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1. Introduction

We investigate the complexity of determining if a given system of polynomial equa-
tions over a finite algebra admits a solution. For basic results in algorithmic com-
plexity, we refer the reader to [14]. As usual, we use P and NP to denote the class
of decision problems solvable in polynomial and non-deterministic polynomial time
respectively. We say that a class of problems has a dichotomy if each of the problems
from the class is either in P or NP-complete.

The problem we investigate has been studied and a dichotomy theorem has been
obtained in the special cases of groups [4], monoids and some other subclasses of
semigroups [8]. In [10], we adopted a new viewpoint of investigation and this led
to a dichotomy result which encompasses the cases of lattices, rings, modules and
quasigroups.

We introduce some basic notions in algebra. An algebra is a pair A = 〈A, {fi:i ∈
I}〉 where A is a non-empty set, I is a set and for each i ∈ I, fi is an operation of
finite arity ni on A. The set A is called the base set of A and I with the map i �→ ni
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is called the signature of A. The operations fi are called the basic operations of A.
The algebra A is finite if A is finite and A is of finite signature if I is finite. Two
algebras are similar if they have the same signature.

Let {x1, x2, . . . , xn} be a finite set of variables. If A is an algebra, an A-
term, built from the variables x1, x2, . . . , xn is defined as follows: (i) the variables
x1, x2, . . . , xn are A-terms and (ii) if f is an n-ary operation symbol and g1, . . . , gn

are A-terms, then f(g1, . . . , gn) is an A-term. Every A-term is interpreted as a term
operation on an algebra similar to A in the natural way.

Polynomials of A are defined in a similar fashion. Let C be the set of operation
symbols for all constant (0-ary) operations on A. By an A-polynomial built from
variables x1, x2, . . . , xn, we mean an expression constructed as follows: (i) the vari-
ables x1, x2, . . . , xn are A-polynomials, (ii) for every c ∈ C, c is an A-polynomial and
(iii) if p is an n-ary operation symbol and qj are A-polynomials then p(q1, . . . , qn)
is a A-polynomial. The interpretation of a polynomial in the algebra A is defined
in a straightforward manner. We shall feel free to use the polynomial expression to
designate its associated polynomial function.

We shall investigate the algorithmic complexity of the following decision problem
over a fixed (but arbitrary) finite algebra A of finite signature:

• SysPol(A)
Input: A finite sequence of pairs (pj , qj) of A-polynomials built from variables

x1, x2, . . . , xn.

Question: Are there values a1, . . . , an ∈ A such that pj(a1, . . . , an) = qj(a1, . . . ,

an) for all j?

A relational structure is a pair T = 〈T, {rj : j ∈ J}〉 where T is a non-empty
set, J is a set and rj is a relation on T of finite arity dj , j ∈ J. The set T is called
the base set of T and J with the map j �→ dj is called the signature of T . The
relations rj are called the basic relations of T . The structure T is finite if T is finite
and T is of finite signature if J is finite. Two structures are similar if they have the
same signature. Let I = 〈I, {sj : j ∈ J}〉 be a structure of signature J . A function
f : I → T is a homomorphism from I to T if f(sj) ⊆ rj for each j ∈ J .

Following Feder and Vardi [3], we define the (restricted) constraint satisfaction
problem (CSP) for a fixed (but arbitrary) finite relational structure T of finite
signature.

• CSP(T )
Input: A finite relational structure I similar to T .

Question: Is there a homomorphism from I to T ?

In passing, we note that CSP, which includes such standard decision problems
as 3-satisfiability, graph unreachability and graph k-colorability, has attracted a
great deal of attention in the last few years. The paper of Feder and Vardi [3] is a
good source of ideas and tools to get acquainted with CSP.
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Let f be an n-ary operation on A. Let f◦ denote the graph of f , i.e. the following
(n + 1)-ary relation:

f◦ = {(x1, . . . , xn, y): f(x1, . . . , xn) = y}.

If c is a constant (0-ary) operation then

c◦ = {c}.

The following theorem makes it possible to study SysPol via CSP.

Theorem 1.1 [10]. Let A = 〈A, F 〉 be a finite algebra of finite signature. The
problem SysPol(A) is polynomial-time equivalent to the problem CSP(〈A, R〉) where
R consists of all the relations of the form f◦, with f in F ∪ C.

