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Abstract

We present a simple polynomial-time algorithm that recognises reflexive, symmetric g
admitting a near-unanimity operation. Several other characterisations of these graphs a
presented.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The graphs considered here are reflexive and symmetric, i.e., finite relational stru
(G, θ) whereθ is a binary relation onG satisfying(x, x) ∈ θ for all x ∈ G and(y, x) ∈ θ

whenever(x, y) ∈ θ . The elements ofG are calledvertices. We usually writexy to mean
(x, y) ∈ θ and say thatxy is anedgeof the graphG or thatx andy areadjacentin G.
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We will also refer tox as the neighbour ofy, and vice versa. A vertex with only itself as
neighbour is anisolated vertex. The set of all neighbours ofx is called theneighbourhood
of x and is denoted byN(x). A graphH is asubgraphof a graphG if H ⊆ G and each
edge ofH is also an edge ofG; H is aninduced subgraphof G for all verticesx, y ∈ H

such thatxy is an edge ofG, xy is also an edge ofH . A path of lengthk in a graphG is
a sequence of verticesx0, x1, . . . , xk such thatxixi+1 is an edge ofG for i = 0, . . . , k − 1;
note that we do not require that the vertices be distinct. A graph isconnectedif there exists
a path between all pairs of vertices anddisconnectedotherwise. Acomponentof a graph
G is an induced subgraphH of G that is maximal with respect to being connected; t
for a disconnected graphG, if R is a subgraph ofG andH is a proper subgraph ofR, then
R is disconnected.

The product we consider here is the usual product of structures, namely, ifG andH

are graphs, then(g1, h1) and(g2, h2) are adjacent inG × H if g1 is adjacent tog2 in G

andh1 is adjacent toh2 in H . An k-ary operationon a graphG is a graph homomorphism
f :Gk → G. If f is an operation onG we say thatG admitsf , or thatf is compatible
with G. An operation isidempotentif it satisfies the identityf (x, x, . . . , x) ≈ x (i.e.,
f (x, x, . . . , x) = x for all x ∈ G). An operationf is a near-unanimity operationif f is
idempotent andf (y, x, . . . , x) ≈ f (x, y, x, . . . , x) ≈ f (x, x, . . . , x, y) ≈ x.

Let G be a graph. We call a vertexx of G dismantlableif there exists a distinct verte
y of G such thatN(x) ⊆ N(y); we say that the vertexy dominatesx. Note that asG is
reflexive,x must be inN(y) and sox andy are adjacent. A graphG is dismantlableif
we can writeG as a sequence of verticesx1, . . . , xn such thatxi is dismantlable in the
subgraph ofG induced by{xi, . . . , xn}, i = 1, . . . , n − 1. Such a sequence is adismantling
ordering. Observe that if a graphG is dismantlable, it must also be connected; eitherG has
only one vertex orG has a dismantling orderingx1, . . . , xn, where for eachi < n, xi has
a neighbourxj , i < j � n. Thus, ifxk is the vertex of highest index in a component ofG,
eitherxk = xn or xk must have a neighbourxp, k < p � n. ThereforeG can only have
one component. LetH be an induced subgraph ofG. If there exists a sequence of vertic
x1, . . . , xk in G such thatH = G \ {x1, . . . , xk} andxi is dismantlable in the subgraph ofG

induced by{xi, . . . , xk} ∪ H , then we say thatG dismantlesto H and thatx1, . . . , xk is a
dismantlingto H . We callG ramifiedif G has at least two vertices and has no dismantla
vertices.

Let G be a graph. An induced subgraphX of the graphGk is an idempotent
k-subalgebraif it is invariant under all idempotent operations onG. More precisely, let
f be ann-ary idempotent operation onG and letX be a subset ofGk . ThenX is invariant
underf if, for any matrixM of sizek × n whose columns are inX, the column obtained
by applyingf to thek rows ofM is also inX.

Given two graphsG and H , Hom(H,G) is the graph whose vertex set is
homomorphisms fromH to G, where homomorphismsf and g are adjacent in
Hom(H,G) if f (x)g(y) is an edge ofG wheneverxy is an edge ofH . Note that
Hom(H,G) is also reflexive, and that composition is edge-preserving. Aconstant map
from H to G is map that sends all vertices ofH to one particular vertex ofG. For a given
vertexx of G, we denote byx the map that sends all ofH to x. If G is connected, the
the constant maps fromH to G are in the same component of Hom(H,G). Denote this

component byCH,G.
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Near-unanimity operations have attracted a great deal of attention in recent yea
only in universal algebra [1,3,8,16,25], but also in the context of graph theory [2,
15,22] and computer science. For instance, a (restricted) constraint satisfaction p
(CSP) is of bounded strict width if and only if its target structure admits a compa
near-unanimity operation, if and only if the target structure satisfies thel-Helly property
for somel [12]. In particular, it is well known that a CSP whose target structure ad
a compatible near-unanimity operation is solvable in polynomial-time [14] (see also
However, it is still not known if the property of admitting a compatible near-unanim
operation is actually decidable [12]. The closely related problem of determining wh
a finite algebra admits a near-unanimity term operation is thought to be undecidab
although partial results have been obtained the question remains open [23].

