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Abstract

We present a simple polynomial-time algorithm that recognises reflexive, symmetric graphs
admitting a near-unanimity operation. Several other characterisations of these graphs are also
presented.
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1. Introduction

The graphs considered here are reflexive and symmetric, i.e., finite relational structures
(G, 0) wheref is a binary relation orG satisfying(x, x) € 6 forall x e G and(y, x) €6
whenever(x, y) € 6. The elements of; are calledvertices We usually writexy to mean
(x,y) € 0 and say thaky is anedgeof the graphG or thatx andy areadjacentin G.
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We will also refer tax as the neighbour of, and vice versa. A vertex with only itself as a
neighbour is arsolated vertexThe set of all neighbours af is called theneighbourhood
of x and is denoted by (x). A graph H is asubgraphof a graphG if H € G and each
edge ofH is also an edge ofi; H is aninduced subgraplf G for all verticesx, y € H
such thatcy is an edge of5, xy is also an edge off. A path of lengthk in a graphG is

a sequence of vertices, x1, ..., x; such thaty;x; .1 is an edge oG fori =0, ...,k — 1;
note that we do not require that the vertices be distinct. A grapbrisectedf there exists

a path between all pairs of vertices agidconnectedtherwise. Acomponendf a graph
G is an induced subgrapH of G that is maximal with respect to being connected; thus
for a disconnected grapt, if R is a subgraph of; andH is a proper subgraph @, then

R is disconnected.

The product we consider here is the usual product of structures, namélyarifd H
are graphs, thefg1, k1) and(gz, h2) are adjacent irG x H if g1 is adjacent tao in G
andhq is adjacent tai, in H. An k-ary operationon a graphG is a graph homomorphism
f:G* — G.If fis an operation oG we say thaiG admits f, or that f is compatible
with G. An operation isidempotentf it satisfies the identityf (x,x,...,x) ~ x (i.e.,
f(x,x,...,x) =x for all x € G). An operationf is anear-unanimity operatiofif f is
idempotentand (y, x,...,x)~ f(x,y,x, ..., X))~ f(x,x,...,X,y) ®x.

Let G be a graph. We call a vertexof G dismantlabldf there exists a distinct vertex
y of G such thatN (x) € N(y); we say that the vertex dominatest. Note that asG is
reflexive,x must be inN(y) and sox andy are adjacent. A graply is dismantlableif
we can writeG as a sequence of vertices, ..., x, such thaty; is dismantlable in the
subgraph of5 induced by{x;, ..., x,},i =1,...,n — 1. Such a sequence iglsmantling
ordering Observe that if a grap&f is dismantlable, it must also be connected; eithidras
only one vertex oiG has a dismantling ordering, ..., x,, where for each < n, x; has
aneighbour;, i < j <n. Thus, ifx; is the vertex of highest index in a componenif
eitherx; = x, or x; must have a neighbour,, k < p < n. ThereforeG can only have
one component. Lelf be an induced subgraph 6f. If there exists a sequence of vertices
X1,...,X; in G suchthatd = G\ {x1, ..., xx} andx; is dismantlable in the subgraph 6f
induced by{x;, ..., xx} U H, then we say tha; dismantledo H and thatxy, ..., x; is a
dismantlingto H. We callG ramifiedif G has at least two vertices and has no dismantlable
vertices.

Let G be a graph. An induced subgrapt of the graphG* is an idempotent
k-subalgebraif it is invariant under all idempotent operations 6h More precisely, let
f be am-ary idempotent operation af and letX be a subset ofi*. ThenX is invariant
under £ if, for any matrix M of sizek x n whose columns are iX, the column obtained
by applying f to thek rows of M is also inX.