We note that it follows from a result of Kĺıma, Tesson and Thérien [8] that for
every finite structure T , CSP(T ) is polynomial-time equivalent to some SysPol(A)
where A is a semigroup. So establishing a dichotomy for SysPol in the class of all
finite algebras is equally hard as proving that CSP has a dichotomy in the class of
all finite structures.

Let A be a finite, non-empty set. An operation f on A is idempotent if it satisfies
the identity f(x, . . . , x) = x. An algebra A is idempotent if all of its basic operations
are idempotent. We say that an algebra A admits a non-trivial idempotent Maltsev
condition, if there exists a finite set of identities satisfied by some idempotent term
operations of A that is not satisfied by projections of the two-element set. Admitting
a non-trivial idempotent Maltsev condition is a decidable property of finite algebras
of finite signature, see [6], and is even in P in the case of idempotent algebras, as
shown in [1]. Most of the algebraic structures in classical algebra have this property,
for example, algebras with a group or semilattice term operation.

An n-ary idempotent operation f is a Taylor operation if for every 1 ≤ i ≤ n, f

satisfies an identity of the form

f(x1, . . . , xi−1, x, xi+1, . . . , xn) = f(y1, . . . , yi−1, y, yi+1, . . . , yn)

where xj , yj ∈ {x, y}, for all 1 ≤ j ≤ n. For instance, a groupoid (i.e. binary)
operation is a Taylor operation if and only if it is idempotent and commutative; in
particular, semilattice operations are Taylor operations. Another common example
of a Taylor operation is the ternary term operation xy−1z of a group.

The following theorem asserts that idempotent Maltsev conditions and Taylor
terms are equivalent concepts for finite algebras.

Theorem 1.2 [6, 18]. A finite algebra admits a non-trivial idempotent Maltsev
condition if and only if it has a Taylor term operation.

Let A be a finite non-empty set, let θ be an h-ary relation on A and let f be
an n-ary operation on A; we say that f preserves θ or that θ is closed under f

if, given any matrix of size h × n with entries in A whose columns are elements
of θ, applying the operation f to the rows of the matrix yields a column which is
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in θ. In particular, if A = 〈A, {fi : i ∈ I}〉 is an algebra and B is a non-empty
unary relation closed under every fi, then B is a subalgebra of A; and if θ is an
equivalence relation on A which is preserved by every fi, then θ is a congruence of
A. The congruences of an algebra, ordered by inclusion, form a lattice.

A set of finitary operations on a fixed (but arbitrary) set is called a clone if
it contains the projections and is closed under composition. The set of the term
or polynomial operations of an algebra is a typical example of a clone. For any
relational structure T , the set of operations preserving the basic relations of the
structure form a clone that we call the clone of T . A clone is idempotent if all of its
operations are idempotent. The following result reduces the study of the idempotent
CSP to the class of those structures that admit a Taylor operation.

Theorem 1.3 [1, 9]. Let T be a finite relational structure of finite type whose clone
is idempotent and contains no Taylor operation. Then CSP(T ) is NP-complete.

Let A be a finite algebra of finite signature. By Theorem 1.1, SysPol(A) is
polynomial-time equivalent to CSP(〈A, R〉) where R consists of all relations of the
form f◦ where f is either a basic operation of the algebra A or a constant operation.
Since all operations of the clone of 〈A, R〉 preserve every one-element subset of A,

the clone of 〈A, R〉 is idempotent. So by Theorem 1.3, SysPol(A) is NP-complete
if there is no Taylor operation that preserves all relations in R.

It is a simple exercise to verify the following: an operation t preserves the relation
f◦ if and only if f preserves t◦; if this is the case, we say that the operations f and
t commute. Obviously, an operation t commutes with all the constant operations if
and only if it is idempotent. Furthermore, an operation commutes with the term
operations of an algebra if and only if it commutes with its basic operations. We
say that an operation t is compatible with the algebra A if t commutes with every
basic operation of A. Consequently, by reformulating the criterion at the end of the
previous paragraph we get:

Theorem 1.4 [10]. Let A be a finite algebra of finite signature. If A has no com-
patible Taylor operation, then SysPol(A) is NP-complete.