In view of the above, it seems natural to seek out classes of structures for
the problem of determining the existence of compatible near-unanimity operatio
decidable, or even tractable. Families of finite algebras for which the problem is dec
are presented in [23], and a polynomial-time algorithm to recognise finite posets w
compatible near-unanimity operation can be found in [17], based on a characterisa
these posets by the first and third authors [20]. Reflexive binary structures are a
generalisation of posets, and much more flexible. For instance, these can be used a
for showing some non-trivialNP-completeness results (see [18,19]). The present p
describes a characterisation of reflexive, symmetric graphs admitting a compatible
unanimity operation from which we will easily deduce a polynomial-time algorithm
recognise them:

Theorem 1.1. A finite, reflexive, symmetric graph admits a near-unanimity operatio
and only if each of its connected components does. A connected graphG admits a near-
unanimity operation if and only ifG2 dismantles to the diagonal.

The procedure for the connected case is as follows: look inG2 \ ∆ for a dismantlable
vertex, where∆ denotes the diagonal∆ = {(x, x): x ∈ G}. If there is none, stop
Otherwise, remove such a vertexu, and repeat the procedure withG2 \ {u}. When the
procedure stops, there are two possibilities: if we have reached∆, thenG admits a near
unanimity operation; otherwise, we obtain an induced subgraphK of G2 which does not
dismantle to the diagonal. By Corollary 2.6, this implies thatG2 does not dismantle to th
diagonal soG does not admit a near-unanimity operation.

The characterisation of reflexive, symmetric graphs with a compatible near-unan
operation (Theorem 3.1) has both an algebraic and a combinatorial flavour, and is
in spirit to Theorem 4.1 in [5] concerning dismantlable graphs. In fact, our characteris
has some interesting finite model-theoretic consequences: fix a finite structureT , and
consider theretraction problemfor T : given a structureS similar to T that contains it
as a substructure, determine if there is a retraction ofS onto T (see for instance [6,7])
V. Dalmau, A. Krokhin and the first author have recently shown, using the characteri
found here, that the reflexive, symmetric graphs whose retraction problem is first
definable are precisely those that are connected and admit a compatible near-un

operation [6]. A similar result holds for posets, but only if the inputs are restricted to
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posets; in fact, it is also noted in the same paper that the analogous result cannot h
digraph retraction problems.

Furthermore, the results for posets and symmetric graphs do not seem to gen
easily to general reflexive digraphs. Indeed, one of the keys to the existence
polynomial-time algorithm to recognise symmetric graphs (or posets) with a
unanimity operation is found in Lemma 2.5 below. LetG be a symmetric graph or a pos
and letr be a retraction ofG onto a subgraphH . If there exists a path in Hom(G,G)

consisting of retractions onto subgraphs containingH from the identity map tor , thenG

can be dismantled toH . Since the restriction of a retraction to its image is the iden
and composition of maps preserves adjacency, one may recursively reduce to the fo
situation: ifG retracts toH via a retractionr such that(id, r) is an edge in Hom(G,G) then
there exists a path of retractions from the identity tor , in such a way that the image of ea
is obtained by removal of one element of the preceding one. This provides a straightfo
procedure to find such retracts. However it is easy to come up with counterexamples
case of general digraphs: letf :A → B be a homomorphism from the (reflexive) digra
A to the digraphB. Define a new digraphC as follows: it is the disjoint union ofA andB,
with the extra edges(a, f (a′)) for every edge(a, a′) in A. It is easy to verify that the ma
r defined byr(t) = t if t ∈ B andr(t) = f (t) if t ∈ A is an edge-preserving retraction ofC

ontoB such that(id, r) is an edge in Hom(C,C). By choosing for instanceA andB to be
the same oriented cycle of length at least 3, andf the identity, we obtain a digraph whic
is domination-free.

Problem 1.2. Is there a polynomial-time algorithm that decides, given a digraphG and
an induced subdigraphH of G, whether there exists a retractionr of G ontoH such that
either(id, r) or (r, id) is an edge of Hom(G,G)?

It should also be noted that in fact even some of the results for posets do not carr
to the symmetric graph case: in [17], it is shown that if in a posetP every idempoten
1-subalgebra is connected (dismantlable) thenP admits a near-unanimity operation. Th
does not hold in the case of graphs:

Proposition 1.3. The graphG pictured in Fig.1 admits no near-unanimity operation b
all its idempotent1-subalgebras are dismantlable.

Proof. The fact that this graph admits no near-unanimity operation follows from
algorithm: the diagonal ofG2 does not dismantle to the diagonal. An alternative proof g
as follows: by a result of Feder and Hell [11], if a graph has a compatible near-unan
operation then it must be an absolute retract for arc-consistency and it is known th
graphG does not have this property [22].

We now show that every idempotent 1-subalgebra ofG is dismantlable. Let 0′, 0, 1′, 1,
2′, 2, 3′, 3 denote the vertices ofG on the outside cycle, starting from the top left corn
let u denote the middle vertex.