Given two graphsG and H, Hom(H, G) is the graph whose vertex set is all
homomorphisms fromH to G, where homomorphismsg and g are adjacent in
Hom(H, G) if f(x)g(y) is an edge ofG wheneverxy is an edge ofH. Note that
Hom(H, G) is also reflexive, and that composition is edge-preservingoAstant map
from H to G is map that sends all vertices #f to one particular vertex of. For a given
vertexx of G, we denote byt the map that sends all @¢f to x. If G is connected, then
the constant maps frorff to G are in the same component of HoFh, G). Denote this
component bYCy .
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Near-unanimity operations have attracted a great deal of attention in recent years, not
only in universal algebra [1,3,8,16,25], but also in the context of graph theory [2,4,10,
15,22] and computer science. For instance, a (restricted) constraint satisfaction problem
(CSP) is of bounded strict width if and only if its target structure admits a compatible
near-unanimity operation, if and only if the target structure satisfieg-thelly property
for somel [12]. In particular, it is well known that a CSP whose target structure admits
a compatible near-unanimity operation is solvable in polynomial-time [14] (see also [9]).
However, it is still not known if the property of admitting a compatible near-unanimity
operation is actually decidable [12]. The closely related problem of determining whether
a finite algebra admits a near-unanimity term operation is thought to be undecidable, and
although partial results have been obtained the question remains open [23].

In view of the above, it seems natural to seek out classes of structures for which
the problem of determining the existence of compatible near-unanimity operations is
decidable, or even tractable. Families of finite algebras for which the problem is decidable
are presented in [23], and a polynomial-time algorithm to recognise finite posets with a
compatible near-unanimity operation can be found in [17], based on a characterisation of
these posets by the first and third authors [20]. Reflexive binary structures are a natural
generalisation of posets, and much more flexible. For instance, these can be used as a tool
for showing some non-trivialNP-completeness results (see [18,19]). The present paper
describes a characterisation of reflexive, symmetric graphs admitting a compatible near-
unanimity operation from which we will easily deduce a polynomial-time algorithm to
recognise them:

Theorem 1.1. A finite, reflexive, symmetric graph admits a near-unanimity operation if
and only if each of its connected components does. A connected Gragimits a near-
unanimity operation if and only i;? dismantles to the diagonal.

The procedure for the connected case is as follows: loak3n A for a dismantlable
vertex, whereA denotes the diagonal = {(x,x): x € G}. If there is none, stop.
Otherwise, remove such a vertex and repeat the procedure wiG? \ {x}. When the
procedure stops, there are two possibilities: if we have reaghddenG admits a near-
unanimity operation; otherwise, we obtain an induced subgfagt G2 which does not
dismantle to the diagonal. By Corollary 2.6, this implies tG&tdoes not dismantle to the
diagonal saG does not admit a near-unanimity operation.

The characterisation of reflexive, symmetric graphs with a compatible near-unanimity
operation (Theorem 3.1) has both an algebraic and a combinatorial flavour, and is similar
in spirit to Theorem 4.1 in [5] concerning dismantlable graphs. In fact, our characterisation
has some interesting finite model-theoretic consequences: fix a finite stractuard
consider theetraction problemfor 7°: given a structureS similar to 7 that contains it
as a substructure, determine if there is a retractio§ ohto 7 (see for instance [6,7]).

V. Dalmau, A. Krokhin and the first author have recently shown, using the characterisation
found here, that the reflexive, symmetric graphs whose retraction problem is first-order
definable are precisely those that are connected and admit a compatible near-unanimity
operation [6]. A similar result holds for posets, but only if the inputs are restricted to
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posets; in fact, it is also noted in the same paper that the analogous result cannot hold for
digraph retraction problems.

Furthermore, the results for posets and symmetric graphs do not seem to generalise
easily to general reflexive digraphs. Indeed, one of the keys to the existence of a
polynomial-time algorithm to recognise symmetric graphs (or posets) with a near-
unanimity operation is found in Lemma 2.5 below. ebe a symmetric graph or a poset,
and letr be a retraction ofz onto a subgraptH. If there exists a path in Ho(w, G)
consisting of retractions onto subgraphs contairfihfrom the identity map to, thenG
can be dismantled té/. Since the restriction of a retraction to its image is the identity,
and composition of maps preserves adjacency, one may recursively reduce to the following
situation: ifG retracts taH via a retraction such thatid, r) is an edge in HofG, G) then
there exists a path of retractions from the identity ton such a way that the image of each
is obtained by removal of one element of the preceding one. This provides a straightforward
procedure to find such retracts. However it is easy to come up with counterexamples in the
case of general digraphs: Igt A — B be a homomorphism from the (reflexive) digraph
A to the digraphB. Define a new digraply’ as follows: it is the disjoint union of and B,
with the extra edgeg:, f(a’)) for every edgda, a’) in A. It is easy to verify that the map
r defined byr(¢) = if t € B andr(¢) = f(¢) if t € A is an edge-preserving retraction©f
onto B such that(id, r) is an edge in HoitC, C). By choosing for instancd andB to be
the same oriented cycle of length at least 3, #rttie identity, we obtain a digraph which
is domination-free.

