claim
3, these two cycles are large. So 4 adds up 3 times in s, and we are done. If α has
exactly three cycles of even length, not all of them divisible by 4, then Claim 4
implies that α has at least two large cycles of even length. Then in s, 4 adds up
with a coefficient at least 5

2 , and we have a summand at least 3
2 for the cycle whose

length is divisible by 2 but not 4. So in this case, sn ≤ ⌈s⌉ and we are done. If α

has at least five cycles of even length, then s has the summand 4 at least 2 times
and the summand 3

2 at least 3 times, and the lower bound sn is exceeded.
So the only remaining case occurs, when α has four cycles of even length, two

cycles whose lengths are divisible by 4 and two cycles whose lengths are not di-
visible by 4. If one of the cycles divisible by 4 is large, then 4 and 2 contribute
to s with at least 13, that exceeds the lower bound we want. If one of the cycles
has length 2, then 4 and 2 contribute to s with at least 11.5, so the required lower
bound sn for ⌈s⌉ is met. Therefore, we may assume that α has exactly two 4-cycles
and exactly two large cycles with lengths divisible by 2 but not 4. Notice then that
the lower bounds given for the cycle lengths of the latter two cycles are strict, that
is, the sum of the lengths of these cycles are larger than 11, except if both of these
lengths coincide with 6.

So, we may assume that α has a cycle decomposition of two 4-cycles, two 6-
cycles, and some odd cycles. The problem in this case with our lower estimate is
that the factors 4 and 2 of the even cycle lengths contribute to s with 11, not by
more than 11. If one of the odd cycles is divisible by a power of 3, then there is a
small or large odd cycle of α divisible by a power of 3. Hence 3 produces a surplus
in s and we exceed the required lower bound sn for ⌈s⌉ due to this surplus.

Hence we may assume that the lengths of the odd cycles of α are coprime to
3. So n = 12k where k is coprime to 6. As the factors 4 and 2 of the even cycle
lengths contribute to s with 11, we have the lower bound sn −1 for s, and the proof
is finished. □
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