LetX be an idempotent 1-subalgebra ofG with at least 2 elements. We use the followi
equivalent description of idempotent 1-subalgebras (see, for example, [27]): there e

triple (H,f,h0) whereH is a reflexive, symmetric graph,f is a partial map fromH to G
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Fig. 1. A graph with no nuf whose subalgebras are all dismantlable.

andh0 ∈ H , such thatX consists of allg(h0) whereg is a homomorphism fromH to G

extendingf .

Claim 1. If one ofx ∈ {0′,1′,2′,3′} is in X then so are its neighbours.

Indeed, ifg(h0) = x whereg extends the mapf , andy dominatesx in G, then the
mapg′ defined byg′(t) = y if t = h0 andg′(t) = g(t) otherwise clearly extendsf and is
a homomorphism; since anyx ∈ {0′,1′,2′,3′} is dominated by its neighbours, this prov
our claim.

Claim 2. If X contains{0,1,2,3} then it containsu.

Consider the self-mapα of G defined byα(i′) = i for all i = 0,1,2,3 andα(x) = x

otherwise. It is clear thatα is a homomorphism, and one verifies easily thatα is adjacent
to id in Hom(G,G). Now define a 4-ary idempotent operationφ onG as follows:

φ(x, y, z,w) =



u, if (x, y, z,w) = (0,1,2,3),

x, if x = y = z = w,

α(x), otherwise.

A straightforward verification showsφ is a homomorphism. It follows thatX is closed
underφ. Thus, ifφ contains{0,1,2,3}, it also containsu.

So suppose thatX contains a member of{0′,1′,2′,3′}; by Claim 1 we see thatX must be
connected; and that it dismantles to its intersection with{0,1,2,3, u}. By direct inspection
and Claim 2 we conclude thatX ∩ {0,1,2,3, u} is itself dismantlable and hence so isX.

We may now assume thatX ⊆ {0,1,2,3, u}. Inspection shows that eitherX is
dismantlable, or without loss of generality (by symmetry ofG) we haveX = {0,2}. We
prove that this last case is not possible. Indeed, 0∈ X means that there is a homomorphis
g from H to G extendingf such thatg(h0) = 0. Define a mapg′ :H → H as follows:

g′(t) =



u, if t = h0,

f (t), if t is in the domain off,

α(g(t)), otherwise.

We claim thatg′ is a homomorphism. Indeed, becauseα and id are adjacent, the on

possible problem that might arise is if some neighbourx of h0 is such thatf (x) = 0′ or
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f (x) = 1′. But since 2∈ X there exists a homomorphism fromH toG mappingh0 to 2 that
extendsf , and so this is not possible. Hence we conclude thatu ∈ X, a contradiction. �

A few words of explanation are in order concerning the universal algebraic as
of our characterisation. To each graph (or more generally, to each relational stru
one may associate naturally a (universal) algebraA with universe the set of vertices o
the graph, and whosen-ary basic operations are all the homomorphisms fromGn to G.
The nature of the identities satisfied by the operations of this algebra has imp
repercussions on the shape of the graph (see, for example, [21].) The interest
called Gumm termsand Jónsson terms(see Theorem 3.1) stems from the fact t
they characterise those equational classes that are respectively congruence-mod
congruence-distributive (see [13] or [24].)

For the sake of completeness, we have included a full proof of Theorem 3.1 even t
some of the steps may be obtained with few changes from the poset case, see [20]. T
section contains the basic results about graph obstructions, graph homomorphis
identities on graphs we shall require in the proof of Theorem 3.1, and Section 3 co
the proof of the two main results, Theorems 3.1 and 1.1.

2. Preliminaries

2.1. Obstructions

To prove the existence of our intended algorithm, we will be exploiting the very st
relationship between near-unanimity operations and partial mappings that do not e
An obstructionfor the graphG is a pair(H,f ) whereH is a graph andf is a partial map
from H to G such that

(1) the mapf does not extend to a full homomorphism fromH to G, and
(2) (H,f ) is minimal with respect to property (1).

Minimality here is in the following sense: we say that the pair(H ′, f ′) ⊆ (H,f ) if H ′
is a subgraph ofH andf ′ is the restriction off to H ′. It is easy to see thatH must be
connected. We call the vertices ofH for which f is definedcolouredand we callf a
homomorphismif it is a homomorphism on the coloured vertices ofH . Obstructions were
first defined by Zádori for general relational structures [29], generalising hiszig-zagson
posets [30].

The following lemma was first pointed out in the poset form in [28] without proof.
proof can be found in Lemma 1.17 [29], the slight change in the definition of obstru
we use does not affect it.

Lemma 2.1. Let k � 3. A graphG admits ak-ary near-unanimity operation if and only

in every obstruction(H,f ) onG the number of coloured vertices is at mostk − 1.
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Lemma 2.2. Let (H,f ) be an obstruction on a graphG wheref is not a homomorphism
ThenH = {x, y}, wherexy is an edge ofH andf (x)f (y) is not an edge ofG.

Proof. As f is not a homomorphism, there existsx, y ∈ H such thatxy is an edge ofH ,
andf (x)f (y) is not an edge ofG. Suppose that there exits a vertexz in H distinct fromx

andy. Then(H \ z, f |H\z) is still not extendible, contradicting the minimality of(H,f ).
HenceH = {x, y} and the lemma is true.�
Lemma 2.3. Let (H,f ) be an obstruction on a graphG wheref is a partial homomor-
phism. Letxy be an edge ofH , x 	= y. Then ifx is coloured,y is not.