Problem 1.2. Is there a polynomial-time algorithm that decides, given a digr@pénd
an induced subdigrapH of G, whether there exists a retractierof G onto H such that
either(id, r) or (r, id) is an edge of HotG, G)?

It should also be noted that in fact even some of the results for posets do not carry over
to the symmetric graph case: in [17], it is shown that if in a paRedvery idempotent
1-subalgebra is connected (dismantlable) tiReadmits a near-unanimity operation. This
does not hold in the case of graphs:

Proposition 1.3. The graphG pictured in Fig.1 admits no near-unanimity operation but
all its idempotentl-subalgebras are dismantlable.

Proof. The fact that this graph admits no near-unanimity operation follows from our
algorithm: the diagonal of? does not dismantle to the diagonal. An alternative proof goes
as follows: by a result of Feder and Hell [11], if a graph has a compatible near-unanimity
operation then it must be an absolute retract for arc-consistency and it is known that the
graphG does not have this property [22].

We now show that every idempotent 1-subalgebré& a$ dismantlable. Let'00, 1, 1,
2, 2, 3, 3 denote the vertices @ on the outside cycle, starting from the top left corner;
let u denote the middle vertex.

Let X be anidempotent 1-subalgebra®fvith at least 2 elements. We use the following
equivalent description of idempotent 1-subalgebras (see, for example, [27]): there exists a
triple (H, f, ho) whereH is a reflexive, symmetric graplf, is a partial map fronH to G
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Fig. 1. A graph with no nuf whose subalgebras are all dismantlable.

andhg € H, such thatX consists of allg(hg) whereg is a homomorphism fron#/ to G
extendingf .

Claim 1. If one ofx € {0/, 1/, 2, 3'} is in X then so are its neighbours.

Indeed, ifg(ho) = x whereg extends the mag, andy dominatesx in G, then the
mapg’ defined byg'(r) = y if t = hg andg’(¢) = g(¢) otherwise clearly extendg and is
a homomorphism; since anye {0, 1', 2, 3'} is dominated by its neighbours, this proves
our claim.

Claim 2. If X contains{0, 1, 2, 3} then it contains:.

Consider the self-map of G defined bya(i’) =i foralli =0, 1,2, 3 anda(x) = x
otherwise. It is clear that is a homomorphism, and one verifies easily thas adjacent
to id in Hom(G, G). Now define a 4-ary idempotent operati$ron G as follows:

u, if (X,y,z,w):(O, 1,273,
¢(x1y’z3w)= X, Ifx:y:z:w,
a(x), otherwise.

A straightforward verification showg is a homomorphism. It follows thaX is closed
under¢. Thus, if¢ contains{0, 1, 2, 3}, it also containg:.

So suppose tha contains a member ¢0', 1/, 2/, 3'}; by Claim 1 we see that must be
connected; and that it dismantles to its intersection ¥ith, 2, 3, u}. By direct inspection
and Claim 2 we conclude that N {0, 1, 2, 3, u} is itself dismantlable and hence saXs

We may now assume thaX C {0,1,2,3,u}. Inspection shows that eitheX is
dismantlable, or without loss of generality (by symmetry@fwe haveX = {0, 2}. We
prove that this last case is not possible. Indeegl X0means that there is a homomorphism
g from H to G extendingf such thafg (ko) = 0. Define a mag’: H — H as follows:

u, if r = ho,
gy =1 f@, if ¢ is in the domain off,
a(g()), otherwise.

We claim thatg’ is a homomorphism. Indeed, becauseand id are adjacent, the only
possible problem that might arise is if some neighhowf &g is such thatf(x) = 0 or



182 B. Larose et al. / Journal of Algorithms 55 (2005) 177-191

f(x) =1". Butsince 2 X there exists a homomorphism frathto G mappinghg to 2 that
extendsf, and so this is not possible. Hence we conclude#haiX, a contradiction. O

A few words of explanation are in order concerning the universal algebraic aspects
of our characterisation. To each graph (or more generally, to each relational structure)
one may associate naturally a (universal) algebraith universe the set of vertices of
the graph, and whose-ary basic operations are all the homomorphisms fi@fnto G.

