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ABSTRACT. We have recently published a result that n-permutability is not join-
prime in the lattice of interpretability types of varieties whenever n ≥ 5. In
the proof we showed that if n ≥ 5, then the join of a properly chosen finitely
generated non-n-permutable variety and the variety M defined by the majority
identities is n-permutable. In the present note, we prove that the join of any
locally finite non-3-permutable variety with M is non-3-permutable. We also
prove that the join of any non-2-permutable variety with M is non-2-permutable.
Our non-3-permutable result gives that one has to use a non-locally finite non-3-
permutable variety L if they want to prove that 3-permutability is not join-prime
by arguing that L ∨M is 3-permutable.

1. INTRODUCTION

In this note we investigate the 3-permutability property in the lattice of inter-
pretability types of varieties. Before launching into details, we present some of the
basic definitions and concepts of the theory.

Let Γ be a set of identities over a certain signature of a variety. We say that
Γ interprets in a variety K if by replacing every occurrence of each operation
symbol s in the identities of Γ by a term ts of K such that s and ts have the same
arity, the so obtained set of identities holds in K . A variety K1 interprets in a
variety K2 if there is a set of identities Γ that defines K1 and interprets in K2.

As easily seen, interpretability is a quasiorder on the class of varieties. The
blocks of interpretability are called the interpretability types. In [2], Garcia and
Taylor introduced the lattice of interpretability types of varieties that is obtained
by taking the quotient of the class of varieties quasiordered by interpretability and
its related equivalence relation. The join in this lattice is described as follows. Let
K1 and K2 be two varieties of disjoint signatures. Let K1 and K2 be defined by
the sets Σ1 and Σ2 of identities, respectively. Their join K1 ∨K2 is the variety
defined by Σ1 ∪Σ2. The join, so defined, is compatible with the interpretability
relation of varieties, and naturally yields the definition of the join operation in the
lattice of interpretability types of varieties.

Let n ≥ 2 be an integer. An algebra A is congruence n-permutable, if for any
two congruences α and β of A, αβ · · · = βα . . . where each side of the equality
consists of n alternating factors of α and β . A variety is n-permutable if all of
its members are congruence n-permutable. An k-ary operation f is idempotent if
it satisfies the identity f (x,x, . . . ,x) = x. A variety is idempotent if it satisfies the
preceding identity for every operation symbol f . An identity is linear if each of the
two terms that determine the identity is a variable or a term that contains a single
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occurrence of a single operation symbol. A variety is linear if it is defined by linear
identities.

In [2] Garcia and Taylor formulated the conjecture that 2-permutability is join-
prime in the lattice of interpretability types of varieties. In [10] Tschantz an-
nounced a proof of the conjecture. However, his proof has remained unpublished.

Here we list some results of positive flavor related to Garcia and Taylor’s con-
jecture. In Lemma 2.8 of [7], Kearnes and Tschantz basically gave a proof that
2-permutability is join-prime in the lattice of interpretability types of idempotent
varieties. In [9], Opršal proved for any n that n-permutability is join-prime in the
lattice of interpretability types of linear varieties. In [11] Valeriote and Willard,
verified that the interpretability types of the idempotent n-permutable varieties for
n ≥ 2 form a prime filter in the lattice of interpretability types of idempotent va-
rieties. A similar result was proved by Opršal in [9] for linear varieties. In [1],
Chicco proved that the join of any two locally finite idempotent non-3-permutable
varieties is non-3-permutable in the lattice of interpretability types of varieties.

In [4] we gave some results of negative flavor related to Taylor’s conjecture in
the general case (where idempotency and linearity are not assumed). We proved
that the filter of the interpretability types of the n-permutable varieties where n runs
through the integers greater than one is not prime in the lattice of interpretability
types of varieties. We also proved that for any n ≥ 5, n-permutability is not join-
prime in the lattice of interpretability types of varieties. The questions whether
3- and 4-permutability are prime remained open. Our main result in the present
note is related to the question on the primeness of 3-permutability. To give some
motivation for our new approach, we first delineate the main proof in [4].

A k-ary operation f , k ≥ 3, is a near-unanimity operation if it satisfies the iden-
tities

f (y,x, . . . ,x) = f (x,y, . . . ,x) = · · ·= f (x,x, . . . ,y) = x.

A ternary near-unanimity operation is called a majority operation. We call the
identities in the definition of a majority operation majority identities. In [4], for a
ternary operation symbol m, we let M be the variety defined by the set of majority
identities for m. The variety M is well known to be not n-permutable for any n.
Then we presented a finitely generated variety L that is also not n-permutable for
any n, and we proved that that L ∨M is 5-permutable, see Theorem 3.4 in [4].
This immediately implies that for any n ≥ 5, n-permutability is not join-prime in
the lattice of interpretability types of varieties.

By following the logic of the proof we sketched here, it is natural to ask if there
is a non-3-permutable variety L such that L ∨M is 3-permutable or to raise the
analogous question for 4-permutability. In this note, we prove that for any locally
finite non-3-permutable variety L , L ∨M is not 3-permutable. This points to-
wards the primeness of 3-permutability. However, we expect our 3-permutability
result not to hold for non-locally finite varieties. This would imply that there is a
non-locally finite non-3-permutable variety whose join with M is 3-permutable,
hence 3-permutability would not be join-prime in the lattice of interpretability
types of varieties.