Proof. Suppose that bothx andy are coloured. LetH ′ be the graph we obtain by removin
the edgexy from H . By the definition of an obstruction, there exists an extensionf ′ of
(H ′, f ). But, sincef was a homomorphism,f ′(x)f ′(y) must be an edge ofG, and sof ′
is an extension of(H,f ), contradiction. �
Lemma 2.4. Let (H,f ) be an obstruction onG. If a vertexx of H has distinct coloured
neighboursz andy, thenf (y) 	= f (z).

Proof. If f is not a homomorphism then the claim is clear by Lemma 2.2. Otherwis
Lemma 2.3,x can not be coloured. LetH ′ be the graph we obtain by removing the ed
xy from H . Consider(H ′, f ). By the definition of obstructions, there exists an extens
f ′ of (H ′, f ). If f (y) = f (z), then we must also havef ′(y) = f ′(z). Sincef ′(x)f ′(z) is
an edge ofG, f ′ must also be an extension of(H,f ), contradiction. �
2.2. Dismantlable and ramified graphs

Lemma 2.5. Let G be a graph andH an induced subgraph ofG. Then the following
statements are equivalent:

(1) G dismantles toH .
(2) There exists a path{fi} (i = 0, . . . ,m) in Hom(G,G) such that

(i) f0 = id,
(ii) fm is a retraction ontoH , and

(iii) H ⊆ fi(G) for all i = 0, . . . ,m.

Proof. (1) ⇒ (2). Simply notice that ify dominatesx in G then the retraction tha
sendsx to y and fixes all other vertices is adjacent to the identity in Hom(G,G), so
we may use induction on|G| − |H |: if G = H the result is obvious. Now letr be the
retraction described above ofG ontoG′ = G \ {x}. By induction, there exists a path{f ′

i }
(i = 0, . . . ,m) in Hom(G′,G′) satisfying (ii). It is clear that{id} ∪ {f ′

i ◦ r} is a path in
Hom(G,G) that satisfies the desired conditions.

(2) ⇒ (1). Let {fi} (i = 0, . . . ,m) in Hom(G,G) be a path that satisfies the desir
conditions. We may in fact assume that eachfi is a retraction: indeed we may replacefi by

f s

i wheres is large enough so thatf s
i is a retraction for alli = 0, . . . ,m; since composition
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suppose thatfi(G) ⊇ fj (G) for all i � j . To see this, composef1 on the left with all the
retractions followingf1 in the path: one obtains the new path id, f1, f1 ◦ f2, . . . , f1 ◦ fm

which still has the desired properties and is such that the image of every map that f
f1 in the sequence is contained inf1(G). Again we may iterate each map to obta
retractions, say a path{gi}. Repeat the procedure, this time starting atg2: one obtains
the path id, g1, g2, g2 ◦ g3, . . . , g2 ◦ gm. Repeating this way we obtain the desired path

To finish the proof, it is now sufficient to consider the following situation: letr be a
retraction ofG ontoR which is adjacent to the identity in Hom(G,G); we claim thatG
dismantles toR. Indeed, ifG = R we are done. Otherwise, letx /∈ R. If xy is an edge ofG
thenr(x)y is an edge also since(id, r) is an edge of Hom(G,G). HenceN(x) ⊆ N(r(x))

and soG dismantles toG \ {x}. Obviously the restriction ofr to G \ {x} is adjacent to the
identity so by induction,G \ {x} dismantles toR hence we are done. Combining this w
the path above yields the result.�
Corollary 2.6. Let H ⊆ K be induced subgraphs of the graphG. If G dismantles toH
thenK dismantles toH .

Proof. SupposeG dismantles toH . Restrict toK the path whose existence is guarante
by the last lemma; it is easy to see that this is a path in Hom(K,K) with similar properties
and so by Lemma 2.5,K dismantles toH . �
Lemma 2.7. LetG be a graph. Then the following statements are equivalent:

(1) G is ramified.
(2) The identity function is an isolated vertex inHom(G,G).
(3) Each automorphism ofG is an isolated vertex inHom(G,G).

Proof. (1) ⇒ (2). Let G be a ramified graph. Letf be a vertex of Hom(G,G) that is
adjacent to idG. Letx be a vertex ofG. Then idG(z)f (x) is an edge ofG for all neighbours
z of x in G. As G is ramified,f (x) = x. Thereforef = idG.

(2) ⇒ (3). Let G be a graph such that idG is an isolated vertex in Hom(G,G). Let f

be an automorphism onG. Suppose thatf is adjacent tog in Hom(G,G). Thusf (x)g(y)

is an edge ofG wheneverxy is an edge ofG. This implies that idG = f ◦ f −1 and
g ◦ f −1 are adjacent in Hom(G,G). Thereforeg ◦ f −1 = idG, and sof = g. Therefore
each automorphism onG is an isolated vertex in Hom(G,G).