The nature of the identities satisfied by the operations of this algebra has important
repercussions on the shape of the graph (see, for example, [21].) The interest in so-
called Gumm termsand Jénsson termgsee Theorem 3.1) stems from the fact that
they characterise those equational classes that are respectively congruence-modular and
congruence-distributive (see [13] or [24].)

For the sake of completeness, we have included a full proof of Theorem 3.1 even though
some of the steps may be obtained with few changes from the poset case, see [20]. The next
section contains the basic results about graph obstructions, graph homomorphisms and
identities on graphs we shall require in the proof of Theorem 3.1, and Section 3 contains
the proof of the two main results, Theorems 3.1 and 1.1.

2. Preliminaries
2.1. Obstructions

To prove the existence of our intended algorithm, we will be exploiting the very strong
relationship between near-unanimity operations and partial mappings that do not extend.
An obstructionfor the graphG is a pair(H, f) whereH is a graph and is a partial map
from H to G such that

(1) the mapf does not extend to a full homomorphism frdinto G, and
(2) (H, f) is minimal with respect to property (1).

Minimality here is in the following sense: we say that the p@d’, /') C (H, f) if H’
is a subgraph ol and f’ is the restriction off to H’. It is easy to see tha must be
connected. We call the vertices &f for which f is definedcolouredand we callf a
homomorphismif it is a homomorphism on the coloured verticestf Obstructions were
first defined by Zadori for general relational structures [29], generalisingigrigagson
posets [30].

The following lemma was first pointed out in the poset form in [28] without proof. The
proof can be found in Lemma 1.17 [29], the slight change in the definition of obstruction
we use does not affect it.

Lemma 2.1. Letk > 3. A graphG admits ak-ary near-unanimity operation if and only if
in every obstructiortH, f) on G the number of coloured vertices is at mést 1.
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Lemma2.2. Let (H, f) be an obstruction on a grap& where f is not a homomorphism.
ThenH = {x, y}, wherexy is an edge o and f (x) f (y) is not an edge of;.

Proof. As f is not a homomorphism, there existsy € H such thatcy is an edge of,
and f(x) f(y) is not an edge of;. Suppose that there exits a verteix H distinct fromx
andy. Then(H \ z, f|m\) is still not extendible, contradicting the minimality of, f).
HenceH = {x, y} and the lemma is true.O

Lemma 2.3. Let (H, f) be an obstruction on a grap&8 where f is a partial homomor-
phism. Letxy be an edge off, x # y. Then ifx is coloured,y is not.

Proof. Suppose that bothandy are coloured. LeH’ be the graph we obtain by removing
the edgexy from H. By the definition of an obstruction, there exists an extengioof
(H', f). But, sincef was a homomorphisny;’(x) f'(y) must be an edge a@¥, and sof’

is an extension ofH, f), contradiction. O

Lemma 2.4. Let (H, f) be an obstruction oii;. If a vertexx of H has distinct coloured
neighbourg, andy, then f(y) # f(z).

Proof. If f is not a homomorphism then the claim is clear by Lemma 2.2. Otherwise, by
Lemma 2.3,x can not be coloured. L&’ be the graph we obtain by removing the edge
xy from H. Consider(H’, f). By the definition of obstructions, there exists an extension

fof (H, f).If f(y)= f(z), then we must also havg (y) = f'(z). Sincef’'(x) f'(z) is
an edge ofG, f/ must also be an extension @, f), contradiction. O

2.2. Dismantlable and ramified graphs

Lemma 2.5. Let G be a graph andH an induced subgraph ofi. Then the following
statements are equivalent

(1) G dismantles taH.
(2) There exists a pathf;} (i =0, ...,m) in Hom(G, G) such that
() fo=id,
(i) fw is aretraction ontoH, and
(i) HC f;(G)foralli=0,...,m.

Proof. (1) = (2). Simply notice that ify dominatesx in G then the retraction that
sendsx to y and fixes all other vertices is adjacent to the identity in HENG), so
we may use induction ofG| — |H|: if G = H the result is obvious. Now let be the
retraction described above 6fonto G’ = G \ {x}. By induction, there exists a paflf;}

(i =0,...,m)in Hom(G', G') satisfying (ii). It is clear tha{id} U {f/ o r} is a path in
Hom(G, G) that satisfies the desired conditions.