Interestingly, for any non-2-permutable variety L , L ∨M is not 2-permutable.
We give a proof of this result, independent from Tschantz’s unpublished work.
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2. PRELIMINARIES

Similarly as in [4], one of our main tools in the proofs is a classical result of
Hagemann and Mitschke. In [6], they gave the following characterization of n-
permutability of a variety.

Theorem 2.1 (Hagemann, Mitschke (1973)). Let K be a variety and n ≥ 2 an
integer. Let F2 be the algebra freely generated by x and y in K . Then the following
are equivalent.

(1) K is n-permutable.
(2) In the digraph whose vertex set is F2 and whose edge set is the subalgebra

generated by {(x,x),(x,y),(y,y)} in F2
2, there is a directed path of length

n−1 from y to x.
(3) Any edge of a reflexive compatible binary relation ρ of any algebra A∈K

is in a directed n-cycle of the digraph (A,ρ).

A k-ary compatible relation of an algebra A is a subuniverse of Ak. A compatible
relation of a variety is just a compatible relation of one of the members of the
variety.

Let G denote a reflexive digraph (we allow here G to be infinite). The clone
of G is the set of edge-preserving finitary operations on G. We call an algebra
G-primal if its underlying set equals the vertex set of G and its basic operations
form a generating set of the clone of G. We denote such an algebra by G and its
base set by G.

Let D be a k-ary relation on G. A representation of D is a pair (R,s) where R is
a digraph, s = (s0, . . . ,sk−1) is a k-tuple of Rk such that

D = {( f (s0), . . . , f (sk−1)) | f : R→G is an edge-preserving map}.

If (R,s) is a representation of D, then we say that D is defined from G by the
representation (R,s). It should be clear that D is a compatible relation of G if D is
defined from G by a representation. We note that every finitary compatible relation
of a finite G has a representation obtained in an obvious way from a primitive posi-
tive formula defining the relation in the language of the relation of G supplemented
by the equality, see [3].

Let D ⊆ Gk and ρ a reflexive binary relation on D. Then we conceive ρ as a
2k-ary relation on G. A representation of ρ is a triple (R,s,s′), where R is a finite
digraph,

s = (s0, . . . ,sk−1) and s′ = (s′0, . . . ,s
′
k−1)

are two k-tuples of R, and

ρ = {(( f (s0), . . . , f (sk−1)),( f (s′0), . . . , f (s′k−1))) | f : R→G is edge-preserving}.

We say that the relation ρ or the digraph (D,ρ) is defined from the digraph G by
the representation (R,s,s′), provided that (R,s,s′) is representation of ρ . If ρ is
defined from G by the representation (R,s,s′), then by the reflexivity of ρ , (R,s)
and (R,s′) are two representations of D. Thus D is a compatible relation of G. It
is also easy to check that ρ is a compatible binary relation of the subalgebra D
determined by D in Gk. As in the remark at the end of the preceding paragraph,
if G is finite, then every reflexive compatible binary relation of a subalgebra of a
finite power of G is defined from G by some representation.
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3. MAIN RESULTS

For a ternary operation symbol m, let M be the variety defined by the set of
majority identities m(y,x,x) = m(x,y,x) = m(x,x,y) = x for m. In this section, we
prove the main result of the paper: for any locally finite non-3-permutable variety
L , L ∨M is not 3-permutable. We also prove that for any non-2-permutable
variety L , L ∨M is not 2-permutable.

We require some knowledge on the obstructions of a finite digraph G. First we
define the notion of a G-obstruction for a digraph G. A G-colored digraph is a
pair (H, f ) where H is a digraph and f is a partial map from H to G. A G-colored
digraph is extendible if there is an edge-preserving total map from H to G that
extends f . A G-colored digraph (H, f ) is a G-obstruction if H is finite, (H, f ) is
non-extendible but for any proper subdigraph H′ of H, (H′, f |H ′) is extendible.

Clearly, a G-colored digraph (H, f ) is a G-obstruction if and only if H is fi-
nite and connected, (H, f ) is non-extendible but for any edge e, by removing e
from (H, f ), the resulting colored digraph is extendible. We note—it should be
clear from the definition—that the non-colored vertices of an obstruction span a
connected subdigraph of the base digraph of the obstruction. Moreover, if G is
reflexive, then the base digraph of any G-obstruction is an irreflexive digraph. We
make use of the following proposition in the later proofs, see Theorem 3.8 in [8].

Proposition 3.1. A finite digraph G admits a k-ary near-unanimity operation if
and only if the number of colored vertices in any G-obstruction is at most k−1.

The following lemma describes the shape of the G-obstructions in a recursive
manner. Earlier, a similar result was obtained for posets, see Proposition 2.3 of
[12].

Lemma 3.2. Let G be a finite digraph. Let (H, f ) be a G-obstruction. Then for
every non-colored vertex h of (H, f ) there exist G-obstructions (Hi, fi), i ∈ I, with
the following properties.

(1) For each i ∈ I, Hi ⊆ H, h ∈ Hi, f |Hi\{h} = fi|Hi\{h} and h is colored in
(Hi, fi).

(2) For every p∈G, there exists i∈ I such that if h is recolored by p in (Hi, fi),
the resulting G-colored digraph is not extendible.