(3) ⇒ (1). Immediate by Lemma 2.5.�
Lemma 2.8. LetG be a connected graph. Then the following statements are equivale:

(1) G is dismantlable.
(2) No retract ofG is ramified.

(3) Hom(H,G) is connected for every graphH .
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Proof. (1) ⇒ (2). Let r be a retraction ofG ontoH , and let{fi} be a path in Hom(G,G)

from the identity to a constant map. Then{r ◦ fi |H } is a path in Hom(H,H) from the
identity to a constant function; hence by Lemma 2.7,H cannot be ramified.

(2) ⇒ (1). Trivial.
(1) ⇒ (3). Letf ∈ Hom(H,G) and let{fi} be a path in Hom(G,G) from the identity

to a constant map. Then the compositionsfi ◦ f form a path fromf to a constant map in
Hom(H,G).

(3) ⇒ (1). By hypothesis there exists a path{fi} in Hom(G,G) with f0 = id andfm a
constant map. As we did in the proof of Lemma 2.5, it is easy to compose these m
the right way to ensure that the value of the constant mapfm will lie in fi(G) for all i; by
Lemma 2.5 this shows thatG is dismantlable. �
Lemma 2.9. LetG andH be graphs, whereG is connected. Letf ∈ Hom(H,G). If there
exists a dismantlable induced subgraphX of G such thatf (H) ⊆ X, thenf is in CH,G.

Proof. The graph Hom(H,X) is connected by Lemma 2.8 and so there exists a
from f to some constant map in Hom(H,X). As Hom(H,X) is an induced subgrap
of Hom(H,G), there is a path fromf to a constant map in Hom(H,G). �
2.3. Identities

In this section we state a result we shall require in the proof of the main result. Sin
proof is a straightforward variant of the poset case (Lemma 4.1 and Theorem 4.2 of
we omit it.

A graph G admits Gumm operations(see [24]) if there exist 3-ary operation
d0, . . . , dn,p onG that satisfy:

d0(x, y, z) ≈ x, (1)

di(x, y, x) ≈ x for all i, (2)

di(x, x, y) ≈ di+1(x, x, y) for i even, (3)

di(x, y, y) ≈ di+1(x, y, y) for i odd, (4)

dn(x, y, y) ≈ p(x, y, y), (5)

p(x, x, y) ≈ y. (6)

Theorem 2.10. Let G be a connected graph that admits Gumm operations. ThenG is
dismantlable.

3. Main results

The next theorem is the analogue of Theorem 4.3 in [20]. The proof closely fo
that of Theorem 4.3, with the exception of the implication that bounded diamet
obstructions implies a finite number of obstructions; this is a modification of a constru

used in [30] for posets.
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Theorem 3.1. Let G be a finite, connected graph. Then the following conditions
equivalent:

(1) G admits a near-unanimity operation.
(2) G admits Jónsson operations.
(3) G admits Gumm operations.
(4) For everyk � 1, every idempotentk-subalgebra ofG is dismantlable.
(5) For everyk � 1, every idempotentk-subalgebra ofG is connected.
(6) There is a path of idempotents between the2 projections inHom(G2,G).
(7) The diameter of obstructions forG is bounded.
(8) The number of obstructions forG is finite.

Proof. The proof that (1) implies (2) implies (3) is immediate by standard result
universal algebra (see [24]).

(3) ⇒ (4). Let H be an idempotentk-subalgebra. SinceG admits Gumm operation
d0, . . . , dn,p, which are all idempotent,H also admits Gumm operations. By The
rem 2.10, ifH is connected, thenH is dismantlable. Therefore all we need to do is pro
thatH is connected.

Letx andy be two vertices ofH ; we will show that there is a path betweenx andy in H .
By Theorem 2.10,G is dismantlable and so Hom(G2,G) is connected by Lemma 2.8. F
i = 0, . . . , n, define maps

Φi : Hom
(
G2,G

) → H

by

Φi(f ) = di

(
x,f (x, y), y

)
for all f ∈ Hom(G2,G). We claim thatΦi is a well defined homomorphism,i = 0, . . . , n.
Clearly,Φi is a homomorphism asdi andf are both homomorphisms,i = 0, . . . , n. Now
all we need to do is prove that the image of Hom(G2,G) underΦi is contained inH . Note
that the functionΦi(f ) is equal to the functiondi(π1, f,π2) evaluated at(x, y), whereπ1
is the projection on the first variable andπ2 the projection on the second. By identity (2
di(π1, f,π2) is idempotent. Hence asx, y ∈ H , Φi(f ) is also inH .

SinceΦi is a homomorphism and since Hom(G2,G) is connected,Φi(Hom(G2,G)) is
a connected subgraph ofH for i = 0, . . . , n. For i even, identity (3) implies that

Φi(π1) = di(x, x, y) = di+1(x, x, y) = Φi+1(π1)

and fori odd, identity (4) implies that

Φi(π2) = di(x, y, y) = di+1(x, y, y) = Φi+1(π2).

Therefore the images ofΦi andΦi+1 intersect for alli = 0, . . . , n. LetK be the componen
of H that contains these images. By identity (1),Φ0(f ) = d0(x, f (x, y), y) = x for all
f ∈ Hom(G2,G), and sox ∈ K . By identity (5),Φn(π2) = dn(x, y, y) = p(x, y, y), and
sop(x, y, y) is in K . All we need to do now is prove thaty is also inK .