A dichotomy for SysPol over all finite algebras yields a dichotomy for CSP over
all finite structures and to decide the latter is considered hard. Hence, when we
prove that SysPol has a dichotomy, we are compelled to make some assumptions
on the structure of algebras we study. In the present paper, we investigate SysPol
over the algebras that have a Taylor term operation, or equivalently admit a non-
trivial idempotent Maltsev condition. This assumption on the algebras is weaker
than the one we had in [10]. For example, every semilattice has a (binary) Taylor
term operation but does not satisfy the requirements of the main theorem in [10].

Our strategy for proving a dichotomy theorem for SysPol over finite algebras
with a Taylor term operation now is similar to the one we followed in [10]. We
assume that A is a finite algebra of finite signature with a Taylor term operation
and investigate the specific CSP related to SysPol(A), described in Theorem 1.1.
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When doing this, by Theorem 1.4, we may consider only the case when A has a
compatible Taylor operation. So we can restrict ourselves to the investigation of
the specific CSP related to SysPol(A) where A has a Taylor term operation and a
compatible Taylor operation. It will turn out that algebras with this latter property
have a nice structure, which allows us to solve the specific CSP in polynomial time.

2. Preliminaries

We now present the relevant algebraic results and results from [10] that we need in
the later proofs. For standard universal algebra, we refer the reader to [6, 12].

A pseudovariety is a class of similar algebras which is closed under finite prod-
ucts, subalgebras and homomorphic images. A variety (or equivalently an equational
class) is a pseudovariety which is closed under arbitrary products. A variety V is
locally finite if every finitely generated algebra in V is finite. For instance, the vari-
ety V(A) generated by a finite algebra A, consisting of all homomorphic images of
subalgebras of powers of A, is locally finite. Tame congruence theory, first developed
by Hobby and McKenzie in [6], is a powerful tool to study these varieties.

Let A be a finite algebra. If α and β are distinct congruences of A such that
α ⊆ β but no congruence lies properly between them, then we say that the pair
(α, β) is a prime quotient of congruences. In tame congruence theory, to each prime
quotient is associated a type i ∈ {1, 2, 3, 4, 5}. We sketch briefly how this is done
and also give some facts required from the theory for later proofs.

The starting point of the theory is to introduce a family of so-called (α, β)-
minimal sets for each prime quotient (α, β) of congruences of A. A unary operation
r on a set A is called a retraction, if r2 = r, in which case r(A) is called a retract
of A. We say that a subset U of A separates the congruences α and β if α|U 	= β|U .

It turns out that the (α, β)-minimal sets coincide with the minimal polynomial
retracts of A that separate α and β. The following theorem, cf. [6, Exercise 2.9(2)],
shows that the polynomial retractions corresponding to (α, β)-minimal sets separate
the elements of A.

Theorem 2.1 [6]. For any two distinct elements a and b of a finite algebra A,

there is a prime quotient (α, β) of congruences of A and a polynomial retraction r

of A such that (r(a), r(b)) ∈ β \ α and r(A) is an (α, β)-minimal set.

We call two algebras polynomially equivalent if they have the same base set
and the same polynomial operations. Let U be an (α, β)-minimal set of A. By
restricting the polynomial operations of A that preserve U to U , we get a so-called
(α, β)-minimal algebra on U. For any fixed (α, β), the corresponding (α, β)-minimal
algebras turn out to be polynomially equivalent up to isomorphism. It is a crucial
fact that any (α, β)-minimal algebra induces smaller fragmental algebras, so-called
minimal algebras which have a very restrictive structure.

A finite algebra A is said to be minimal if every unary polynomial operation
of A is either a constant or a permutation. A description of minimal algebras on
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more than two elements was given by Pálfy in [13]. By extending this description
to the two-element case in [6], Hobby and McKenzie proved that, up to polynomial
equivalence and isomorphism, the only minimal algebras are of the following 5 types:

1. algebras whose basic operations are permutations or constants;
2. vector spaces;
3. the 2-element Boolean algebra;
4. the 2-element lattice;
5. the 2-element semilattice.

It turns out that the minimal algebras induced by the same (α, β)-minimal
algebra are polynomially equivalent up to isomorphism. Hence, every prime quotient
(α, β) of congruences has a unique type 1–5. The collection of all types of all prime
quotients (α, β) is called the typeset of A. The typeset of a variety is the union of
all typesets of its finite members.