(2) = (1). Let{f;} ( =0,...,m) in Hom(G, G) be a path that satisfies the desired

conditions. We may in fact assume that eggls a retraction: indeed we may replagedy

fi wheres is large enough so thg}’ is a retraction forall =0, ..., m; since composition



184 B. Larose et al. / Journal of Algorithms 55 (2005) 177-191

is edge-preserving the resulting sequence has all the desired properties. We may also
suppose thaf; (G) 2 f;(G) for all i < j. To see this, composf on the left with all the
retractions followingfi in the path: one obtains the new path jd, f10 f2,..., fio fu

which still has the desired properties and is such that the image of every map that follows
f1 in the sequence is contained jfi(G). Again we may iterate each map to obtain
retractions, say a patfy;}. Repeat the procedure, this time startingggt one obtains

the path id g1, g2, g20 g3, ..., g2 0 gn - Repeating this way we obtain the desired path.

To finish the proof, it is now sufficient to consider the following situation:rldte a
retraction ofG onto R which is adjacent to the identity in Hoi@&, G); we claim thatG
dismantles taR. Indeed, ifG = R we are done. Otherwise, let¢ R. If xy is an edge o5
thenr(x)y is an edge also sindgd, r) is an edge of HortG, G). HenceN (x) C N(r(x))
and soG dismantles td5 \ {x}. Obviously the restriction of to G \ {x} is adjacent to the
identity so by inductionG \ {x} dismantles taR hence we are done. Combining this with
the path above yields the resulto

Corollary 2.6. Let H C K be induced subgraphs of the gragh If G dismantles toH
thenK dismantles taH .

Proof. Suppose&; dismantles taH . Restrict toK the path whose existence is guaranteed
by the last lemma; it is easy to see that this is a path in HonK ) with similar properties,
and so by Lemma 2.5 dismantlestad. 0O

Lemma 2.7. Let G be a graph. Then the following statements are equivalent

(1) G is ramified.
(2) The identity function is an isolated vertextiom(G, G).
(3) Each automorphism af is an isolated vertex ilom(G, G).

Proof. (1) = (2). Let G be a ramified graph. Lef be a vertex of HorG, G) that is
adjacenttoig. Letx be a vertex of5. Then id; (z) f (x) is an edge o& for all neighbours
zof x in G. As G is ramified, f (x) = x. Thereforef =idg.

(2) = (3). Let G be a graph such thatddis an isolated vertex in Ho(@, G). Let f
be an automorphism ofi. Suppose that is adjacent tg in Hom(G, G). Thus f (x)g(y)
is an edge ofG wheneverxy is an edge ofG. This implies that ig = f o f~1 and
g o f~ 1 are adjacent in HotG, G). Thereforeg o f~1 =idg, and sof = g. Therefore
each automorphism o is an isolated vertex in How, G).

(3) = (1). Immediate by Lemma 2.5.0

Lemma 2.8. Let G be a connected graph. Then the following statements are equivalent

(1) G is dismantlable.
(2) No retract ofG is ramified.
(3) Hom(H, G) is connected for every grapH.
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Proof. (1) = (2). Letr be a retraction o&; onto H, and let{ f;} be a path in HorG, G)
from the identity to a constant map. Théno f;|y} is a path in HomH, H) from the
identity to a constant function; hence by Lemma ZH7¢annot be ramified.

(2) = (1). Trivial.

(1) = (3). Let f e Hom(H, G) and let{f;} be a path in HorG, G) from the identity
to a constant map. Then the compositighe f form a path fromf to a constant map in
Hom(H, G).

(3) = (1). By hypothesis there exists a pdtfi} in Hom(G, G) with fo=id and f,, a
constant map. As we did in the proof of Lemma 2.5, it is easy to compose these maps in
the right way to ensure that the value of the constant fiyawill lie in f; (G) for all i; by
Lemma 2.5 this shows that is dismantlable. O

Lemma2.9. LetG and H be graphs, wher& is connected. Lef € Hom(H, G). If there
exists a dismantlable induced subgraftof G such thatf (H) € X, thenf isin Cy .