SinceGk is connected, there exists a shortest path fromy to some vertexz of K , say of

lengthm. As Gk is reflexive, there exists a path of length 2l � m + 1 from y to z; if m is



B. Larose et al. / Journal of Algorithms 55 (2005) 177–191 187

f

ng
an

], it is

ll
an

e
l

odd, create a path of lengthm + 1 by repeating the vertexz. Let y = w0,w1, . . . ,w2l = z

be such a path. By applying the above argument,p(z, y, y) ∈ K . Now consider the
path p(w2l ,w0, y),p(w2l−1,w1, y), . . . , p(wl,wl, y) in Gk . As p(wl,wl, y) = y by
identity (6) and asp(w2l ,w0, y) = p(z, y, y), this is a path of lengthl from y to a vertex
of K and sol � m. Thereforem � 1, and soyz is an edge ofGk . Sincez, y ∈ H andH is
an induced subgraph ofGk , zy is also an edge ofH . Thereforey ∈ K .

(4) ⇒ (5). This is obvious by the definition of dismantlability.
(5) ⇒ (6). Is trivial, since Hom(G2,G) is a subset of the graphG|G|2, and the set o

idempotent binary operations constitutes an idempotent|G|2-subalgebra.
(6) ⇒ (7). Let P denote a path of lengthm between the two projections consisti

of idempotent operations in Hom(G2,G). Suppose for a contradiction that there exists
obstruction(H,f ) for G of diametern � m + 1: let h1, h2 be vertices ofH that are at
distancen from one another. Since paths are absolute retracts for reflexive graphs [26
easy to see that there exists a homomorphismφ :H → P such thatφ(hi) = πi for i = 1,2.
Let fi be an extension off whenhi is removed fromH . Then we define a mapF from H

to G as follows:

F(h) =



f2(h1) if h = h1,

f1(h2) if h = h2,

φ(h)(f2(h), f1(h)) otherwise.

It is clear thatF extendsf since eachfi extendsf andφ(h) is idempotent for allh. We
claim thatF is a homomorphism. Indeed, suppose thatu andv are adjacent inH . Without
loss of generality the only case we need to consider is whenu = h1 andv 	= h1: then

F(h1) = f2(h1) = π1
(
f2(h1), f1(v)

) = φ(h1)
(
f2(h1), f1(v)

)
is adjacent to

φ(v)
(
f2(v), f1(v)

) = F(v)

and we are done.
(7) ⇒ (8). Let n be the number of vertices inG. Assume that the diameter of a

obstructions onG is bounded above by a positive integerm, and suppose that there exist
infinite number of obstructions forG. Then there certainly exists an obstruction(H,f ) on
G where|H | � ∑m+1

j=0 ni . We can then use this obstruction(H,f ) to construct a sequenc
of obstructions(Hi, fi), 1� i � m+1, whereHi has diameteri, contradicting our origina
assumption.

To construct the above sequence of obstructions, we need the following claim:

Claim. Let G a graph withn vertices. Let(H,f ) be an obstruction onG and letw be a
vertex ofH such that

(i) A ∪ B ∪ C is a partition of the vertices ofH .
(ii) B andC are nonempty.
(iii) There are no edges between vertices inA and those inC.

(iv) w ∈ A ∪ B.
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Then there exists an obstruction(H ′, f ′) and a vertexw′ of H ′ such that

(I) A′ ∪ B ′ ∪ C′ is a partition of the vertices ofH ′.
(II) |B ′| � |B|, |C| � |C′| andB ′ is nonempty.

(III) There are no edges between vertices inA′ and vertices inC′.
(IV) w′ ∈ A′ ∪ B ′.
(V) dH ′(w′,B ′) � dH (w,B).
(VI) The number of vertices inC′ that have a neighbour inB ′ is at mostn|B|.

Let HC denote the subgraph ofH induced by the vertices inC. As B is nonempty,
there exists an extensiont of f |HC

to HC . For each sucht , there exists an obstructio
(Qt , gt ) ⊆ (H,f ∪ t). Note thatQt ∩C is nonempty else(Qt , gt ) ⊂ (H,f ), contradicting
the minimality of(H,f ). Moreover, all ofQt ∩ C must be coloured bygt as all ofC is
coloured byt .

Let Q be the graph created by taking copies of the graphHC and all the graphsQt

as described above, and identifying the vertices inC. We will denote the copy ofHC in
Q by ĤC , and the copy ofQt in Q by Q̂t . We giveQ the partial colouringg, whereg

inheritsf |HC
on ĤC andf |Qt\C on Q̂t for all t . Then(Q,g) is non-extendible, since fo

any extensiont of g to ĤC , there exists a copy of(Qt , gt ) contained in(Q,g).
Let (H ′, f ′) ⊆ (Q,g) be an obstruction. There exists a homomorphismh from H ′ to

H that maps each vertexx of H ′ to the vertex ofH from which it was copied. The maph
must be onto, else(H ′, f ′) would be extendible by the minimality of(H,f ). Let w′ be a
vertex ofH ′ such thath(w′) = w. Let s be the particular extension off |HC

such thatw′ is
a vertex ofQ̂s . LetA′ beh−1(A)∩ Q̂s , letB ′ beh−1(B)∩ Q̂s and letC′ be the rest ofH ′.