(3) If h is recolored by f j(h) in (Hi, fi) where j ∈ I \ {i}, then the resulting
G-colored digraph is extendible.

Proof. If we color h by a vertex p of G in (H, f ), the resulting colored digraph is
still non-extendible, so it contains some G-obstructions that must contain h. Let
(Ht ,gt), t ∈ T , be a complete list of pairwise distinct obstructions which can be
obtained in this way when p ranges through the vertices of G. For every t ∈ T ,
let St be the subset of vertices of G by which recoloring h in (Ht ,gt), the resulting
colored digraph is non-extendible. Clearly, gt(h) ∈ St . We choose a subset I of T
as follows.

(i) I is a minimal set with respect to ∪i∈ISi = G.
(ii) I has the largest cardinality with respect to (i).

(iii) For every i ∈ I and t ∈ T if St is a proper subset of Si, then
St ∪ (∪ j∈I\{i}S j) 6= G.

(iv) For every i ∈ I, Hi is minimal with respect to containment of digraphs
among the Ht , t ∈ T , where St = Si.
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We want to prove that by recoloring h in (Hi,gi) for each i ∈ I in a suitable
manner, the resulting G-colored digraphs (Hi, fi), i ∈ I satisfy the claim.

Let S′i = Si \(∪ j∈I\{i}S j) for i∈ I. These sets are nonempty by (i). We claim that
every S′i, i ∈ I, contains a vertex pi such that if h is recolored by pi in (Hi,gi), then
resulting colored digraph is an obstruction.

Let us suppose this is not true. So there exists an i such that for every p ∈ S′i, if
h in (Hi,gi) is colored by p the resulting colored digraph is not an obstruction. As
p∈ Si, this colored digraph is non-extendible. Hence it properly contains some ob-
structions. Let these obstructions be (Hv,gv) where v∈V ⊆ T , as p ranges through
S′i. Observe that Sv ⊆ Si and ∪v∈V Sv∪(∪ j∈I\{i}S j) = G. Let V0 be a minimal subset
of V such that ∪v∈V0Sv∪ (∪ j∈I\{i}S j) = G. Clearly, V0∪ (I \{i}) is minimal in the
sense of (i). Since |V0| ≥ 1 and I satisfies (ii), V0 = {v0} for some v0. Then by (iii),
Si = Sv0 . However, Hv0 is properly contained in Hi, which contradicts the fact that
Hi is minimal by (iv).

Thus, every S′i contains a vertex pi such that if h is recolored by pi in (Hi,gi),
then the resulting colored digraph denoted by (Hi, fi) is an obstruction. Now, the
so obtained obstructions (Hi, fi), i ∈ I, clearly satisfy the claim of the lemma. �

We remark here that every vertex and edge of (H, f ) must appear in one of the
(Hi, fi) in the lemma. If this was not true, there would be a vertex or an edge of
(H, f ) that is missing from each of the (Hi, fi). By removing this vertex or edge
from (H, f ), the resulting colored digraph is extendible, say g is an extension of its
coloring. Then g|Hi would be an extension of f |Hi\{h} = fi|Hi\{h} to Hi, i ∈ I, such
that h would have the same color for all i ∈ I in these extensions, which contradicts
item (2) of the lemma.

We also remark that by the use of the lemma, we can construct all G-obstructions
of a finite digraph G. Let us suppose we have determined all G-obstructions with
fewer than k non-colored vertices. Then any G-obstruction (H, f ) with k non-
colored vertices can be obtained by identifying some vertices and edges of a certain
G-obstruction (H′, f ′) that is constructed from G-obstructions with fewer than k
non-colored vertices in the following way.

Let h∈H be a non-colored vertex of (H, f ). Let (Hi, fi), i∈ I, be G-obstructions
whose existence is guaranteed in the preceding lemma. We take pairwise disjoint
copies (Qi,gi) of the (Hi, fi), and we denote the copy of h by qi in (Qi,gi) for every
i ∈ I. Then (Qi,gi) has fewer than k non-colored vertices for every i ∈ I. We put
together (H′, f ′) from the (Qi,gi) by deleting the color of qi in (Qi,gi) for each
i ∈ I, and sticking together the resulting colored digraphs at the vertices qi, i ∈ I.

We claim that the colored digraph (H′, f ′) constructed from the (Qi,gi) in this
way is an obstruction. First, by item (2) of the lemma, (H′, f ′) is non-extendible.
Let e be any edge in (H′, f ′). We prove that by deleting e in (H′, f ′), the remaining
colored digraph (H′′, f ′′) is extendible. By the construction, there is a unique i such
that e is in Qi. Since (Qi,gi) is an obstruction that equals a copy of (Hi, fi), the
Qi part in (H′′, f ′′) is extendible such that the color of qi is fi(h). By item (3) of
the lemma, the so obtained coloring of the Qi part in (H′′, f ′′) extends to the other
copies of (Q j,g j), j 6= i, in (H′′, f ′′). Thus, by deleting any edge in (H′, f ′), the
resulting colored digraph is extendible, which gives that (H′, f ′) is an obstruction.