Proof. The graph HorH, X) is connected by Lemma 2.8 and so there exists a path
from f to some constant map in Hai, X). As Hom(H, X) is an induced subgraph
of Hom(H, G), there is a path fronf to a constant map in Hogfl, G). O

2.3. ldentities

In this section we state a result we shall require in the proof of the main result. Since the
proof is a straightforward variant of the poset case (Lemma 4.1 and Theorem 4.2 of [20]),
we omit it.

A graph G admits Gumm operationg(see [24]) if there exist 3-ary operations
do, ...,d,, ponG that satisfy:

do(x,y,z) ~x, 1)
di(x,y,x)~x foralli, (2)
di(x,x,y)~di11(x,x,y) forieven 3)
di(x,y,y)~diy1(x,y,y) foriodd 4)
dn(x,y,y) % p(x,y,), 5)
plx,x,y)~y. (6)

Theorem 2.10. Let G be a connected graph that admits Gumm operations. Thds
dismantlable.

3. Main results

The next theorem is the analogue of Theorem 4.3 in [20]. The proof closely follows
that of Theorem 4.3, with the exception of the implication that bounded diameter of
obstructions implies a finite number of obstructions; this is a modification of a construction
used in [30] for posets.
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Theorem 3.1. Let G be a finite, connected graph. Then the following conditions are
equivalent

(1) G admits a near-unanimity operation.

(2) G admits Jonsson operations.

(3) G admits Gumm operations.

(4) For everyk > 1, every idempoterit-subalgebra of5 is dismantlable.
(5) For everyk > 1, every idempoterit-subalgebra ofG is connected.

(6) There is a path of idempotents between2hmojections inHom(G?2, G).
(7) The diameter of obstructions fa@¥ is bounded.

(8) The number of obstructions far is finite.

Proof. The proof that (1) implies (2) implies (3) is immediate by standard results in
universal algebra (see [24]).

(3) = (4). Let H be an idempotent-subalgebra. Sinc& admits Gumm operations
do,...,d,, p, which are all idempotentH also admits Gumm operations. By Theo-
rem 2.10, ifH is connected, the# is dismantlable. Therefore all we need to do is prove
that H is connected.

Letx andy be two vertices off; we will show that there is a path betweeandy in H.

By Theorem 2.10¢ is dismantlable and so Hai@?2, G) is connected by Lemma 2.8. For
i =0,...,n, define maps

®; :Hom(G?,G) — H
by
d)i(f):di(xv f(X, y), y)

forall f e Hom(G2, G). We claim thai®; is a well defined homomorphism=0,..., n.
Clearly, @; is a homomorphism ag and f are both homomorphisms=0, ..., n. Now
all we need to do is prove that the image of H@M, G) underd; is contained inH . Note
that the functiond; ( f) is equal to the functiod; (r1, f, 72) evaluated atx, y), wheremy
is the projection on the first variable and the projection on the second. By identity (2),
d; (w1, f, m2) is idempotent. Hence as y € H, &;(f) is also inH.

Since®; is a homomorphism and since HOG7, G) is connectedd; (Hom(G?2, G)) is
a connected subgraph éf fori =0, ..., n. Fori even, identity (3) implies that

@i(m1) =di(x,x,y) =dit1(x,x,y) = Pi1(71)
and fori odd, identity (4) implies that

Di(m2) =di(x,y,y) =dit1(x,y,y) = Piy1(m2).

Therefore the images @f; and®; 1 intersectforal =0, ...,n. Let K be the component
of H that contains these images. By identity (8p(f) = do(x, f(x,y),y) = x for all
f € Hom(G?, G), and sax € K. By identity (5), @, (72) = d,(x,y,y) = p(x, y, y), and
sop(x,y,y)isin K. All we need to do now is prove thatis also ink .

SinceG* is connected, there exists a shortest path fyaimsome vertex of K, say of
lengthm. As G* is reflexive, there exists a path of length2m + 1 from y to z; if m is
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odd, create a path of lengthh+ 1 by repeating the vertex Lety = wg, wy, ..., wy =2
be such a path. By applying the above argumertt, v, y) € K. Now consider the
path p(wa, wo, y), p(wz—1, w1, y), ..., p(w, wy, y) in G, As p(w;, w,y) =y by
identity (6) and ap(wy;, wo, y) = p(z, v, y), this is a path of length from y to a vertex
of K and sa < m. Thereforen < 1, and soyz is an edge ot:*. Sincez, y € H andH is
an induced subgraph @f*, zy is also an edge afl. Thereforey € K.

