
A SPECIAL CASE OF THE STAHL CONJECTURE

J. KINCSES, G. MAKAY, M. MARÓTI, J. OSZTÉNYI AND L. ZÁDORI

Abstract. Let Gn,k denote the Kneser graph whose vertices are the n-element

subsets of a (2n + k)-element set and whose edges are the disjoint pairs. In
this paper we prove that for any non-negative integer s there is no graph ho-

momorphism from G4,2 to G4s+1,2s+1. This confirms a conjecture of Stahl in

a special case.

1. Introduction

Let Gn,k denote the Kneser graph whose vertices are the n-element subsets of
the set {1, . . . , 2n+ k} and whose edges are the disjoint pairs. We are interested in
the question that for which values of the parameters n, k, n′ and k′ there exists a
graph homomorphism from Gn,k to Gn′,k′ . We write Gn,k → Gn′,k′ to denote that
there exists a graph homomorphism from Gn,k to Gn′,k′ .

It should be obvious that if there exist homomorphisms from Gn,k to Gn′,k′ and
Gn′′,k′′ , then there is one from Gn,k to Gn′+n′′,k′+k′′ . This property is called addi-
tivity of homomorphisms between Kneser graphs. The existence of homomorphisms
between certain Kneser graphs is well known, see [5].

Lemma 1. We have that Gn,k → Gns,ks, Gn,k → Gn−1,k and Gn,k → Gn,k+1.

Hence, if k′

k ≥ d
n′

n e, then Gn,k → Gn′,k′ .

Figure 1

The meaning of the lemma is that for any grid point (n′, k′) in the shaded area
of Figure 1 there is a homomorphism from Gn,k to Gn′,k′ .
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The following conjecture was formulated by Stahl in [5] in a slightly different
form.

Conjecture 2. If k′

k < dn
′

n e then Gn,k 6→ Gn′,k′ .

The conjecture tells us that for any pair (n′, k′) in the light area of Figure 1,
Gn,k 6→ Gn′,k′ . In view of Lemma 1 to settle the conjecture it suffices to prove
that Gn,k 6→ Gns+1,ks+k−1 for all s. In fact, it suffices to prove this for arbitrarily
large values of s. Indeed, for any s′ < s, Gn,k → Gns′+1,ks′+k−1 would imply
Gn,k → Gns+1,ks+k−1 by using Gn,k → Gn(s−s′),k(s−s′) and the additivity property.

Some of the earlier results related to the conjecture show that for arbitrarily
chosen values n and k there exists certain subregion of the light area of Figure 1 such
that for any grid point (n′, k′) from this subregion, Gn,k 6→ Gn′,k′ . For example,
Lovász’s theorem in [2] states that the chromatic number of Gn,k is k + 2. This is
equivalent with saying that for any grid point (n′, k′) from the stripe determined by
the lines y = k − 1 and y = 0, Gn,k 6→ Gn′,k′ . By the Erdős-Ko-Radó theorem [1]

for any grid point (n′, k′) below the line y = k
nx, Gn,k 6→ Gn′,k′ . Stahl [5] extends

this result for any grid point (n′, k′) 6= (ns, ks) on the line y = k
nx. By the above

mentioned consequence of the Erdős-Ko-Radó theorem, Stahl’s conjecture holds for
the case when k = 1 and n is arbitrary. In [5], Stahl gave another proof for this
case by using the fact that Gn,1 contains a (2n + 1)-cycle, meanwhile Gn′,k′ does

not if (n′, k′) is below the line y = k
nx. Stahl also managed to prove his conjecture

for n = 2 and n = 3 and arbitrary values of k in [6]. Our goal in this paper is to
prove the conjecture for the case of n = 4 and k = 2. This is the smallest pair of
parameters n and k for which the conjecture was open.

2. Main results

To study the existence of homomorphisms between Kneser graphs we adopt an
approach presented by Walker in [7]. Let Bn,k denote the ordered set of the subsets
of the set {1, . . . , 2n + k} that have size at least n and at most n + k. We write
Bn,k → Bn′,k′ to denote that there is a monotone map from Bn,k to Bn′,k′ that
preserves disjointness. Such a disjointness preserving monotone map is called a
homomorphism. Clearly, if ϕ is a graph homomorphism from Gn,k to Gn′,k′ , then
the map A 7→ ∪B⊆Aϕ(B) is a homomorphism from Bn,k to Bn′,k′ . Conversely, if ψ
is a homomorphism from Bn,k to Bn′,k′ , then the map that assigns an n′-element
subset of ψ(A) to every A in Gn,k is a homomorphism from Gn,k to Gn′,k′ . Thus,
there exists a graph homomorphism from Gn,k to Gn′,k′ if and only if Bn,k → Bn′,k′ .
We shall use the latter equivalent condition for proving our main result in the paper.