Since the (Hi, fi|Hi\{h}) are colored subdigraphs of (H, f ) and (H′, f ′) is con-
structed from copies of those, the natural map α : H ′ → H that, for each t ∈ H,
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sends all copies of t from H ′ to t is an edge-preserving map from H′ to H. More-
over, α maps the colored vertices of (H′, f ′) to colored vertices of the same color
in (H, f ), and α maps the non-colored vertices of (H′, f ′) to non-colored vertices
in (H, f ). By the remark following the lemma, every vertex and edge of (H, f ) has
a copy in (H′, f ′). So the identification of the vertices and edges of (H′, f ′) by α

yields (H, f ).
Next we prove a consequence of Lemma 3.2. This seemingly simple statement

will be essential in the proof of the main result of the section. In a digraph, a vertex
v is called a universal out-vertex if there is an edge from v to each of the vertices of
the digraph. A vertex u is called a universal in-vertex if there is an edge from each
of the vertices of the digraph to u. A vertex of a digraph is called a sink if it has
out-degree zero. A vertex of a digraph is called a source if it has in-degree zero.

Corollary 3.3. Let G be a finite reflexive digraph which has a universal out-vertex
0 and a universal in-vertex 1 such that 1→ 0 in G. If G does not admit a majority
operation, then there exists a G-obstruction with a single non-colored vertex and
at least three colored vertices.

Proof. By Proposition 3.1, since G does not admit a majority operation, it has an
obstruction with at least three colored vertices. Let (H, f ) be such an obstruction
such that the number of its non-colored vertices is the smallest possible. If this
number is one, we are done. Suppose that this number is at least two. Let h be any
non-colored vertex of (H, f ). Then there exist obstructions (Hi, fi), i ∈ I, as in the
claim in Lemma 3.2. Since G is reflexive and each of the (Hi, fi) has fewer non-
colored vertices than (H, f ), each of them has exactly two colored vertices where
one of the colored vertices equals h.

We prove that the colored vertices in the (Hi, fi) have degree one. Suppose that
u is a colored vertex with degree at least two in (Hi, fi) for some i ∈ I. Let e be an
edge with end-vertices u and v in (Hi, fi). Then v must be a non-colored vertex of
(Hi, fi). Let e′ be a colored copy of e from (Hi, fi) such that e′ has disjoint end-
vertices from Hi. By deleting e in (Hi, fi) and adding e′ to the remaining colored
digraph such that v ∈ Hi and the copy of v in e′ are identified, the resulting colored
digraph would be an obstruction with three colored vertices and fewer non-colored
vertices than (H, f ), a contradiction.

Now, we prove that each of the (Hi, fi) is a directed path of length 1 or 2, colored
at the end-vertices. We just proved that the two colored elements of (Hi, fi) have
degree one. One of the two colored elements must be a source and the other one
must be a sink, for otherwise by coloring the non-colored elements in (Hi, fi) with
0 or 1, we would get an edge-preserving extension of fi to Hi. Let h0 → h1 and
h2→ h3 such that h0 and h3 are the colored elements of (Hi, fi). Then h1 = h2, for
otherwise coloring h2 by 0 and the other non-colored elements of (Hi, fi) by 1, we
would get an extension of fi. Finally, if h1 = h2, then the only non-colored element
of (Hi, fi) must be h1, for otherwise fi extends to the set {h0,h1,h3} by coloring h1
with some c ∈ G such that

fi(h1)→ c→ fi(h3),

but then, by the reflexivity of G, fi would be extendible by coloring all non-colored
elements of (Hi, fi) with c.

Since (H, f ) has at least three colored vertices, each colored vertex of (H, f ) is
in one of the (Hi, fi) (see the first remark after the preceding lemma), and each of
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the (Hi, fi) contains exactly one colored vertex of (H, f ), |I| ≥ 3. Just as explained
in the second remark following Lemma 3.2, by deleting the color of h in each of
the (Hi, fi) and gluing together pairwise disjoint copies of the so obtained colored
digraphs at the copies of h, we obtain a G-obstruction. So this is an obstruction
obtained by gluing together at least 3 pairwise disjoint directed paths of length
1 or length 2 at one of their end-vertices and coloring the other end-vertices in
a suitable manner. Among the obstructions of this form, we take one with the
smallest number of non-colored vertices, say (H′, f ′).

We claim that (H′, f ′) contains only one non-colored vertex. Suppose not. Let h
be the common vertex of the directed paths of length 1 and length 2 in the definition
of (H′, f ′). Without loss of generality, we assume that there is a directed path
h0 → h1 → h in (H′, f ′) where h0 is a colored vertex of (H′, f ′). Observe that
(H′, f ′) has an edge (h2,h) such that h2 is colored, for otherwise (H′, f ′) would
be extendible by using the colors 0 and 1. An application of the preceding lemma
to (H′, f ′) and its non-colored vertex h1 together with the remark following the
lemma yields that there is a p ∈ G such that by coloring h1 with p in (H′, f ′), the
resulting colored digraph contains an obstruction (H′′, f ′′) such that both h1 and h2
belong to (H′′, f ′′). The obstruction (H′′, f ′′) must contain a colored vertex apart
from h1 and h2. Indeed, for otherwise, by using the reflexivity of G, H ′′ would be
equal to the set {h,h1,h2} and by coloring h with 1, we would obtain an extension
of f ′′ to H′′. We also have that (H′′, f ′′) is assembled from directed paths of length
1 and length 2 by gluing them together at their end-vertex h and that (H′′, f ′′) has
fewer non-colored vertices than (H′, f ′). So the existence of (H′′, f ′′) contradicts
the definition of (H′, f ′). �

Let VP be the variety generated by an order primal algebra related to the 6-
element bounded poset P that is not a lattice. In Proposition 3.6 of [4], we proved
that there is a finite algebra A that satisfies all identities of VP, has a majority term
operation and the variety generated by A is not 4-permutable. This implies that
the variety VP ∨M is not 4- and hence not 3-permutable. Our main goal in this
section is prove that for any locally finite non-3-permutable variety L , L ∨M is
not 3-permutable.

i 2

i 1 i' 1

i' 2=

i 0 i' 0=

i 0

i 1

i 2 i' 2

i' 1

i' 0

h 

h 1 h  2

h'

h  3 h  k

h' 1 h' 2

h  k+1 h  k+3 h  k+l

h'  k+1 h'  k+3 h'  k+l

= = =

h'  3 h'  k= =

FIGURE 1. Three digraph representations.

For the proof of this result we need some properties of certain special reflex-
ive digraphs defined from an arbitrary reflexive digraph G. The representations
of these digraphs are given in Figure 1. In the figure, provided that the relevant
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representation is (R,s,s′), the tuples s and s′ are meant by the naturally ordered
lists of the non-primed vertices and primed vertices, respectively. So for the first
two items in the figure, s = (i0, i1, i2) and s′ = (i′0, i

′
1, i
′
2), and for the third item,

s = (h,h1,h2, . . . ,hk+l) and s′ = (h′,h′1,h
′
2, . . . ,h

′
k+l).

The first item in the figure is called the 01-representation, it defines the relation

{((p,q,r),(p,q′,r)) : p→ q,q′→ r & q→ q′ & p→ r where p,q,q′,r ∈ G}

on the set
{(p,q,r) : p→ q→ r & p→ r where p,q,r ∈ G}.

The second item is called the 010-representation, it defines the relation

{((p,q,r),(p′,q′,r′)) : p→ q→ r & p′→ q′→ r′ & p→ q′ & q→ r′

where p, p′,q,q′,r,r′ ∈ G}

on the set
{(p,q,r) : p→ q→ r where p,q,r ∈ G}.

The third item parameterized by k and l where 2 ≤ k and 1 ≤ l is called the
kl-representation, it defines the relation

{((p, p1, p2, p3, . . . , pk+l),(p′, p′1, p′2, p3, . . . , pk+l)) :
p→ p2 & p′→ p′1 & p, p′→ p1, p′2, pi for 3≤ i≤ k & pi→ p, p′

for k+1≤ i≤ k+ l where p, p′, p′1, p′2 ∈ G and pi ∈ G, 1≤ i≤ l + k}

on the set

{(p, p1, p2, p3, . . . , pk+l) : p→ pi for 1≤ i≤ k & pi→ p for k+1≤ i≤ k+ l
where p ∈ G and pi ∈ G, 1≤ i≤ l + k}.

We also need the notion of 1k-representations when k ≥ 2. These are the repre-
sentations obtained from the k1-representations by reversing all of the arrows in
them.

In a digraph, a vertex v is called a locally universal out-vertex if there is an edge
from v to each of the vertices of the un-directed component of v. A vertex u is
called a locally universal in-vertex if there is an edge from each of the vertices
of the un-directed component of u to u. We establish some easy properties of the
digraphs obtained by the first two representations defined above.

Proposition 3.4. Let G be a reflexive digraph. Let G1 be the digraph defined from
G by the 01-representation, and let G2 be the digraph defined from G1 by the 010-
representation. Then the following hold.

(1) The digraph G1 is reflexive, and every component of G1 has a locally uni-
versal out-vertex and a locally universal in-vertex.

(2) The digraph G2 is reflexive, and every component of G2 has a locally uni-
versal out-vertex and a locally universal in-vertex such that there is an edge
from the locally universal in-vertex to the locally universal out-vertex.

Proof. First we prove item (1). The reflexivity of G1 is immediately follows from
the reflexivity of G. For the other part of item (1), observe that in each component
of G1, (a,a,b) is a locally universal out-vertex and (a,b,b) is a locally universal
in-vertex for some edge (a,b) of G. Now we prove item (2). The reflexivity of
G2 is obvious. For the other part of item (2), observe that in each component of
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G2, (0,0,1) is a locally universal out-vertex and (0,1,1) is a locally universal in-
vertex for some locally universal out-vertex 0 and in-vertex 1 of a component G1;
moreover, (0,1,1)→ (0,0,1) in G2. �

Let G0 be a digraph defined from a digraph G by the representation (R,s,s′). Let
S and S′ denote the sets of the entries of the tuples s and s′, respectively. Moreover,
let (O,g) be a G0-colored digraph. We define the blown-up (Ô, ĝ) of (O,g) by
(R,s,s′) to be the G-colored digraph as follows.