(4) = (5). This is obvious by the definition of dismantlability.

(5) = (6). Is trivial, since HoniG2, G) is a subset of the grapti!®*, and the set of
idempotent binary operations constitutes an idempadt@ftsubalgebra.

(6) = (7). Let P denote a path of lengthk between the two projections consisting
of idempotent operations in Hai@2, G). Suppose for a contradiction that there exists an
obstruction(H, f) for G of diametern > m + 1: let hq, ho be vertices ofH that are at
distance: from one another. Since paths are absolute retracts for reflexive graphs [26], it is
easy to see that there exists a homomorphisii — P such thaw (h;) = 7; fori =1, 2.

Let f; be an extension of whenh; is removed fromH . Then we define a map from H
to G as follows:

fa(h1) if h = h,
F(h) =y fi(h2) if h = ho,
o (W) (f2(h), f1(h)) otherwise.

Itis clear thatF extendsf since eacly; extendsf and¢ (k) is idempotent for alk. We
claim thatF is a homomorphism. Indeed, suppose thandv are adjacent it . Without
loss of generality the only case we need to consider is wherk1 andv # h1: then

F(h1) = fa(h1) = m1(f2(h), f1(v)) = ¢ (h1)(f2(h1), f1(v))

is adjacent to

P ()(f2(v), f1(v)) = F(v)

and we are done.

(7) = (8). Letn be the number of vertices itr. Assume that the diameter of all
obstructions o1 is bounded above by a positive integerand suppose that there exist an
infinite number of obstructions fat. Then there certainly exists an obstructid@, 1) on
G where|H| > Z?’;Lolni. We can then use this obstructi¢l, f) to construct a sequence
of obstructions H;, f;), 1 <i < m+1, whereH; has diametet, contradicting our original
assumption.

To construct the above sequence of obstructions, we need the following claim:

Claim. Let G a graph withn vertices. Let(H, f) be an obstruction oy and letw be a
vertex ofH such that

(i) AUBUC is a partition of the vertices off.

(i) B andC are nonempty.
(iii) There are no edges between verticediand those irC.
(iv) we AUB.
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Then there exists an obstructiof’, ') and a vertexw’ of H' such that

(I) A”U B’ UC’is a partition of the vertices off’.
(1) |B'| <|B|, |C| < |C’| and B” is nonempty.
(1) There are no edges between verticedirand vertices inC’.
(IV) w' eA UB'.
(V) dy'(w', B') > dy (w, B).
(VI) The number of vertices i@’ that have a neighbour iB’ is at most:|B|.

Let Hc denote the subgraph @f induced by the vertices i@'. As B is nonempty,
there exists an extensianof f|y. to Hc. For each such, there exists an obstruction
(Q¢, gr) € (H, fUt). Note thatQ,; N C is nonempty els€Q;, g;) C (H, f), contradicting
the minimality of (H, f). Moreover, all ofQ; N C must be coloured by, as all ofC is
coloured byr.

Let QO be the graph created by taking copies of the graghand all the graph®,
as described above, and identifying the vertice€ inVe will denote the copy ofi¢ in
0 by He, and the copy of0; in O by O,. We give Q the partial colouringg, whereg
inherits f|p. on He and flg,\c on 0, for all +. Then(Q, g) is non-extendible, since for
any extension of g to Hc, there exists a copy aiQ;, g;) contained in(Q, g).

Let (H', f') € (Q, g) be an obstruction. There exists a homomorphisfrom H’ to
H that maps each vertexof H’' to the vertex ofH from which it was copied. The map
must be onto, elseH’, f") would be extendible by the minimality @, f). Letw’ be a
vertex ofH' such that:(w’) = w. Lets be the particular extension ¢f| 5. such thatw’ is
avertex ofQ;. Let A’ beh~1(A)N Oy, let B’ beh~1(B) N O, and letC’ be the rest off’.

Clearly, A’ U B’ U C' is a partition of H’. By construction|B’| < |B|. ConsiderHc.
As I is onto, Hc € H'. ThereforelC'| > |C]. By constructionw’ € A’ U B’, and also by
construction, there are no edges between verticds amd those irC’. Thus any path from
w’ to a vertex inC’ (at least one exits ad’ is connected) must pass throuh implying
that B’ # (). We havedy/(w’, B') > dy (w, B) as

d (w', B') > do,(w, BN Qy) > dy (w, B).