By [6, Lemmas 4.15 and 4.20], (α, β)-minimal algebras possess certain well-
behaved basic operations, provided that the type of (α, β) is different from type 1.
As an immediate consequence of these results, we obtain the following theorem that
plays a crucial role in the proof of the main result of this paper.

Theorem 2.2 [6]. Let (α, β) be a prime quotient of congruences of an algebra A

where the type of (α, β) differs from type 1. Then every (α, β)-minimal algebra of
A has a binary basic operation with an identity element.

Let i be an element of {1, 2, 3, 4, 5}. A finite algebra (a variety) is said to omit
type i if its typeset does not contain type i. The connection between the typeset of a
variety generated by a finite algebra and identities satisfied by the term operations of
the algebra is illustrated in the following result, see [6, Lemma 9.4 and Theorem 9.6].

Theorem 2.3 [6]. Let V(A) be the variety generated by a finite algebra A. Then
the following are equivalent:

(i) V(A) omits type 1;
(ii) A admits a non-trivial idempotent Maltsev condition;
(iii) A has a Taylor term operation.

The next result was proved in [10] and independently by Seif [15].

Theorem 2.4 [10]. Any finite algebra that has a compatible Taylor operation omits
types 3 and 4.

The following theorem states the main result of [10].

Theorem 2.5 [10]. Let A be a finite algebra of finite signature and V(A) the
variety generated by A. Suppose that A omits type 5 and V(A) omits type 1. Then
SysPol(A) is in P if A is polynomially equivalent to a module, and SysPol(A) is
NP-complete otherwise.
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In the remaining sections, we shall prove a similar but more sophisticated
dichotomy theorem under the only assumption that V(A) omits type 1, i.e. A has
a Taylor term operation.

3. Groupoids with an Identity Element and Compatible
Taylor operation

The extension of a group with a new absorbing element is called a group with
zero. The following characterization of finite monoids with a compatible Taylor
operation is given in [10]. In this section, we shall extend this result to groupoids
with an identity element.

Theorem 3.1 [10]. For a finite monoid M, the following are equivalent:

(i) M has a compatible Taylor operation.
(ii) M is a subdirect product of finite Abelian groups and finite Abelian groups with

zero.
(iii) M is in the pseudovariety generated by the finite Abelian groups and finite

semilattices.

A semigroup S is called a semilattice of Abelian groups if S has a congruence
θ such that S/θ is a semilattice and the blocks of θ are Abelian subgroups of S.
We note that the equivalence of the last two conditions in the preceding theorem
remains valid for arbitrary finite semigroups. For a proof of the following theorem,
we refer to standard results in [5].

Theorem 3.2. For a finite semigroup S, the following are equivalent:

(i) S is a semilattice of finite Abelian groups.
(ii) S is a subpower of a finite Abelian group with zero.
(iii) S is a subdirect product of finite Abelian groups and finite Abelian groups with

zero.
(iv) S is in the pseudovariety generated by the finite Abelian groups and finite semi-

lattices.

The semigroups satisfying the conditions of the preceding theorem are called
finite commutative Clifford semigroups in semigroup theory. The semigroup opera-
tion of a commutative Clifford monoid is called ccm-multiplication. The exponent
of a finite commutative Clifford semigroup is defined to be the least common multi-
plier of the exponents of its subgroups. We note that any finite commutative Clifford
semigroup S has a unique idempotent term operation of the form xyn−1z, n > 1.

Indeed, if there are two such operations corresponding to m and n, respectively,
then by idempotency, xm+1 = xn+1 for all x ∈ S. Hence, the exponent of S divides
m − n, and ym−1 = yn−1, i.e. the operations xym−1z and xyn−1z coincide.

The following theorem states the main result of the section.
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Theorem 3.3. Let M be a finite set. Let xy be a binary operation with an identity
element and t a Taylor operation on M such that xy commutes with t. Then the
following hold:

(i) xy is a ccm-multiplication on M.

(ii) The clone generated by t contains an idempotent ternary operation of the form
xyn−1z.

Proof. Let M denote the the groupoid with base set M and basic operation xy.

The identity element of M is denoted by 1 and we assume that t has arity k.