The digraph Ô is obtained by taking pairwise disjoint copies (Re,se,s′e) of (R,s,s)
for the edges e of O and gluing these copies together at their Se and S′e parts accord-
ingly to the incidence matrix of the digraph O. To make this definition more precise
we note that if e = (u,u′) and f = (v,v′) are different edges in O, and (Re,se,s′e)
and (R f ,s f ,s′f ) are the related disjoint copies of (R,s,s′), respectively, then each
of the equalities

u = v, u = v′, u′ = v, u′ = v′

induces the corresponding identification (gluing) from the list

se ≡ s f , se ≡ s′f , s′e ≡ s f , s′e ≡ s′f

on the copies (Re,se,s′e) and (R f ,s f ,s′f ) in Ô. Moreover, every loop-edge e=(u,u)
induces the identification se ≡ s′e.

The coloring ĝ of Ô is given by the natural coloring of the copies of S and S′

coming from (O,g), that is, if o ∈ O is colored by a ∈ G0, then the vertices in the
copy of S or S′ corresponding to o in Ô are colored by the related entries of the
tuple a in the natural way. Thus, if o is the starting vertex of an edge e in (O,g),
s = (s0, . . . ,sk−1), and a = (a0, . . . ,ak−1), then the copy of si in Se is colored by ai
for each 0≤ i≤ k−1. Similarly, if o is the ending vertex of the edge e in (O,g) and
s′ = (s′0, . . . ,s

′
k−1), then the copy of s′i in S′e is colored by ai for each 0≤ i≤ k−1.

We remark that (O,g) is G0-extendible if and only if (Ô, ĝ) is G-extendible.
Now we have all the tools at our disposal to prove our main theorem.

Theorem 3.5. Let G be a finite compatible reflexive digraph in a variety L . If G
has an edge (x,y) such that there is no directed path of length 2 from y to x, then
there exists a finite compatible reflexive digraph G′ in L that admits a majority
operation and has an edge (x′,y′) such that there is no directed path of length 2
from y′ to x′.

Proof. We start by defining certain finite reflexive digraphs in L from G. The first
digraph G1 is defined from G by the 01-representation. So we know, by Proposition
3.4, that G1 is a finite reflexive digraph, each of whose components has a locally
universal out-vertex and a locally universal in-vertex. Notice that (x,x,y)→ (x,y,y)
in G1, but there is no directed path of length 2 from (x,y,y) to (x,x,y), for otherwise
there would be a directed path of length 2 from y to x in G. Moreover, (x,x,y) and
(x,y,y) are a locally universal out-vertex and a locally universal in-vertex in the
same component of G1. If G1 admits a majority operation, we are done. We let
G′ =G1.

If G1 does not admit a majority operation, then we define G2 from G1 by the
010-representation. So, by Proposition 3.4, G2 is a finite reflexive digraph, each
of whose components has a locally universal out-vertex and a locally universal in-
vertex such that there is an edge from the locally universal in-vertex to the locally
universal out-vertex. Since G1 has a component with a locally universal out-vertex
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u and a locally universal in-vertex v such that there is no directed path of length
2 from v to u, hence G2 has a component that contains (u,u,u) and (v,v,v) where
(u,u,u)→ (v,v,v) and there is no directed path of length 2 from (v,v,v) to (u,u,u).
If G2 admits a majority operation we are done, we let G′ =G2.

If G2 does not admit a majority operation, then some component of G2 does
not admit one. Let C be such a component. We denote by 0 one of the locally
universal out-vertices and by 1 one of the locally universal in-vertices in C such
that 1→ 0. We invoke Corollary 3.3, so there is a C-obstruction (H, f ) that has
a single non-colored vertex h and at least three colored vertices. Let k denote the
number of sinks in H, and let l denote the number of sources in H. Since C has a
locally universal out-vertex and a locally universal in-vertex, 1 ≤ k, l, and clearly,
3≤ k+ l.

Without loss of generality we assume that 2 ≤ k, and we let G3 be the digraph
defined from G2 by the kl-representation. (If k = 1, then, by the use of the 1l-
representation where l ≥ 2, a dual argument applies.) Clearly, G3 is a finite reflex-
ive digraph. Suppose that a1, . . . ,ak are the colors of the sinks and b1, . . . ,bl are
the colors of the sources in (H, f ) such that if we delete the vertex hi colored by
ai in (H, f ), then h colored by some ci gives an extension of the remaining colored
digraph where 1≤ i≤ k. Now observe that

(c1,1,a2, . . .ak,b1, . . . ,bl)→ (c2,a1,1, . . .ak,b1, . . . ,bl)

in G3, as witnessed by the edge-preserving coloring of the first digraph in Figure
2. Moreover, there is no directed path of length 2 from (c2,a1,1, . . .ak,b1, . . . ,bl)
to (c1,1,a2, . . .ak,b1, . . . ,bl) in G3. This holds since the second colored digraph of
Figure 2 contains the obstruction (H, f ), so it is non-extendible.

c 

a  3 a  k

b  1 b  2 b  l

a  21 a  1 1

 1
c  2 c  2

a  3 a  k

c  1

a  1 1 a  21

b  1 b  2 b  l
FIGURE 2. An extendible and a non-extendible G3-colored digraph

Let t be the maximum number of sinks in the G2-obstructions with a single non-
colored vertex. This maximum exists and is finite, since G2 is finite, and the sinks
have no repetition in their colors in any G2-obstructions with a single non-colored
vertex. Since (H, f ) is a G2-obstruction with a single non-colored vertex and k≥ 2,
we have that t ≥ 2. We are going to prove that the number of colored vertices in any
G3-obstruction is at most t, that is, by Proposition 3.1, G3 admits a (t+1)-ary near
unanimity operation. As a by-product of the proof, we shall also have that any G3-
obstruction has at most one non-colored vertex, apart from G3-obstructions with
two colored vertices with colors from different components of G3.