Now all that is left to prove is (VI). By Lemmas 2.3 and 2.4, a vertex in an obstruction
on G has at most coloured neighbours. If we apply this {@;, g;), we deduce that all
the vertices ofB N Q, have at mostz|B N Q| coloured neighbours i@, ; note that by
Lemma 2.4 there are no edges between coloured vertices. As@ll @fC is coloured in
(Qs, g5), at mostn| B N Q| vertices of Oy, N C have neighbours i@, N B. Therefore at
mostn|B| vertices ofC’ have neighbours iB’.

Now we will use the claim to constru¢t;, f;), 0<i <m + 1, with vertex sets;, B;
andC; and vertexs; such that

A; U B; U C; is a partition of the vertices dff;.
a; € A; U B;. '

|Bi| <n', B#pand|C;| > |H| — 3 ;_on'.
There are no edges betwegnandC;.

dp;(ai, B;) > 1.
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Let (H, f) an obstruction oG such thaiH| > Z’f:olnf, wherem is an upper bound
on the diameter of all obstructions @h We start by settingddg = H, Ag =9, Bg = {ao}
andCo = H \ ag, Whereag is some vertex off. Clearly Hy, Ag, Bo, Co andag satisfy the
statements wheh= 0.

Suppose that > 1, and that the statements are true for 1. Apply the claim to
(Hi-1, fi—l) with A = Aj_1, B=Bj_1, C =Cj_1 andw = a;—1. Let (H;, fl) be the
resulting obstruction. Le#A; = A’ U B’, let B; be the vertices i’ that have a neighbour
in B/, and letC; = H; \ (A; U B;). Lastly, leta; = w'.

Clearly A; U B; U C; is a patrtition of the vertex set df;. It is also easy to see that
a; € A; U B; and thatdy, (a;, B;) > i. By construction, there are no edges betwegn
andC;. We see thaB; is nonempty a®s’ andC’ are nonempty. In addition, by (V1),

|Bil <n|B|=n|Bi—1| <n(n'~Y) =n'.

SinceC; = C’\ B; andB; € C’ and by (Il),
i—1 . ) i '
Cil=|C'| = 1Bil > |Cical = |Bi| > |[H| =Y nf —n' =|H| =) "ni.
i=0 j=0

(8) = (1). Assume that there exists a finite number of obstructiong&fofhus there
exists an integek such that all obstructions ofi have at mosk — 1 coloured vertices.
Therefore by Lemma 2.15 admits a near-unanimity operation of arity O

Proof of Theorem 1.1. If G has a near-unanimity operation then its components also have
one as they are retracts 6f Indeed, if f is ann-ary near-unanimity operation an andr

is aretraction ont@f then the restriction ofo f to H" is a near-unanimity operation d.
Conversely, if each of the components has a near-unanimity operation then the obstructions
for G are only the obstructions of the components and the paths with the two endpoints
coloured from different components. So the maximum number of coloured elements in an
obstruction is finite and; admits a near-unanimity operation.

From this point on we assume théat is connected. Suppose first that admits a
near-unanimity operation. By Theorem 3.1 there is a path= fo, f1,..., fx = 72 of
idempotents between the two projections in H6R, G). As G is reflexive, we may
assume thak is even, i.e.k = 2m. Note that(f;, f;) is a vertex of HonG?2, G?).
Moreover,( f;, f;) and(fi+1, fj—1) are adjacent in HotG2, G2). Hence

(w1, w2) = (f1, fam)s (f2, fom—1), s (fins fim)

is a path in HomG2, G2). In fact we claim that the path is from the identity to a retraction
onto the diagonal. Clearlgr1, 72)(x, y) = (x, y). The range of f,,, f,») is the diagonal

of G2 and (f,, fin)(x,x) = (x,x) as f,, is idempotent. Moreover, each of the maps

in the path fixes the diagonal. Hence by Lemma 25, dismantles to the diagonal.
Conversely, assume that there exists a path in {#mG?2) from the identity map to

a retraction onto the diagonal such that the diagonal is contained in the image of each
of these maps. Lekg, i1, ..., h,; be such a path. Them; o ho, w1 0 h1, ..., 110 Iy =

720 hpy, ..., w20 h1, w2 o hg is the desired path in Ho(62, G). O
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