In the sequel we require a result from Osztényi [3]. The distance d(R,Q) between
two elements R and Q of Bn,k is the shortest length of a path between R and Q in
the comparability graph of Bn,k.

Lemma 3. Let n = kdnk e − r.

(1) min{d(R,Q) : R,Q ∈ Bn,k and R ∩Q = ∅} = 2dnk e
(2) If R,Q ∈ Bn,k and R∩Q = ∅, then d(R,Q) = 2dnk e if and only if |R|+|Q| ≤

2n+ r.

The spider web is the poset of height one depicted in Figure 2. It has black
nodes and white nodes. Black nodes are minimal and white nodes are maximal
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Figure 2. The spider web (a top view)

elements of the poset. We say that Bn,k contains the spider web if there exists a
monotone map from the spider web to Bn,k that sends the antipodal elements on
the boundary of the spider web to disjoint elements of Bn,k. In this situation the
image of the spider web as a subposet is called a spider web in Bn,k. If S is a
spider web in Bn,k we shall talk about the black and white nodes of S. These are
simply the images of nodes of the same respective color of the spider web under the
relevant map. At this point we note that a node of a spider web in Bn,k may have
multiple colors as the map associated with it may not be injective.

Next, we shall prove Conjecture 2 for the case of n = 4 and k = 2. The idea
of our proof is somewhat similar to that of Stahl’s proof for the case k = 1 in [5];
we exhibit an obstruction of small size to the existence of a homomorphism. By
Walker’s approach it suffices to prove the following.

Theorem 4. For all non-negative integers s, B4,2 6→ B4s+1,2s+1.

Proof. As we noted earlier, it suffices to prove the claim for arbitrarily large values
of s, so we assume that s ≥ 1. We also assume that the elements of B4s+1,2s+1 are
subsets of a (10s + 3)-element set U . Suppose to the contrary of the claim that
B4,2 → B4s+1,2s+1. Since B4,2 contains a spider web, B4s+1,2s+1 contains a spider
web, too. Let S be a spider web in B4s+1,2s+1. Observe that each node of S is
contained in a path of length at most 4 between two disjoint black nodes of S. Let
P be a path like that in B4s+1,2s+1. By Lemma 3, P has length 4 and the end nodes
of P have 4s + 1 or 4s + 2 elements. This is also true for the middle node of P .
Indeed, if the middle node had at least 4s+ 3 elements, then the three black nodes
of P would have a nontrivial intersection which would violate the disjointness of the
two end nodes of P . So the black nodes of P have either 4s+ 1 or 4s+ 2 elements.
Moreover, each white node of P has at least 6s+ 1 elements, for otherwise the two
end nodes of P would share a common element, a contradiction.
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Figure 3. A spider web in B4,2, where Ai = {2i − 1, 2i} and
A′i = {2i − 1} for 1 ≤ i ≤ 5 and the white nodes are obtained by
taking unions of neighbors.

The above bounds on the sizes of black nodes and white nodes of S show that
the sets of black nodes of S is disjoint from the set of white nodes of S. Then,
by possibly throwing out one element from each of the black nodes of S, we may
assume that each of the black nodes of S has 4s+ 1 elements. We observe that the
nodes of the boundary of S are pairwise different subsets of U . Indeed, any two
nodes of the boundary of S are contained in a path of length 4 between two disjoint
black nodes, or one of the two nodes is a white node and the other contains the
antipodal black node.