By Theorem 3.1, to prove the first claim of the theorem it suffices to show that
M is a monoid. Since t is a Taylor operation, t is idempotent and for every 1 ≤ i ≤ k,

t satisfies an identity

t(x1, . . . , xi−1, x, xi+1, . . . , xk) = t(y1, . . . , yi−1, y, yi+1, . . . , yk)

where xj , yj ∈ {x, y}, for all 1 ≤ j ≤ k.

We introduce the following notation:

ti(x) = t(1, . . . , 1, x, 1, . . . , 1) where x stands in the ith position;

si(x) = t(1, . . . , 1, x, . . . , x) where the 1’s stand in the first i positions;

s(x) = t(x, . . . , x).

We shall prove that M is associative. Let a, b and c be any element in M. By
using the first Taylor identity, we have that

t(a, z2, . . . , zk) = t(1, w2, . . . , wk)

where zi, wi ∈ {a, 1}. Let

zi =
{

1, if zi = a,

a, if zi = 1.

Now we get that

s(a) = t(a, z2, . . . , zk) t(1, z2, . . . , zk)

= t(1, w2, . . . , wk) t(1, z2, . . . , zk)

= t(1, w2z2, . . . , wkzk).

By using the expression obtained for s(a), we get

(ab)c = (s(a)s(b))s(c)

= (t(1, w2z2, . . . , wkzk)s(b))s(c)

= t(bc, ((w2z2)b)c, . . . , ((wkzk)b)c)

= t1(bc)t(1, ((w2z2)b)c, . . . , ((wkzk)b)c)

= t1(bc)((t(1, w2z2, . . . , wkzk)s1(b))s1(c))

= t1(bc)((s(a)s1(b))s1(c)).
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Then by the use of the second Taylor identity similarly as before, we get

(s(a)s1(b))s1(c) = t2(bc)((s(a)s2(b))s2(c))

and so

(ab)c = t1(bc)(t2(bc)((s(a)s2(b))s2(c)).

By repeating the preceding argument, using the other Taylor identities and
sk(b) = sk(c) = s(1) = 1, we get

(ab)c = t1(bc)(t2(bc) · · · (tk(bc)((s(a)sk(b))sk(c)) · · ·)
= t1(bc)(t2(bc) · · · (tk(bc)s(a)) · · ·)
= t((bc)a, . . . , (bc)a)

= (bc)a.

Thus, for any a, b, c ∈ M, (ab)c = (bc)a. In particular, by letting b = 1, we get
ac = ca, i.e. M is commutative. Hence, (ab)c = a(bc) for any a, b, c ∈ M, i.e. M is
associative.

Now, we prove the second claim of the theorem. By the first claim of the theorem,
M is a commutative Clifford monoid. Let E denote the semilattice of the idempotent
elements of M. For every e ∈ E, let Ge be the group of elements of M with a power
that equals e. Then M is the disjoint union of the Ge. Let n denote the exponent
of M. Then m(x, y, z) = xyn−1z clearly is an idempotent operation on M.

We want to show that m is in the clone generated by t. This statement was
already verified in [10] when xy is a group operation and in [7] when xy is a
semilattice operation, cf. [10, Lemmas 3.6, 3.8 and Theorem 3.10] and [7, Lemma
3.6]. Since, in case of n = 1, the operation xy is a semilattice operation, we assume
n > 1. It is easy to see, since t is idempotent and commutes with xy, that E and
the Ge are closed under t. The same sets are also closed under xy. Hence t, with a
componentwise action, is a Taylor operation on the product G of the Ge. Moreover,
t commutes with the group operation xy on G. By the group result mentioned at
the beginning of the paragraph, m on G coincides with a ternary term operation
in the clone generated by t on G.

Let [t] denote the clone generated by t on M. Because of the similar claim
just mentioned for G, there is a ternary idempotent operation g ∈ [t] such that
g|Ge = m|Ge for all e ∈ E. By the semilattice result, there is a binary idempotent
term operation s ∈ [t] such that s|E(x, y) = xy|E . Our aim is to find an operation
in [t] that coincides with m. The initial candidate for such an operation is g, but g

may not be equal to m when restricted to E. This defect of g can be eliminated as
follows.