Clearly,A′ ∪ B ′ ∪ C′ is a partition ofH ′. By construction,|B ′| � |B|. ConsiderĤC .
As h is onto,ĤC ⊆ H ′. Therefore|C′| � |C|. By construction,w′ ∈ A′ ∪ B ′, and also by
construction, there are no edges between vertices inA′ and those inC′. Thus any path from
w′ to a vertex inC′ (at least one exits asH ′ is connected) must pass throughB ′, implying
thatB ′ 	= ∅. We havedH ′(w′,B ′) � dH (w,B) as

dH ′
(
w′,B ′) � dQs (w,B ∩ Qs) � dH (w,B).

Now all that is left to prove is (VI). By Lemmas 2.3 and 2.4, a vertex in an obstruc
on G has at mostn coloured neighbours. If we apply this to(Qs, gs), we deduce that a
the vertices ofB ∩ Qs have at mostn|B ∩ Qs | coloured neighbours inQs ; note that by
Lemma 2.4 there are no edges between coloured vertices. As all ofQs ∩ C is coloured in
(Qs, gs), at mostn|B ∩ Qs | vertices ofQs ∩ C have neighbours inQs ∩ B. Therefore at
mostn|B| vertices ofC′ have neighbours inB ′.

Now we will use the claim to construct(Hi, fi), 0� i � m + 1, with vertex setsAi , Bi

andCi and vertexai such that

• Ai ∪ Bi ∪ Ci is a partition of the vertices ofHi .
• ai ∈ Ai ∪ Bi .
• |Bi | � ni , B 	= ∅ and|Ci | � |H | − ∑i

j=0 ni .
• There are no edges betweenAi andCi .

• dHi

(ai,Bi) � i.
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Let (H,f ) an obstruction onG such that|H | �
∑m+1

j=0 nj , wherem is an upper bound
on the diameter of all obstructions onG. We start by settingH0 = H , A0 = ∅, B0 = {a0}
andC0 = H \ a0, wherea0 is some vertex ofH . ClearlyH0, A0, B0, C0 anda0 satisfy the
statements wheni = 0.

Suppose thati � 1, and that the statements are true fori − 1. Apply the claim to
(Hi−1, fi−1) with A = Ai−1, B = Bi−1, C = Ci−1 and w = ai−1. Let (Hi, fi) be the
resulting obstruction. LetAi = A′ ∪ B ′, let Bi be the vertices inC′ that have a neighbou
in B ′, and letCi = Hi \ (Ai ∪ Bi). Lastly, letai = w′.

Clearly Ai ∪ Bi ∪ Ci is a partition of the vertex set ofHi . It is also easy to see th
ai ∈ Ai ∪ Bi and thatdHi

(ai,Bi) � i. By construction, there are no edges betweenAi

andCi . We see thatBi is nonempty asB ′ andC′ are nonempty. In addition, by (VI),

|Bi | � n|B| = n|Bi−1| � n
(
ni−1) = ni.

SinceCi = C′ \ Bi andBi ⊆ C′ and by (II),

|Ci | =
∣∣C′∣∣ − |Bi | � |Ci−1| − |Bi | � |H | −

i−1∑
j=0

nj − ni = |H | −
i∑

j=0

nj .

(8) ⇒ (1). Assume that there exists a finite number of obstructions forG. Thus there
exists an integerk such that all obstructions onG have at mostk − 1 coloured vertices
Therefore by Lemma 2.1,G admits a near-unanimity operation of arityk. �
Proof of Theorem 1.1. If G has a near-unanimity operation then its components also
one as they are retracts ofG. Indeed, iff is ann-ary near-unanimity operation onG andr

is a retraction ontoH then the restriction ofr ◦f toHn is a near-unanimity operation onH .
Conversely, if each of the components has a near-unanimity operation then the obstr
for G are only the obstructions of the components and the paths with the two end
coloured from different components. So the maximum number of coloured elements
obstruction is finite andG admits a near-unanimity operation.

From this point on we assume thatG is connected. Suppose first thatG admits a
near-unanimity operation. By Theorem 3.1 there is a pathπ1 = f0, f1, . . . , fk = π2 of
idempotents between the two projections in Hom(G2,G). As G is reflexive, we may
assume thatk is even, i.e.,k = 2m. Note that(fi, fj ) is a vertex of Hom(G2,G2).
Moreover,(fi, fj ) and(fi+1, fj−1) are adjacent in Hom(G2,G2). Hence

(π1,π2) = (f1, f2m), (f2, f2m−1), . . . , (fm,fm)

is a path in Hom(G2,G2). In fact we claim that the path is from the identity to a retract
onto the diagonal. Clearly(π1,π2)(x, y) = (x, y). The range of(fm,fm) is the diagona
of G2 and (fm,fm)(x, x) = (x, x) as fm is idempotent. Moreover, each of the ma
in the path fixes the diagonal. Hence by Lemma 2.5,G2 dismantles to the diagona
Conversely, assume that there exists a path in Hom(G2,G2) from the identity map to
a retraction onto the diagonal such that the diagonal is contained in the image o
of these maps. Leth0, h1, . . . , hm be such a path. Thenπ1 ◦ h0,π1 ◦ h1, . . . , π1 ◦ hm =