Let (O,g) be any G3-obstruction with at least three colored vertices. Then the
range of g is contained in one of the components of G3, for otherwise there would



ON THE USE OF MAJORITY FOR INVESTIGATING PRIMENESS OF 3-PERMUTABILITY 11

exist a colored subpath of (O,g) whose end-vertices are colored from different
components of G3 and whose other vertices are non-colored, which would contra-
dict to the fact that (O,g) is minimal non-extendible. We want to prove that the
number colored vertices in (O,g) is at most t. Let (Ô, ĝ) be the blown-up of (O,g)
by the kl-representation. Clearly, (Ô, ĝ) is a non-extendible G2-colored digraph,
so it contains a G2-obstruction (O′,g′). The colors that occur in (O,g) are in one
component of G3. Hence, by the definition of G3, the colors that occur in (Ô, ĝ)
and (O′,g′) are in some component D of G2.

As (O,g) contains at least one colored vertex and for each 3 ≤ i ≤ k+ l, all of
the copies of hi from the copies of the kl-representation are identified in (Ô, ĝ), the
only non-colored vertices in (Ô, ĝ) are some copies of h, h1 and h2. The copies
of h1 and h2 are sinks in (Ô, ĝ). We prove that neither of the non-colored copies
of h1 and h2 belong to (O′,g′). Let us suppose the contrary. Then by removing
any non-colored copy of h1 or h2 from (O′,g′), we get an extendible G2-colored
digraph. By taking an extension of this colored digraph with coloring the vertex
removed with a locally universal in-vertex of D, we would get an edge-preserving
G2-extension of g′ to O′, a contradiction. So the non-colored vertices in (O′,g′)
are copies of h. Since there are no edges between these copies in (Ô, ĝ), and the
digraph of non-colored vertices in (O′,g′) is connected, (O′,g′) has only one non-
colored vertex that is a copy of h. We also remark that (O′,g′) must contain colored
copies of h1 or h2, for otherwise (O′,g′) would be extendible by using the entries
of the color of any colored element in (O,g). Furthermore, by our assumption, the
number of sinks in (O′,g′) is at most t.

We define a colored subdigraph (O1,g1) of (O,g). Let z denote the non-colored
vertex of (O′,g′). For every edge e′ = (z,u) of (O′,g′) where u is a copy of h1 or
h2 in (O′,g′), there is an edge e in O such that the copy of the kl-representation
related to e (see the definition of the blown-up) contains e′. We pick such an edge
e in (O,g) for every edge e′ = (z,u) where u is a copy of h1 or h2 in (O′,g′). One
end of the e must be the same non-colored vertex of (O,g), since the blown-ups
of the e contain the non-colored element z in (O′,g′). The other ends of the e
must be colored in (O,g), since the blown-up of an edge e with two non-colored
end-vertices does not contain colored copies of h1 and h2. Let (O1,g1) be the
colored subdigraph spanned by the edges e in (O,g). Clearly, (O1,g1) has a single
non-colored vertex. Since exactly one of the vertices of the e are non-colored,
the number of colored elements in (O1,g1) is bounded by the number of sinks in
(O′,g′). So the number of colored vertices in (O1,g1) is at most t.

The blown-up (Ô1, ĝ1) of (O1,g1) by the kl-representation obviously contains
the edges e′=(z,u) where u is a copy h1 and h2 in (O′,g′). On the other hand, every
edge of the form (v,z) in (O′,g′) must be also in (Ô1, ĝ1), since the vertex v is a
copy of hi in the kl-representation where k+1≤ i≤ k+ l, hence v is in each copy
of the kl-representation in (Ô, ĝ). Moreover, v is colored in (Ô1, ĝ1) with the same
color as in (O′,g′), since (O1,g1) contains colored elements as we noted above.
Similarly, (z,w) where w is a copy of hi in the kl-representation and 3 ≤ i ≤ k
must be in (Ô1, ĝ1). Then (Ô1, ĝ1) is non-extendible, since it contains (O′,g′),
and hence (O1,g1) is also non-extendible. As (O,g) is minimal non-extendible,
(O,g) = (O1,g1). Since the number of colored vertices of (O1,g1) is at most t, the
number of colored vertices is also bounded by t in (O,g).
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So if t = 2, then by Proposition 3.1, G3 admits a majority operation. Then we are
done, we let G′ = G3. If t > 2, we iteratively apply the above three constructions
(the 01-representation, the 010-representation, and the kl-representation) to G3 and
the resulting digraphs in an orderly manner. Before finishing the proof, we make
two remarks.

Let P be any finite reflexive digraph such that the number of colored vertices of
P-obstructions is at most t ′. We first remark that for every finite digraph Q defined
from P by a representation, the number of colored vertices in any obstruction is at
most t ′. One way to see this is as follows. By Proposition 3.1, P admits a near-
unanimity operation of arity t ′+ 1. Then any finite digraph Q defined from P by
a representation must also admit a near-unanimity operation of arity t ′+ 1. Then
again, by Proposition 3.1, the number of the colored vertices in any Q-obstruction
is bounded by t ′.