Let F be a maximal upwardly closed set of E with the property that there is a
ternary operation h ∈ [t] satisfying h|Ge = m|Ge for all e ∈ E and h|F = m|F . Let
g be a ternary operation in [t] such that g witnesses the maximality of F. We claim
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that F = E. Suppose that the claim does not hold and let f be a maximal element
of E \ F. Since g commutes with xy and is idempotent

g(1, f, f)g(f, f, 1) = g(f, f, f) = f.

So either both of g(1, f, f) and g(f, f, 1) are in F, or one of them equals f , say
g(1, f, f) = f. In the first case, for any fi ∈ F ∪{f}, i = 1, 2, 3, there exist elements
ei, e

′
i ∈ F, i = 1, 2, 3, such that fi = eie

′
i, i = 1, 2, 3, and

g(f1, f2, f3) = g(e1, e2, e3)g(e′1, e
′
2, e

′
3) = e1e2e3e

′
1e

′
2e

′
3 = f1f2f3,

which contradicts the maximality of F. Hence g(1, f, f) = f.

We define

u(x, y) = g(x, s(x, y), s(x, y)) ∈ [t].

By the properties of g and s for all e ∈ E and x, y ∈ Ge

u(x, y) = xs(x, y)n = xyn,

and for all x, y ∈ F ∪ {f}, as g(1, y, y) = y and y = yn in this case,

u(x, y) = g(x, s(x, y), s(x, y)) = g(x, xy, xy) = g(x, x, x)g(1, y, y) = xyn.

Let

v(x, y, z) = s(s(x, y), z).

Observe that v|E = m|E .

Let

g′(x, y, z) = g(v(x, u(x, y), u(x, z)), v(u(y, x), y, u(y, z)), v(u(z, x), u(z, y), z)).

Clearly, g′ ∈ [t]. Moreover, for all e and x, y, z ∈ Ge or x, y, z ∈ F ∪ {f}
g′(x, y, z) = g(v(x, xyn, xzn), v(yxn, y, yzn), v(zxn, zyn, z))

= g(v(xn+1, xyn, xzn), v(yxn, yn+1, yzn), v(zxn, zyn, zn+1))

= g(xv(xn, yn, zn), yv(xn, yn, zn), zv(xn, yn, zn))

= g(x, y, z)v(xn, yn, zn)

= m(x, y, z).

Thus, g′ ∈ [t] satisfies g′|Ge = m|Ge for all e ∈ E and g′|F∪{f} = m|F∪{f}, a
contradiction.

So far we have proved that there exists g ∈ [t] such that g|Ge = m|Ge for all
e ∈ E and g|E = m|E . Now, for any x, y, z ∈ M

g(x, y, z) = g(x, y, z)g(xn, yn, zn)

= g(x, y, z)m(xn, yn, zn)

= g(xm(xn, yn, zn), ym(xn, yn, zn), zm(xn, yn, zn))

= m(xm(xn, yn, zn), ym(xn, yn, zn), zm(xn, yn, zn))

= m(x, y, z)m(xn, yn, zn)

= m(x, y, z).

Thus, g = m and this concludes the proof.
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We remark that the proof of the second claim of the preceding theorem can
be made constructive by determining a term in [t] that interprets as xyn−1z. The
procedure to construct such a term in the group case was pointed out to the author
by Szendrei. Her construction is based on results contained in [16, 17]. On the other
hand, in the semilattice case, a term in [t] that interprets as xy can be constructed
as follows. Let

ti(x, y) = t(y, . . . , y, x, y, . . . , y)

where x on the right-hand side is in the ith position, and i = 1, . . . , k. Notice that
by the ith Taylor identity for t

ti(1, y) = y and hence ti(x, y) = ti(x, 1)y.

Then

xy = t1(x, t2(x, . . . , tk−1(x, tk(x, y)) · · ·)).

So the terms s and g in the proof of Theorem 3.3 can be constructed in [t], and
hence, by going along the lines of the proof, a term that interprets as xyn−1z can
also be constructed in [t].

The restriction of the following theorem to the class of monoids was proved ear-
lier by Kĺıma, Tesson and Thérien in [8]. Combining their theorem with Theorems
1.4 and 3.3, we get the following result.

