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Characterizing finite irreducible relational sets

LAszLO ZADORI*
Communicated by G. Czédli

Abstract. We associate a certain lattice with every relational set. We char-
acterize finite irreducible relational sets by the property that their associated
lattice leaves a lattice if its top element is removed. This characterization is
somewhat dual to that of subdirectly irreducible algebras by their congruence
lattices. ‘As a corollary we prove that if the idempotent clone related to a
finite relational set P is trivial then P is irreducible. A stronger version of
" irreducibility is also explored. :

1. Introduction

A relational set for us is a set equipped with some (possibly infinitary) re-
lations. Relational sets here are assumed to have some definite type. Morphisms
between relational sets of the same type are relation preserving maps. Retract and
product in the class of relational sets of the same type are meant as usual in cat-
egory theory. A relational set is finite if its base set is finite and its relations are
finitary.

In their seminal 1981 paper [4] Duffus and, Rival introduced the notions: rep-
resentation of a partially ordered set, irreducible poset. These concepts carry over
to arbitrary relational sets without any change. So we call a sequence P,,i € I of
relational sets a representation of a relational set P if P, and P are of the same
type for all ¢ € I, P is a retract of [I,c; P: and the P; are retracts of P for all i € I.
A representation P;,i € I is finite if I is finite and the relational sets P; are finite
for all 1 € I. A relational set P is irreducible if for any representation P;,i € I of
P there exists an ¢ such that P is a retract of P;.
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In their paper [4] Duffus and Rival gave various reasonings why they chose
the above definitions of representation and irreducibility for posets. Their main
motivation was Birkhoff’s subdirect representation theorem for algebras. Unfortu-
nately, it came in [4] as an open problem whether every poset has a representation
via irreducible posets. This problem has been open since then. Nevertheless, it is
easy to prove a Birkhoff type theorem for finite posets. Duffus and Rival showed
in [4] that every finite poset has a finite representation via irreducible posets. It is
also easy to get the same result for finite relational sets, see [8].

A key feature corresponding to Birkhoff’s theorem is the characterization of
subdirectly irreducible algebras as the ones whose congruence lattice has a smallest
element among its nonzero elements. Interestingly enough an analogue of this
characterization could be obtained for finite irreducible relational sets. In Section
2 we state and prove this.

- Let D be a set. A unary operation r on D is called idempotent if r2 = r.
The main idea in the proof of the characterization theorem is that we conceive a
representation of P as a certain sequence of idempotent endomorphisms of P rather
than the one of their images. This categorical point of view makes it possible to
manipulate with compositions of morphisms.

Let P be a relational set in a class K of relational sets of the same type
as P. We call P strongly irreducible in K if for any relational sets Q and R in
K if P is a retract of Q x R then P is a retract of Q or R. Clearly, any strongly
irreducible relational set P in K is irreducible whenever K contains all retracts of P.
Strong irreducibility relativised to posets has been studied in [2],{6] and implicitly
present in [4] and [7]. On strong irreducibility for other binary structures see [5].
In Section 3 we prove a result related to strongly irreducible relational sets and
provide examples of irreducible relational sets that are not strongly irreducible in
familiar classes of finite binary relational sets.

2. A characterization of irreducible relational sets

The new characterization of irreducible relational sets in this section is related
to two earlier results on categorical equivalence of algebras. In order to state these
results we need to introduce some definitions.

We say that algebra A is categorically equivalent to algebra B if there exists
a categorical equivalence between the varieties they generate such that F(4) = B.
An algebra A and B are called weakly isomorphic if there is an algebra C such
that C and A are of the same type, C is isomorphic to A, the base set of B equals ‘
the one of C and the term operations of B and C coincide. For an algebra B and
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an idempotent unary term operation 7 on B let r(B) denote the algebra whose
base set is the image of r and whose basic operations are obtained by restricting
the restrictible term operations of B to the image of r. An algebra A is called c-
minimal if for every algebra B categorically equivalent to A there is an idempotent
unary term operation 7 of B such that A is weakly isomorphic to 7(B). For an
algebra A let Sub(A) denote the lattice of subuniverses of A.

One of the above mentioned results was proved by Bergman and Berman in
[1]. It states that if A is a finite algebra, Fy is the free algebra freely generated by
one element in the variety generated by A and Sub(F;)\ {F1} has a largest element
then A is c-minimal.