LetX,Y and Z be the consecutive minimal elements of a path of length 4 between
two disjoint elements X and Z in B4s+1,2s+1 such that |X| = |Y | = |Z| = 4s + 1.
Then we claim that 2s ≤ |X ∩ Y | ≤ 2s + 1 and that |X ∩ Y | = |Y ∩ Z| = 2s + 1
does not hold. Indeed, if |X ∩Y | ≤ 2s−1, then we should throw out at least 2s+ 2
elements from X to get Y , which is impossible to do in one step in B4s+1,2s+1. If
2s+ 2 ≤ |X ∩Y |, then we should also throw out at least 2s+ 2 elements from Y to
get Z, which is impossible. Finally, if |X ∩ Y | = |Y ∩ Z| = 2s+ 1, then

4s+ 2 = |X ∩ Y |+ |Y ∩ Z| = |(X ∪ Z) ∩ Y | ≤ |Y | = 4s+ 1,

a contradiction.

Let X,Y, Z,W ∈ S as displayed in Figure 4. We claim that |X ∩Y | = |Y ∩Z| =
|Z ∩ W | = 2s does not hold. Suppose that all of these equalities hold. Then
|W ∪ Z| = |W | + |Z| − |W ∩ Z| = 6s + 2. Since X,Z,W are all subsets of the
(10s+ 3)-element set U , |X| = 4s+ 1 and X ∩ (W ∪Z) = ∅, hence X ∪Z ∪W = U.
So Y = (Y ∩ X) ∪ (Y ∩ Z) ∪ (Y ∩W ). As Y ∩W = ∅, Y = (Y ∩ X) ∪ (Y ∩ Z),
which implies that |Y | = 4s, a contradiction.
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Figure 4

Summing up what we have so far, on the boundary of S the intersection of two
consecutive black nodes has 2s or 2s + 1 elements and among those intersections
there are no two consecutive ones of size 2s+1 and no three consecutive ones of
size 2s. According to these conditions we depicted the sizes of the intersections
of consecutive black nodes on the boundary of S in Figure 5. The sizes and the
disjointness relation in S yield the existence of pairwise disjoint subsets A1, . . . , A5

and E in U such that |A1| = |A2| = |A4| = 2s, |A3| = |A5| = 2s + 1, |E| = 1 and
the black nodes on the boundary of S are of the form shown in Figure 5.

Let O be the union of the images of the five innermost black nodes of the spider
web in S. Clearly, O is less than or equal to the intersection of the images of
the five innermost white nodes of the spider web in S. We claim that O can be
assumed to have at most 5s+ 1 elements. Indeed, if O had at least 5s+ 2 elements,
then we could increase by one element the white nodes of 6s + 1 elements on the
boundary of S in such a way that the disjointness relation would still hold and, by
complementation, would get a new spider web S′ in B4s+1,2s+1 such that the union
of the images of the five innermost black nodes of the spider web in S′ would have
at most 5s+ 1 elements. So from now on we assume that |O| ≤ 5s+ 1.

Since for any black node Q on the boundary of S, Q and O are contained in a
path of minimum length between two disjoint black nodes on one of the diagonals
of S, 2s ≤ |Q∩O| ≤ 2s+ 1. For A ∈ {A1, A2, A3, A4, A5, E} let A′ = A∩O. Thus
O = A′1 ∪ A′2 ∪ A′3 ∪ A′4 ∪ A′5 ∪ E′, and we have the following system of equations
for the sizes of ai of A′i and e of E′.
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Figure 5. The structure of the boundary of S in B4s+1,2s+1

(∗)

e+ a1 + a2 = 2s+ ε1

a2 + a3 = 2s+ ε2

a3 + a4 = 2s+ ε3

a4 + a5 = 2s+ ε4

a5 + a1 = 2s+ ε5,

where εi ∈ {0, 1}.

By summing up these equations we get that

(∗∗) 2|O| = 10s+

5∑
i=1

εi + e.

So by |O| ≤ 5s+ 1 we have that
∑5

i=1 εi + e ≤ 2. Hence at most two of the εi equal
1. The above equation also shows that if none or two of the εi equal 1, then e = 0,
and if exactly one of the εi equals 1, then e = 1.

In Figure 6 we displayed O and some elements of S those of which we make a
claim on before launching into the case by case argument of the proof. We note
that some nodes of the same color in the figure may collapse, not on the boundary
though.