Theorem 3.4. Let M be a finite groupoid with an identity element. Then
SysPol(M) is in P if M is a commutative Clifford monoid, and SysPol(M) is NP-
complete otherwise.

4. Doubly Taylor Algebras and the Main Result

A Taylor algebra is an algebra with a Taylor term operation. A doubly Taylor
algebra is a Taylor algebra with a compatible Taylor operation. In this section, we
investigate the structure of doubly Taylor algebras. As an application of the results
obtained, we prove a dichotomy theorem for SysPol over finite algebras admitting
a non-trivial idempotent Maltsev condition.

Theorem 4.1. Every finite idempotent doubly Taylor algebra is a subalgebra of a
finite idempotent Taylor algebra with a compatible ccm-multiplication.

Proof. Let A be a finite idempotent doubly Taylor algebra. Let A
∗ be the algebra

whose base set equals that of A and whose basic operations coincide with the
compatible operations of A. By Theorem 2.1, for any two distinct elements a and b

of A∗, there is a prime congruence quotient (α, β) of A∗ and a polynomial retraction
r of A∗ such that (r(a), r(b)) ∈ β \ α and r(A∗) is an (α, β)-minimal set. Since A

is idempotent, the unary polynomial operations of A∗ are endomorphisms of the
algebra A. Hence, r(A∗) = r(A) are subalgebras of A, and A is a subdirect product
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of them as r separate the elements of A. Since A is doubly Taylor, all the r(A∗) are
also doubly Taylor. By Theorems 2.3 and 2.4, the type of (α, β) is 2 or 5. Hence, by
Theorem 2.2, all the (α, β)-minimal algebras r(A∗) have a groupoid term operation
with an identity element. By applying now Theorem 3.3, the algebras r(A∗) all have
ccm-multiplication as a term operation. This ccm-multiplication is a compatible
operation of the algebra r(A). Finally, A is a subalgebra of the product of the
algebras r(A) and the compatible ccm-multiplications of r(A) yield a compatible
ccm-multiplication on the product. The product is an idempotent Taylor algebra,
as it inherits the relevant properties of A.

The proof of the preceding theorem yields:

Corollary 4.2. Every finite subdirectly irreducible idempotent doubly Taylor alge-
bra has a compatible ccm-multiplication.

The following is an immediate consequence of Corollary 4.2 and Theorem 3.3.

Corollary 4.3. Every finite subdirectly irreducible idempotent doubly Taylor alge-
bra A has an idempotent compatible term operation of the form xyn−1z where xy

is a compatible ccm-multiplication of A.

Now, we give a characterization of doubly Taylor algebras.

Theorem 4.4. A finite Taylor algebra is a doubly Taylor algebra if and only if it
has a compatible idempotent ternary operation that extends to an idempotent term
operation xyn−1z of a finite commutative Clifford monoid.

Proof. Let B be a finite doubly Taylor algebra with base set B. Without loss of
generality, we assume that B contains all constant operations of B. Let A be the
idempotent doubly Taylor algebra on B whose basic operations are the compatible
operations of B. By Theorem 4.1, there is an idempotent Taylor algebra C such that
A is a subalgebra of C and C has a compatible ccm-multiplication xy. By Theorem
3.3, C has xyn−1z as its term operation. Hence, B is closed under xyn−1z and the
restriction of xyn−1z to B yields a compatible idempotent ternary operation of B.

Thus, C with the ccm-multiplication xy is a finite commutative Clifford monoid,
as required in the claim.

To prove the other direction of the claim, let B denote a finite Taylor algebra
and m(x, y, z), a compatible operation of B that extends to an idempotent term
operation xyn−1z of a finite commutative Clifford monoid. Then

x1x2 · · ·xn+1|B = m(x1, xn+1, m(x2, xn+1, . . . , m(xn, xn+1, xn+1), . . .)

is a compatible Taylor operation of B. Thus, B is a doubly Taylor algebra.

By using the above characterization of doubly Taylor algebras, we shall prove
the main theorem of this paper. We require the following reduction theorem, see
[1, Corollary 3].
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Theorem 4.5 [1]. Let A be a finite algebra such that for every finite structure
S of finite signature whose base set coincides with that of A and whose relations
are finite subpowers of A, there is a polynomial-time algorithm for solving CSP(S).
Then for every finite member B of the variety generated by A and every structure
T of finite signature whose base set coincides with that of B and whose relations
are finite subpowers of B, there is a polynomial-time algorithm for solving CSP(T ).