Let A be an algebra and let P be a relational set. We say that P is a
relational set for A if the base sets of P and A are the same and the set of finitary
term operations of A coincides with the set of morphisms from finite powers of P to
P. A relation variety is a class of relational sets closed under product and retract.

Let A be a finite algebra and let P be a finite relational set for A. Suppose
that P is irreducible. By Theorem 1.14 in [8], P is a retract of every finite relational
set @ whenever P and Q genérate the same relation variety. By Theorem 2.3 in
(8] this is equivalent to saying that A is c-minimal. Then the second result is as
follows. If A is a finite algebra and P is a finite irreducible relational set for A then
A is c-minimal.

So we have two results with the same conclusion and with seemingly different
premises. The main theorem in this chapter states that these premises, in fact, are
equivalent. The following lemma is needed in the sequel.

Lemma 2.1. Let P be a finite relational set. Let H be the set of non-onto endo-
morphisms of P. Then there exists a positive integer m such that for any ty, ..., tm
in H we have that t,, ...ty = srq for some s,q and idempotent r in H.

Proof. Let m = 2!l 4+ 1 Then there are indices ¢ and j such that i < j and

ti...t1(P) = t;...t1(P). By the finiteness of P it follows that ¢;...%;; is bijective
on t;...t1(P). Let r be an idempotent power of t;...t;;1. Then r is the identity
restricted to t;...¢1(P). Hence, ty...t1 = tm...tix17t;...t1. So, we have the

claim. ‘
: u
P Let D be a set. An n-ary operation f on D is called idempotent if it obeys the

identity f(z,z,...,z) = z. This definition interferes with the notion of idempotent
unary operation defined earlier. Later on it will always be clear from the context
which notion of idempotency is used.

J
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Theorem 2.2. Let A be a finite algebra and let P be a finite relational set for A.
Let Fy be the subalgebra generated by id4 in algebra A4. Then the following are
equivalent.

(1) P is irreducible.

(2) The non-onto unary term operations of A, i.e., the non-onto endomorphisms
of P form a subuniverse of Fy.

(3) For all n-ary idempotent term operation h, n-ary term operation t and unary
term operdtions t1,...,tn of A if h(z1,...,2Zn) = t(t1(21),...,tn(zn)) then
there exists an 1 such that t; is onto.

(4) Sub(F1) \ {F1} has a largest element.

Proof. Let H be the set of non-onto morphisms in Fj. First we show (1) implies
(2). Suppose (2) does not hold. Then for algebra A there exists an n-ary term
operation u; and unary non-onto term operations ¢ . .. t, such that ui (¢1,...,tn) =
id4. Then ug(t1ti,...,txt;) =t; foralli =1,...,n. Hence

ul(ul(tltl, ‘e ,tnt]_), e ,’U,]_(t]_tn, .. tntn)) = ul(tl, v ,tn) = idA .
So there is an n%-ary term operation uy of A such that
Ug(tltl, vy tnty, ., titn, .. ,tntn) = idA .

By proceeding in this fashion we get the existence of an n™-ary term operation um,
of A such that

(%) ' Um ((Biy -+ i )1<in,yim<n) = 1dA

where m is an integer whose existence is guaranteed by Lemma 2.1. Let L =
{1, - yim) = 15‘1'1 v.vim < n}. Let I = (i1,...,im) be an arbitrary element of
L. By Lemma 2.1, we have that ¢;, ...t;,, = simiq for some s;,q; and idempotent
r; in H. Observe now that the morphism P — [];c; mi(P), a — (rigi(a))icr is
coretraction by (*). Since r; is non-onto r;(P) is a proper retract of P for each
l € L. Hence P is reducible, i.e., (1) does not hold.

Suppose that (2) holds. Let us take an n-ary idempotent term operation h, an

n-ary term operation t and unary term operations ty,...,%, of A with the property |
that h(z1,...,Zn) = t(t1(21),..,tn(Zs)). Since h is idempotent t(t1,...,ta) = |

id4. Since H is a subalgebra of Fy and id4 ¢ H the preceding equality implies

. that there exists an 4 such that ¢; is onto. So (3) holds.