2
π2 ◦ hm, . . . , π2 ◦ h1,π2 ◦ h0 is the desired path in Hom(G ,G). �



190 B. Larose et al. / Journal of Algorithms 55 (2005) 177–191

stems,

) 169–

raphs,

78 (1)

raphs,

ublica-

ebra

1)

action:

rican

1 (1–2)

f view,
. Soc.,

aton,

8.

th., in

1997)

lgebra

/Cole,

gebra
Acknowledgments

We thank Claude Tardif and the anonymous referee for their helpful comments.

References

[1] K.A. Baker, A.F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic sy
Math. Z. 143 (2) (1975) 165–174.

[2] H.-J. Bandelt, Graphs with edge-preserving majority functions, Discrete Math. 103 (1) (1992) 1–5.
[3] H.-J. Bandelt, G.C. Meletiou, An algebraic setting for near-unanimity consensus, Order 7 (2) (1990

178.
[4] R. Brewster, T. Feder, P. Hell, J. Huang, G. MacGillivray, Near-unanimity functions and varieties of g

in preparation.
[5] G.R. Brightwell, P. Winkler, Gibbs measures and dismantlable graphs, J. Combin. Theory Ser. B

(2000) 141–166.
[6] V. Dalmau, A. Krokhin, B. Larose, First-order definable retraction problems for posets and reflexive g

14 pages, LICS 2004, in press.
[7] V. Dalmau, A. Krokhin, B. Larose, Retractions onto series-parallel posets, 16 pages, submitted for p

tion, 2003.
[8] B.A. Davey, L. Heindorf, R. McKenzie, Near unanimity: an obstacle to general duality theory, Alg

Universalis 33 (3) (1995) 428–439.
[9] R. Dechter, From local to global consistency, Artificial Intelligence 55 (1992) 87–107.

[10] T. Feder, Homomorphisms to oriented cycles andk-partite satisfiability, SIAM J. Discrete Math. 14 (200
471–480.

[11] T. Feder, P. Hell, personal communication.
[12] T. Feder, M.Y. Vardi, The computational structure of monotone monadic (SNP) and constraint satisf

a study through datalog and group theory, SIAM J. Comput. 28 (1998) 57–104.
[13] D. Hobby, R. McKenzie, The Structure of Finite Algebras, in: Contemp. Math., vol. 76, Ame

Mathematical Society, Providence, RI, 1988.
[14] P.G. Jeavons, D.A. Cohen, M. Cooper, Constraints consistency and closure, Artificial Intelligence 10

(1998) 251–265.
[15] E.M. Jawhari, M. Pouzet, D. Misane, Retracts: graphs and ordered sets from the metric point o

in: Combinatorics and Ordered Sets (Arcata, CA, 1985), in: Contemp. Math., vol. 57, Amer. Math
Providence, RI, 1986, pp. 175–226.

[16] K. Kaarli, A.F. Pixley, Polynomial Completeness in Algebraic Systems, Chapman & Hall/CRC, Boca R
FL, 2001.

[17] G. Kun, Cs. Szabó, Order varieties and monotone retractions of finite posets, Order 18 (2001) 79–8
[18] B. Larose, Taylor operations on finite reflexive structures, in preparation.
[19] B. Larose, C. Tardif, A discrete homotopy theory for binary reflexive structures, 27 pages, Adv. Ma

press.
[20] B. Larose, L. Zádori, Algebraic properties and dismantlability of finite posets, Discrete Math. 163 (

89–99.
[21] B. Larose, L. Zádori, Finite posets and topological spaces in locally finite varieties, 17 pages, A

Universalis, in press.
[22] C. Loten, Retractions of chordal and related graphs, PhD Thesis, Simon Fraser University, 2003.
[23] M. Maróti, On the (un)decidability of a nu-term, preprint, 34 pages.
[24] R.N. McKenzie, G.F. McNulty, W.F. Taylor, Algebras, Lattices and Varieties, Wadsworth and Brooks

Monterey, CA, 1987.
[25] A. Mitschke, Near unanimity identities and congruence distributivity in equational classes, Al

Universalis 8 (1) (1978) 29–32.

[26] R. Nowakowski, I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 235–239.



B. Larose et al. / Journal of Algorithms 55 (2005) 177–191 191

haften,

) 211–

) (1997)

(1995)
[27] R. Pöschel, L.A. Kaluznin, Funtionen- und Relationenalgebren, VEB Deutscher Verlag der Wissensc
Berlin, 1979.

[28] G. Tardos, A maximal clone of monotone operations which is not finitely generated, Order 3 (1986
218.

[29] L. Zádori, Relational sets and categorical equivalence of algebras, Internat. J. Algebra Comput. 7 (5
561–576.

[30] L. Zádori, Monotone Jónsson operations and near unanimity functions, Algebra Universalis 33 (2)

216–236.