In [2], Dalmau et al. describe a polynomial-time algorithm for solving a special
type of CSP. Their algorithm is put together from a local (so-called bounded width)
algorithm and an algorithm that solves CSP for coset structures of a group. In fact,
the following theorem that we require is a special case of [2, Theorem 3].

Theorem 4.6 [2]. Let M be a finite commutative Clifford semigroup with exponent
n and T , a finite relational structure of finite signature whose base set equals that
of M. If the idempotent term operation xyn−1z of M preserves the base set and the
relations of T , then there exists a polynomial-time algorithm for solving CSP(T ).

By the previous two theorems we get the following.

Theorem 4.7. Let M be a finite commutative Clifford semigroup and T , a finite
relational structure of finite signature with a base set contained in M. If the idem-
potent term operation xyn−1z of M preserves the base set and the relations of T ,

then there exists a polynomial-time algorithm for solving CSP(T ).

Proof. Let G be a finite Abelian group and G0, the extension of G with zero such
that M is a subsemigroup of Gl

0 for some finite l. Without loss of generality, we may
assume that n equals the exponent of G. Let m denote the term operation xyn−1z of
G0. By Theorem 4.5, it suffices to show that for every structure S of finite signature
whose base set is G0 and relations are finite subpowers of the algebra 〈G0, m〉, there
is a polynomial-time algorithm for solving CSP(S). But this follows by Theorem
4.6, which concludes the proof.

Now, by putting together Theorems 1.2, 1.4, 4.4 and 4.7, we get our main result.

Theorem 4.8. Let A be a finite algebra of finite signature that admits a non-trivial
idempotent Maltsev condition. Then SysPol(A) is in P whenever A has a compatible
idempotent ternary operation that extends to the idempotent term operation xyn−1z

of a finite commutative Clifford monoid, and SysPol(A) is NP-complete otherwise.

In the introduction, we have already mentioned the following result of Kĺıma,
Tesson and Thérien in [8], although not in its precise form: for any finite structure
T of finite signature, there is a finite right normal band B such that CSP(T )
is polynomial-time equivalent to SysPol(B). In this respect, we note that apart
from semilattices, every finite right normal band generates a variety whose type set
contains type 1. Hence, Theorem 4.8 says nothing about SysPol over right normal
bands different from semilattices. Thus, it is not possible to combine the theorem
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of Kĺıma et al. with Theorem 4.8 to prove that CSP has dichotomy over all finite
structures.

The following theorem suggested by Larose generalizes Theorem 3.4 and covers
some of the type 1 cases, not the case of right normal bands though.

Theorem 4.9. Let A be a finite algebra of finite signature that has a binary poly-
nomial operation xy with an identity element. Then SysPol(A) is in P if xy is a
ccm-multiplication and the idempotent ternary operation xyn−1z is a compatible
operation of A, and SysPol(A) is NP-complete otherwise.

Proof. By Theorem 1.4, it suffices to consider only the case when A has a com-
patible Taylor operation. Let t be a compatible Taylor term operation of A. Then,
by the first claim of Theorem 3.3, xy is a ccm-multiplication. Since xy commutes
with t, by the second claim of Theorem 3.3, the idempotent polynomial operation
xyn−1z is in the clone [t]. Hence, xyn−1z is a compatible operation of A, and by
Theorem 4.6, SysPol(A) is in P.

We note that, during the editorial process of this paper, Maróti and McKenzie
proved in [11] that every finite Taylor algebra has a so-called weak near-unanimity
term operation. A weak near-unanimity operation is a special Taylor operation t

which satisfies the following identities

t(y, x, . . . , x) = t(x, y, . . . , x) = · · · = t(x, . . . , x, y).

In connection with the result of Maróti and McKenzie, the anonymous referee of this
paper pointed out that the use of the identities for weak near-unanimity may reduce
the complexity of notation introduced in the proof of the first part of Theorem 3.3.
It is not clear at this point whether their new result may lead to a simpler proof,
perhaps avoiding tame congruence theory, of the characterization of doubly Taylor
algebras given in Theorem 4.4.
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