Claim 1. If

|O ∩X1| = |O ∩X2| = 2s,

then

W ⊆ (O ∩X1) ∪ (O ∩X2) ∪ (X1 ∩X2) ∪ (O ∩ E).
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Figure 6

Indeed, since Vi ⊆ O, Vi ∩ Xi ⊆ O ∩ Xi and Vi ∪ Xi ⊆ O ∪ Xi for 1 ≤ i ≤ 2.
The equality |O ∩Xi| = 2s implies |Vi ∩Xi| = 2s, and hence Ui = Vi ∪Xi, and so
Ui ⊆ O ∪Xi for 1 ≤ i ≤ 2. Now, W ⊆ U1 ∩ U2 ∩ X̄3, and so

W ⊆ (O∪X1)∩(O∪X2)∩(X1∪X2∪E) = (O∩X1)∪(O∩X2)∪(X1∩X2)∪(O∩E).

Next we obtain a contradiction for all possible values of the εi, which proves that
B4,2 → B4s+1,2s+1 does not hold. To follow the argument see Figure 7.

Figure 7
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Case 1. We assume that for 1 ≤ i ≤ 5, εi = 0. Then we saw that e = 0 and from
(∗) all of the ai equal s. By the preceding claim we have that

W1 ⊆ A′3 ∪A4 ∪A′5,
which yields

|W1| ≤ |A′3 ∪A4 ∪A′5| = 4s,

a contradiction.

Case 2. We assume that one of the εi is 1 and the others are 0. Then we saw that
e = 1. By symmetry it suffices to consider the following three subcases.

(i) Suppose that ε1 = 1. Then from (∗) all of the ai equal s and the claim applied
to W1 in the same way as in Case 1 gives a contradiction.

(ii) Suppose that ε2 = 1. Then from (∗) again,

a1 = a4 = s− 1, a2 = s and a3 = a5 = s+ 1.

By Claim 1, W2 ⊆ A′4 ∪A5 ∪A′1 ∪ E, which yields

|W2| ≤ |A′4 ∪A5 ∪A′1 ∪ E| = 4s,

a contradiction.

(iii) Suppose that ε3 = 1. Then from (∗),
a2 = s− 1, a1 = a4 = a5 = s and a3 = s+ 1

and W3 ⊆ A′5 ∪A1 ∪A′2 ∪ E yields a contradiction again.

Case 3. We assume that two of the εi are 1 and the others are 0. Then we saw
that e = 0. Up to symmetry it suffices to consider the following six subcases. In
the first three of these subcases we assume that two consecutive εi equals 1.

(i) Suppose that ε1 = ε2 = 1. Then from (∗) we get that

a1 = a3 = a4 = a5 = s and a2 = s+ 1

and Claim 1 applied to W1 in the same way as in Case 1 yields a contradiction.

(ii) Suppose that ε2 = ε3 = 1. Then from (∗) we get that

a1 = a2 = a4 = a5 = s and a3 = s+ 1

and W3 ⊆ A′5 ∪A1 ∪A′2 yields a contradiction.

(iii) Suppose that ε3 = ε4 = 1. Then from (∗) we get that

a1 = a2 = a3 = a5 = s and a4 = s+ 1.

Similarly as in the preceding subcase we get a contradiction.

For the next two subcases we require a new claim whose proof is an analogue of
that of Claim 1 (for notation see Figure 6).

Claim 2. If
|O ∩X1| = 2s+ 1, |O ∩X2| = 2s and e = 0,

then
|W | ≤ |(O ∩X1) ∪ (O ∩X2) ∪ (X1 ∩X2)|+ 1.

For completeness we supply a proof. As we saw in the proof of Claim 1, the
equality |O∩X2| = 2s implies U2 ⊆ O∪X2. Similarly, the equality |O∩X1| = 2s+1
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implies that |V1∩X2| is 2s or 2s+ 1, and hence U1 = V1∪X1∪{v} for some v ∈ U ,
and so U1 ⊆ O ∪X1 ∪ {v}. Now, W ⊆ U1 ∩ U2 ∩ X̄3, and so

|W | ≤ |(O∪X1∪{v})∩(O∪X2)∩(X1∪X2∪E)| ≤ |(O∩X1)∪(O∩X2)∪(X1∩X2)|+1.

(iv) Suppose that ε1 = ε3 = 1. Then

a5 = s− 1, a2 = a3 = s and a1 = a4 = s+ 1

and by Claim 2, |W1| ≤ |A′3 ∪A4 ∪A′5|+ 1 = 4s, a contradiction.