We also remark that if t ′ > 2 and P is a digraph such that every component
of P has a locally universal out-vertex and a locally universal in-vertex, then the
maximum number of sinks (and similarly, of sources) in the P-obstructions with a
single non-colored vertex is less than t ′. This follows from the fact that in such a
P-obstruction if the range of its coloring has at least three vertices, then its non-
colored vertex is neither a source nor a sink. For otherwise, since there is a com-
ponent D of P that contains the range of the coloring, by coloring the non-colored
vertex with a locally universal out-vertex or a locally universal in-vertex from D,
we would get an edge-preserving extension of the coloring of the obstruction.

By the first remark, the maximum number of colored vertices of the obstructions
of the digraphs obtained in the iterative process is decreasing. If this number, say t ′,
is still greater than 2 after an application the 010-representation when the digraph
P was obtained in the process, then by the second remark, the maximum number t ′′

of sinks (and similarly, of sources) in the P-obstructions with a single non-colored
vertex is less than t ′. Let Q be the digraph obtained from P by the kl-representation
in the process. Similarly, as we proved that for each G3-obstruction there is a
G2-obstruction with a single non-colored vertex such that the number of colored
vertices of the G3-obstruction is at most the number of sinks of the G2-obstruction,
one obtains that the maximum number of colored vertices of the Q-obstructions
is at most t ′′. So at least in every third step of the process the maximum number
of colored vertices of the obstructions is strictly decreasing, and hence eventually,
reaches 2. Then the digraph G′ associated with t ′ = 2 in the procedure is a finite
compatible reflexive digraph in L and admits a majority operation. Moreover, G′
also has an edge (x′,y′) such that there is no directed path of length 2 from y′ to
x′. �

The following corollary is an immediate consequence of the theorem.

Corollary 3.6. For every locally finite non-3-permutable variety L , L ∨M is
non-3-permutable.

Proof. On the free algebra with the free generators x and y in L , we define a
finite reflexive digraph G whose edge relation ρ is the subalgebra generated by
{(x,x),(x,y),(y,y)} in the square of the free algebra. By the Hagemann-Mitschke
theorem, there is no directed path of length 2 from y to x in G. Then by the preced-
ing theorem, there is a compatible reflexive digraph G′ in L such that G′ admits
a majority operation and has an edge (x′,y′) such that there is no directed path of
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length 2 from y′ to x′. So G′ is a compatible reflexive digraph in L ∨M and, by
the Hagemann-Mitschke theorem, L ∨M is not 3-permutable. �

We conjecture that there exists a non-locally finite non-3-permutable variety L
such that L ∨M is 3-permutable. This conjecture would imply that 3-permutability
is not join-prime in the lattice of interpretability types of varieties. Such a conjec-
ture fails for non-2-permutable varieties as shown by the following theorem.

Theorem 3.7. For every non-2-permutable variety L , L ∨M is non-2-permutable.

Proof. We use the Hagemann-Mitschke theorem for 2-permutability. Let G be a
compatible reflexive digraph in L such that G is not symmetric. We shall prove
that there exists a compatible reflexive digraph G′ in L such that G′ is not sym-
metric and admits a majority operation.

Let G1 be the digraph defined from G by the 01-representation. By Proposition
3.4, G1 is a reflexive digraph, each of whose components has a locally universal
out-vertex and a locally universal in-vertex. Since G is not symmetric, it contains
an edge (x,y) such that (y,x) is not an edge of G. Certainly, ((x,x,y),(x,y,y)) is an
edge of G1 and ((x,y,y),(x,x,y)) is not an edge of G1. So G1 is not symmetric.

Let H be the 4-element digraph given by the edges

i0→ i1, i′0→ i′1 and i0→ i′1.

Let G′ the reflexive digraph defined by the representation (H,(i0, i1),(i′0, i
′
1)). No-

tice that for a locally universal out-vertex 0 and a locally universal in-vertex 1 of
an arbitrary component of G1, (0,1) is a locally universal out-vertex and at the
same time a locally universal in-vertex in its G′-component. We call such vertices
locally universal vertices. Clearly, every component of G′ has a locally universal
vertex of the above form (0,1).

Let now C be any component of G′ and u a locally universal vertex in C. Con-
sider the partial majority map defined on the 3-tuples with at most two different
components in C. This partial map extends to a fully defined edge-preserving
majority operation of C by giving the value u to every 3-tuple with pairwise dif-
ferent components in C. Thus every component of the digraph G′ admits a ma-
jority operation, and hence G′ itself admits one. On the other hand, if (s, t) is
an edge in G1 where (t,s) is not an edge, then ((s,s),(t, t)) is an edge in G′ and
((t, t),(s,s)) is not an edge. Hence G′ is not symmetric. So G′ is a compatible
reflexive digraph in L ∨M and, by the Hagemann-Mitschke theorem, L ∨M is
not 2-permutable. �

We note that during the editorial process of this paper, by further developing
ideas from the proof of the preceding theorem, the three authors gave a short se-
mantic proof of the primeness of 2-permutability in the lattice of interpretability
types of varieties. The result has been already published in [5].
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