If (3) holds then the largest element of Sub(F1) \ {F1} is formed by the non-
onto unary term operations of A. For otherwise there exist an n-ary term operation
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t and non-onto unary term operations t1,...,t, of A satisfyingidg = t(¢1,...,t,).
Let h(z1,...,2n) = t(t1(21),...,tn(zn)). Then h is an idempotent term operation
of A contradicting (3). Thus, (4) holds. ‘

Finally, we prove (4) implies (1). Assume that (1) does not hold, i.e., P
is not irreducible. Then there exist idempotent r1,...,7, in H, a retraction
r:[Ti=; 7i(P) — P and a corresponding coretraction e:P — J[r r:i(P). So
re = idy, i.e., :

r(rime, ... ,Tampe) =idyg ,

where 7; is the restriction of the n-ary projection in the i-th variable on P to
[T, ri(P) for each i = 1,...,n. This and the facts that r(r1(z;),...7n(z,)) is an
n-ary term operation on A and id 4 generates F yield [mye, ..., m,e] = F;. Because
the morphisms in [ri€], ..., [r,e] are non-onto each of [mie],...,[m €] is a proper
subalgebra of F7. Since the join of these subalgebras is Fy condition (4) does not
hold.
|
. We note that a shorter proof could be given for (1) implies (2) by using a
characterization of irreducible relational sets via obstructions in [8].

Corollary 2.3. Let P be a finite relational set. If all idempotent morphisms from
finite powers-of P to P are projections then P is irreducible.

Proof. The corollary immediately follows by condition (3) of Theorem 2.2.

3. A stronger notion of irreducibility

Corominas proved in [2] that posets with no nontrivial .idempotent monotone
operations are strongly irreducible in the class of posets. His proof extends to-

certain relational sets as follows.

Theorem 3.1. Let P, Q and R be relational sets of the .samé typels‘uch' that there

exist morphisms from Q and R to P, moreover P is a retract of @ x R. If the only
idempotent morphisms from P? to P are projections then P is a retract of Q or R.
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Proof.  Let P be a relational set such that the only idempotent morphisms from
P? to P are projections. Suppose that h; is a morphism from P to @ and A, is
a morphism from P to R. We shall establish the following property for -P: for aj}
relational sets Q and R, morphisms t1: P — Q, to: P — R and t: @ X R — P which
satisfy the identity t(t1(z),t2(z)) = x either ¢; or 3 is a coretraction. From this
‘the statement of the theorem follows since if P is a retract of Q X R then there
exist t, ty and to satisfying the given identity. ‘

So let @ and R be relational sets and let t;: P — Q, to: P — R and
t:Q X R~ P be morphlsms which satlsfy the’ 1dent1ty t(t1(z),t2(z)) = z. Then
t(t1(z),t2(y)) is an idempotent morphism from P2 to P. So without loss of gen-
erality t(t1(z),%2(y)) = z. In which case t; is a coretraction from P to Q with

7:Q — P, 2z t(2,t2h1(2)) as an appropriate retraction.
n

" Corollary 3.2. Let K be a class of relational sets such that from any element of K
‘there is a morphism to any element of K. Let P be in K. If all idempotent mor-
phisms from. finite powers of P to P are projections then P 1is strongly irreducible
n K.

Note that the above mentioned theorem of Corominas is a special case of
’ Cofollary 3.2, One can find examples of finite posets admitting no nontrivial idem-
" potent ‘operations in [2], [3] and [6]. In (3] Demetrovics and Rényai proved that
* crowns admit no nontrivial idempotent operations. Their result extends to super-
-positions of crownsand truncated Boolean:lattices as in Corominas [2]. In [6] Larose
proved that sums of nontrivial ramified posets over & nontrivial connected poset
admit no nontrivial idempotent operations. Be51des ‘he presented other examples
of posets with the same property. : :

‘It has loiig beéh an open problem,‘ see ‘[4,], whether the'notions of irreducibility :

-and strong irreducibility coincide in the class of finite posets. On the other hand,
- it is-easy to come up with an example of an irreducible but not strongly irreducible
‘relational set among finite irreflexive digraphs and is not too hard to find one among
finite reflexive digraphs or among finite graphs (symmetric digraphs), see Figure 1.

1In the figure shaded nodes symbolize the vertices with loops and undirected
edges do back and forth directed edges. All digraphs shown in the figure are
irreducible. On each line the first relational set is a retract of the product of the
last two but it is not a retract of either of them. "
\ ~The relational sets are irreflexive digraphs on the ﬁrst reﬁex1ve dlgraphs on
the second and graphs on the third line. The second example was ‘presented by
Kabil and Pouzet in [5].
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Note that the first graph in the third example admits only essentially unary
operations. Hence this example also demonstrates that in Theorem 3.1 the condi-
tion that there are morphisms from @ and R to P is éessential.

D D
LTA

Figure 1.
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