(v) Suppose that ε3 = ε5 = 1. Then

a2 = s− 1, a4 = a5 = s and a1 = a3 = s+ 1

and by Claim 2, |W3| ≤ |A′5 ∪A1 ∪A′2|+ 1 = 4s, a contradiction.

The only remaining subcase needs an extra argument as follows.

(vi) Suppose that ε2 = ε5 = 1. Then

a4 = s− 1, a1 = a2 = s and a3 = a5 = s+ 1.

Hence |O∩ (A5∪A1)| = 2s+ 1, |O∩ (A4∪A5)| = 2s. So as in the proof of Claim 2,

W2 ⊆ (O ∪A5 ∪A1 ∪ {w}) ∩ (O ∪A4 ∪A5) ∩ (A4 ∪A5 ∪A1 ∪ E)

for some w in U . By the use of e = 0 we get W2 ⊆ A′4 ∪ A5 ∪ A′1 ∪ {w}. Since
|A′4∪A5∪A′1∪{w}| ≤ 4s+1, W2 = A′4∪A5∪A′1∪{w}. Then w ∈ O∪A4∪A5. On the
other hand w 6∈ O∪A1∪A5, for otherwise W2 ⊆ A′4∪A5∪A′1 and hence |W2| ≤ 2s,
a contradiction. Hence w ∈ A4 \ A′4. Since T is a subset of A1 ∪ A2 ∪ E ∪ O,
w 6∈ T . Hence w 6∈ W3. On the other hand W3 ⊆ A′5 ∪ A1 ∪ A′2 ∪ {w} and
|A′5 ∪A1 ∪A′2| = 4s+ 1. So W3 = A′5 ∪A1 ∪A′2. By a symmetric argument starting
with W5 yields that W4 = A′1 ∪A2 ∪A′3. Then T contains

W3 ∪W4 ∪A1 ∪A2 ∪ E = A1 ∪A2 ∪A′3 ∪A′5 ∪ E.
But |A1 ∪A2 ∪A′3 ∪A′5 ∪ E| ≥ 6s+ 3, a contradiction.

�

3. Connections with the Schrijver graph

The Schrijver graph Sn,k is the subgraph of Gn,k that is spanned by the vertices
with no neighboring elements modulo 2n+k. In [4] Schrijver proved that there is no
graph homomorphism from Sn,k to G1,k−1, which implies Lovász’s result that there
is no homomorphism from Gn,k to G1,k−1. Actually, the proof of Theorem 4 in the
preceding section shows, as explained in the next paragraph, that a similar idea
works for n = 4 and k = 2 and for all s, that is, there is no graph homomorphism
from S4,2 to G4s+1,2s+1, and so there is none from G4,2 to G4s+1,2s+1.

Indeed, S4,2 yields a poset P4,2 whose base set is formed by the vertices of S4,2

and their complements, and whose ordering is containment. We depicted this poset
in Figure 8, where for the sake of clarity all edges between the black and white nodes
of the boundary are left out. Our spider web is obtained from P4,2 by removing
the nodes of the boundary and the nodes adjacent to them. Note that there is a
monotone disjointness preserving map from the spider web to B4s+1,2s+1 if and only
if there is one from P4,2 to B4s+1,2s+1 if and only if there is a graph homomorphism
from S4,2 to G4s+1,2s+1. So by the proof of Theorem 4 there is no such a graph
homomorphism.
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Figure 8. The poset P4,2 (a top view)

Let n > 4. One may speculate that there still may not exist a graph homomor-
phism from Sn,2 to Gns+1,2s+1, and this makes Stahl’s conjecture true for n and
k = 2. Unfortunately, for the cases n = 5 and n = 6 we have found graph em-
beddings from S5,2 to G6,3 and from S6,2 to G7,3 via a computer program, see the
files http://www.math.u-szeged.hu/∼makay/map5 2.txt and map6 2.txt. Let S′n,2
be the subgraph spanned by the vertices of Gn,2 that are comparable to some of
the complements of the vertices of Sn,2. Clearly, Sn,2 is a subgraph of S′n,2. It was
also checked by computer that there is no homomorphism from S′5,2 to G6,3, which
gives G5,2 6→ G6,3. Our findings for G5,2 and S5,2 also show that the multichro-
matic numbers (defined in [5]) of a Kneser graph and the related Schrijver graph
may differ, as opposed to their usual chromatic numbers.
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